# SCALE USERS GUIDE

Version 5.5.4

Team SCALE UGC working group

December 25, 2024



· 、



## Contents

| 1 Overview                                                                                                                                                                                                                                                                                                                                                        | 4                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| <b>1.1Introduction</b> 1.1.1 What is SCALE ?         1.1.2 Structure of SCALE-RM                                                                                                                                                                                                                                                                                  | 5<br>. 5<br>. 7                                          |
| 1.2Notations used in this document                                                                                                                                                                                                                                                                                                                                | 9                                                        |
| 2 Install                                                                                                                                                                                                                                                                                                                                                         | 10                                                       |
| 2.1Preparation 2.1.1 System environment                                                                                                                                                                                                                                                                                                                           | <b>11</b><br>. 11                                        |
| 2.2Compile of SCALE<br>2.2.1 Download and environmental settings                                                                                                                                                                                                                                                                                                  | <b>14</b><br>. 14<br>. 15                                |
| 2.3Compile of post-processing tool<br>2.3.1 Compilation of SNO                                                                                                                                                                                                                                                                                                    | 17<br>. 17                                               |
| 3 Tutorial for SCALE-RM                                                                                                                                                                                                                                                                                                                                           | 18                                                       |
| <b>3.1Operation check and basic usage</b> 3.1.1 Introduction         3.1.2 How to execute model         3.1.3 Post-processing and drawing         3.1.4 Guideline for further study                                                                                                                                                                               | <b>19</b><br>. 19<br>. 19<br>. 21<br>. 22                |
| <b>3.2Real atmosphere experiment</b> 3.2.1 Overview         3.2.2 Preparations for input data (boundary data)         3.2.3 Preparation for experiment set         3.2.4 Creating topographical data: pp         3.2.5 Creating the initial and boundary data: init         3.2.6 Execution of simulation: run         3.2.7 Quick look at simulation result: sno | 24<br>25<br>25<br>27<br>28<br>28<br>29<br>32<br>32<br>35 |
| 4 Various settings                                                                                                                                                                                                                                                                                                                                                | 38                                                       |
| <b>4.1Pre-processing</b> 4.1.1 Setting the topography         4.1.1.1 Preparation of user-defined topography                                                                                                                                                                                                                                                      | <b>39</b><br>. 39<br>. 41                                |



| 4.1.3 How to prepare input data from user-defined data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $43 \\ 53$                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2Framework for SCALE-RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                                                                                |
| 4.2.1 Supporting tool for preparation of configuration files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55                                                                                                                                                                |
| 4.2.2 Configuration File Converter from Previous Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                |
| 4.2.3 Setting the target domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57                                                                                                                                                                |
| 4.2.3.1 Setting the number of horizontal and vertical grids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                |
| 4 2 3 2 Setting grid intervals along the horizontal and vertical directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58                                                                                                                                                                |
| 4.2.3.3 Setting the number of MPI processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                |
| 4.2.3.4 Setting sponge layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                |
| 4.2.3.5 Setting Buffer Region and Boundary Nudging Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61                                                                                                                                                                |
| 4.2.3.6 Setting particul grids for easen land and urban models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                |
| 4.2.3.0 Setting vertical grids for ocean, faid, and urban models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00                                                                                                                                                                |
| 4.2.5 Setting integration period and time step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                |
| 4.2.5.1 Time Step for Dynamical Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68                                                                                                                                                                |
| 4.2.5.2 Check of CFL Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                                                |
| 4.2.5.3 Time Step for Physical Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                                                                                                                                                |
| 4.2.5.4 Finalization by wall-clock timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                |
| 4.2.6 Setting the history file and output variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                |
| 4.2.7 How to restart run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                |
| 4.2.8 How to conduct nesting experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                |
| 4.2.8.1 Treatment of topography in child domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                                                |
| 4.2.8.2 Offline Nesting Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78                                                                                                                                                                |
| 4.2.8.3 Online Nesting Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |
| 4.3 Setting the dynamical core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                                                                                                                                |
| 4.3.1 Dynamical Core for Cartesian C-grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>85</b><br>85                                                                                                                                                   |
| 4.3.1 Dynamical Core for Cartesian C-grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>85</b><br>85<br>85                                                                                                                                             |
| 4.3.1 Dynamical Core for Cartesian C-grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85<br>85<br>85<br>85                                                                                                                                              |
| 4.3.1 Dynamical Core<br>4.3.1 Dynamical Core for Cartesian C-grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85<br>85<br>85<br>85<br>86                                                                                                                                        |
| 4.3.5etting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85<br>85<br>85<br>85<br>86<br>87                                                                                                                                  |
| 4.3.5 etting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite         4.3.1.5 Halos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85<br>85<br>85<br>85<br>86<br>87<br>87                                                                                                                            |
| 4.3.5etting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite         4.3.1.5 Halos         4.3.1.6 Setting for Coriolis Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>87                                                                                                                      |
| 4.3.Setting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite         4.3.1.5 Halos         4.3.1.6 Setting for Coriolis Force         4.3.17 Setting for Beference State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88                                                                                                          |
| 4.3.Setting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite         4.3.1.5 Halos         4.3.1.6 Setting for Coriolis Force         4.3.1.7 Setting for Reference State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88                                                                                                                |
| 4.3.5etting the dynamical core         4.3.1 Dynamical Core for Cartesian C-grid         4.3.1.1 Setting Integration Numerical Method         4.3.1.2 Setting Temporal and Spatial Schemes         4.3.1.3 Numerical Diffusions         4.3.1.4 Positive Definite         4.3.1.5 Halos         4.3.1.6 Setting for Coriolis Force         4.3.1.7 Setting for Reference State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br><b>90</b>                                                                                             |
| <ul> <li>4.3.5 etting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>90<br>90                                                                                              |
| <ul> <li>4.3.5 etting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>85<br>85<br>85<br>85<br>87<br>87<br>87<br>88<br>88<br>88<br>90<br>90<br>91                                                                                  |
| <ul> <li>4.3.5 etting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>85<br>85<br>85<br>86<br>87<br>87<br>87<br>88<br>88<br>88<br>90<br>90<br>91<br>92                                                                            |
| <ul> <li>4.3.5 etting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br><b>90</b><br>90<br>91<br>92<br>93                                                              |
| <ul> <li>4.3.Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br><b>90</b><br>91<br>92<br>93<br>94                                                              |
| <ul> <li>4.3.Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br><b>90</b><br>91<br>92<br>93<br>94<br>99                                                        |
| <ul> <li>4.3.Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>91<br>92<br>93<br>94<br>99<br>101                                                  |
| <ul> <li>4.3.Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102                                           |
| <ul> <li>4.3Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102                                    |
| <ul> <li>4.3 Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>90<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102<br>104                             |
| <ul> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102<br>104<br>107                |
| <ul> <li>4.3Setting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li> <li>4.3.1.1 Setting Integration Numerical Method</li> <li>4.3.1.2 Setting Temporal and Spatial Schemes</li> <li>4.3.1.3 Numerical Diffusions</li> <li>4.3.1.4 Positive Definite</li> <li>4.3.1.5 Halos</li> <li>4.3.1.6 Setting for Coriolis Force</li> <li>4.3.1.7 Setting for Reference State</li> </ul> 4.4Setting the physical process <ul> <li>4.4.1 Cloud Micro-Physics</li> <li>4.4.2 Cumulus Parameterization</li> <li>4.4.3 Sub-Grid Scale Turbulence Scheme</li> <li>4.4.5 Radiation scheme</li> <li>4.4.6 Surface flux scheme</li> <li>4.4.7.1 Fixed to initial condition</li> <li>4.4.7.3 Ocean surface process</li> <li>4.4.8.1 Fixed to initial condition</li> </ul>                                                                                                                                 | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102<br>104<br>107<br>108         |
| <ul> <li>4.3.1 Dynamical Core for Cartesian C-grid</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102<br>104<br>107<br>108<br>108  |
| <ul> <li>4.35etting the dynamical core</li> <li>4.3.1 Dynamical Core for Cartesian C-grid</li> <li>4.3.1.1 Setting Integration Numerical Method</li> <li>4.3.1.2 Setting Temporal and Spatial Schemes</li> <li>4.3.1.3 Numerical Diffusions</li> <li>4.3.1.4 Positive Definite</li> <li>4.3.1.5 Halos</li> <li>4.3.1.6 Setting for Coriolis Force</li> <li>4.3.1.7 Setting for Reference State</li> </ul> 4.4Setting the physical process <ul> <li>4.4.1 Cloud Micro-Physics</li> <li>4.4.2 Cumulus Parameterization</li> <li>4.4.3 Sub-Grid Scale Turbulence Scheme</li> <li>4.4.4 Planetary Boundary Layer Scheme</li> <li>4.4.5 Radiation scheme</li> <li>4.4.7 Ocean Model</li> <li>4.4.7.1 Fixed to initial condition</li> <li>4.4.7.3 Ocean surface process</li> <li>4.4.8 Land Model</li> <li>4.4.8.1 Fixed to initial condition</li> <li>4.4.8.2 BUCKET land scheme</li> <li>4.4.9 Urban model</li> </ul> | <b>85</b><br>85<br>85<br>85<br>86<br>87<br>87<br>88<br>88<br>88<br>88<br>90<br>91<br>92<br>93<br>94<br>99<br>101<br>102<br>102<br>104<br>107<br>108<br>108<br>109 |

| 4.5Common settings                                                             | 13                 |
|--------------------------------------------------------------------------------|--------------------|
| 4.5.1 Log File                                                                 | 113                |
| 4.5.1.1 Log File Output                                                        | 113                |
| 4.5.1.2 Execution Time Information in Log File                                 | 114                |
| 4.5.2 Setting the monitor file                                                 | 114                |
| 4.5.3 Setting Physical Constants                                               | 119                |
| 4.5.4 Setting Calendar                                                         | 119                |
| 4.5.5 Setting Random Number Generator                                          | 119                |
| 4.5.6 Setting Performance Profiler                                             | 120                |
| 4.5.7 Setting Statistics Monitor                                               | 120                |
| 4.6Post-processing                                                             | <b>21</b>          |
| 4.6.1 SCALE NetCDF Operator (SNO) 1                                            | 121                |
| 4.6.1.1 Basic usage                                                            | 121                |
| 4.6.1.2 Examples of configuration: conversion of data format and decomposition |                    |
| numbers                                                                        | 122                |
| 4.6.1.3 Examples of configuration: plugin functions                            | 124                |
|                                                                                |                    |
| 5 Detailed explanation for advanced use 1                                      | 28                 |
| 5.1File IO of SCALE 1                                                          | 29                 |
| 5.1.1 What is SCALE-netCDF File? 1                                             | 129                |
| 5.1.1.1 Global Attributes                                                      | 129                |
| 5.1.1.2 Data in the Halo Region $\ldots$ 1                                     | 129                |
| $5.1.1.3$ Axis Variables $\ldots$ 1                                            | 129                |
| $5.1.1.4$ Data Variables $\ldots$ 1                                            | 133                |
| 5.1.1.5 Single File I/O $\ldots$ 1                                             | 133                |
| 5.1.1.6 Restrictions with NetCDF 3 $\ldots$ 1                                  | 133                |
| 5.2How to use user defined program 1                                           | 36                 |
| 5.2.1 Module for user defined settings                                         | 136                |
| 5.2.1.1 What is mod_user module? 1                                             | 136                |
| 5.2.1.2 Compile                                                                | 137                |
| 5 2How to use coole librory                                                    | 190                |
| 5.3 1 Heer Program Heing SCALE                                                 | - <b>30</b><br>128 |
| 5.3.1.1 Compile                                                                | 130                |
| 5.3.2 Reference manual                                                         | 140                |
| 5.3.2.1 Subroutines                                                            | 140                |
| 5 3 2 2 NAMELIST Parameters                                                    | 141                |
| 5.3.2.3 History (output) Variables                                             | 142                |
|                                                                                | 140                |
| 5.4 How to Conduct Bulk Job                                                    | .43<br>149         |
| 5.4.2 Settings for Pull Job                                                    | 143<br>149         |
| 5.4.2 Settings for Durk Job                                                    | 143<br>144         |
| 5.4.4 Propagation for Bulk Joh                                                 | 144<br>144         |
| 5.4.5 Execution of Bulk Job                                                    | 144<br>175         |
| 5.4.5 EXecution of Durk Job                                                    | 140                |
| 6 Appendix 1                                                                   | 50                 |
| A Frequently asked questions                                                   | 151                |



## Part 1 Overview



## Chapter 1.1

## Introduction

This user's manual is intended for first-time users of the regional climate/weather forecasting model SCALE-RM. The manual is based on the meteorology/climate library SCALE version 5.5.4. The current version of SCALE contains a regional model SCALE-RM and a global model SCALE-GM. This version of the user's manual explains how to use SCALE-RM in detail. A description of SCALE-GM is planned for the next release.

The structure of this document is as follows: Part 1 provides an overview of SCALE , Part 2 describes how to install SCALE-RM along with the system requirements. Using simple examples, Chapters 3.1 and 3.2 explain the basic use of SCALE-RM using examples of an ideal experiment and an real atmospheric experiment, respectively. Since these chapters are constructed as a series of tutorials, it is recommended that beginning users of SCALE-RM read these chapters meticulously. Parts 4 and 5 describe how to change the model configuration and explain data format and available functions and tools. Since each section is closed itself basically, these chapter can be utilized as a dictionary.

If you have any questions or comments, please contact us through the users' mailing list (scale-users@ml.riken.jp).

### 1.1.1 What is SCALE ?

Scalable Computing for Advanced Library and Environment, called SCALE, is a software library that helps conduct research on climate and weather forecasting on any computer with ease. This library covers all processes related to such research: pre-processing, simulation, post-processing, and analysis. It has the following advantages:

- SCALE is provided as an open-source software under the "BSD-2 license". It is free for use, modification, and redistribution, regardless of whether the user is a business or other enterprise.
- SCALE contains a regional model called the SCALE-RM (SCALE-Regional Model).
- SCALE prepares various schemes in a component, as outlined in the next section. They can be appropriately chosen according to the desired experiments of users.
- SCALE provides a framework for physical processes that can be called not only by SCALE-RM , but also by other numerical models.

For the details of the license, the interested reader can refer to the file scale-5.5.4/LICENSE under the main directory. This explanation of its use is also provided on the SCALE webpage (https://scale.riken.jp/).

In this section, the concept of SCALE and its relations to actual models are explained. It can be skipped, as it is not related directly to its practical use.



### Relations between SCALE library and models



Figure 1.1.1: Aims of SCALE

SCALE was developed in RIKEN with several outside contributors, and its improvement and extension continue. Figure 1.1.1 shows the schematic concept of SCALE . As shown in this figure, SCALE aims to resolve various problems. The development of SCALE is considered in the context of its wide use by devices ranging from small PC clusters to next-generation supercomputers. For this purpose, scientists in meteorology/climate science and computer science are cooperating.

SCALE-RM is a numerical model that fully uses SCALE . This model is contained in the SCALE package, as shown in Fig. 1.1.2. SCALE manages the parallel processes, file I/O, and inner-communication. SCALE also provides the solver for atmospheric flow (dynamical core) and physical processes such as micro-physics and radiation processes. On the other hand, SCALE-RM is constructed by combining functions provided by SCALE . SCALE - RM itself reads the input data of atmospheric status as prognostic variable, and conducts time-integration. Users can select a scheme in every component according to simulations they want.



Figure 1.1.2: Relationship between the library SCALE and the model SCALE-RM



### 1.1.2 Structure of SCALE-RM

All schemes in all components of SCALE are available in SCALE-RM . The components are categorized into three parts: framework, dynamical core, and physical processes. Components with various schemes already implemented in the current version of SCALE-RM are listed below<sup>\*1)</sup>.

### Framework

- The three-dimensional (3D) Cartesian grid system based on actual distance
- 2D domain decomposition by Message Passing Interface (MPI) communication
- Several map projections commonly used
- Domain nesting system ( one-way, i.e., data transfer from parent domain to child domain. )
  - On-line nesting: concurrent execution of multiple domains).
  - Offline nesting: execution of computation in an inner domain after that in an outer domain.
- Collective execution system of multiple cases, i.e., bulk job system
- netCDF file I/O based on CF (Climate and Forecast) convention<sup>\*2)</sup>
  - Selection of netCDF 3 and netCDF 4 formats
- Generation of initial data for an ideal experiment
- Generation of topographical and land-use data, converted from external data
- Generation of initial and boundary data from external data
  - GrADS  $^{*3)}$  formats.

### Dynamical core

- Governing equations: 3D fully compressible non-hydrostatic equations
- Spatial discretization: finite volume method
  - central advection schemes with 2nd, 4th, 6th, and 8th-order accuracy
  - upwind advection schemes with 3rd, 5th, and 7th-order accuracy
- Time integration: selection from the "fully explicit method" (HEVE) or the "horizontally explicit and vertically implicit methods" (HEVI)
  - Wicker and Skamarock (2002)'s 3 stage Runge–Kutta scheme with generally 2nd order accuracy
  - Heun-type 3 stage Runge–Kutta scheme with 3rd order accuracy
  - 4 stage Runge–Kutta scheme with 4th order accuracy
  - 7 stage Runge-Kutta scheme with 6th order accuracy (supported only for HEVE)
  - 11 stage Runge–Kutta scheme with 8th order accuracy (supported only for HEVE)
- Guarantee of non-negative value:
  - Flux corrected transport method (Zalesak, 1979)

<sup>&</sup>lt;sup>\*1</sup>)Refer to SCALE (2015),Sato et al. (2015), and Nishizawa et al. (2015) for the details of the model structure and the discretization method. <sup>\*2</sup>)http://cfconventions.org/

<sup>\*3)</sup> http://cola.gmu.edu/grads/



- Koren (1993)'s filter: available only with the use of the 3rd-order upwind advection scheme
- Numerical filter: hyper-viscosity and diffusion with 2nd, 4th, 6th and 8th-order differential operators
- Topography: expressed using terrain-following coordinates

### Physical processes

- Turbulence process: selectable from among the following
  - Smagorinsky (1963) & Lilly (1962)-type sub-grid scale turbulent model with the corrections by Brown et al. (1994) and Scotti et al. (1993)
  - Deardorff (1980) sub-grid scale turbulent model
  - MYNN level 2.5 boundary scheme (Mellor and Yamada (1982); Nakanishi and Niino (2004, 2009))
- Cloud microphysics: selectable from among the following
  - 3-class 1 moment bulk scheme (Kessler, 1969)
  - 6-class 1 moment bulk scheme (Tomita, 2008)
  - 6-class 2 moment bulk scheme (Seiki and Nakajima, 2014)
  - spectral bin scheme (Suzuki et al., 2010)
- Radiation process: a k-distribution-based broadband radiation transfer model ( Sekiguchi and Nakajima (2008) )
- Surface models
  - Land model: heat diffusion/bucket model
  - Ocean model: selectable from among the following
    - $\ast\,$  fixed to initial condition
    - \* input from external data
    - \* slab model
  - Urban model: a single-layer canopy model (Kusaka et al., 2001)
  - Heat transfer coefficient at land and in ocean: selectable from among the following
    - \* The bulk method using the universal function (Beljaars and Holtslag, 1991; Wilson, 2001; Nishizawa and Kitamura, 2018)
    - \* Louis-type bulk method (Uno et al., 1995)



## Chapter 1.2

## Notations used in this document

This document assumes an execution in the shell "bash" on some Unix system. If your environment is different, replace the commands by the relevant commands suitable for your environment. Unless there is a particular remark, this documentation obeys the following notation:

The command-line symbol for execution is expressed by **\$** or **#**. The difference between the two notations is in the permission levels of program execution, as shown below:

# <- command by root permission

\$ <- command by user permission

A description enclosed in a rectangle expresses a message generated by the command line, as shown below.

– – – – command-line message – – – – – – – – command-line message – – – – – – – – – – command-line message

On the other hand, a description enclosed in a rounded rectangle shows a part of configuration file including namelists, which can be edited as needed.

In this documentation, the FORTRAN namelist and its items are denoted by [namelist] and (item\_of\_namelist), respectively.



Part 2 Install



## Chapter 2.1

## Preparation

This chapter explains how to compile SCALE / SCALE-RM and the minimum computational requirements for their execution.

### 2.1.1 System environment

### **Recommended Hardwares**

Although the necessary hardware depends on an experiment to be performed, the following are the specifications for conducting the tutorial as in Chapters 3.1 and 3.2.

- **CPU** : The system need to have more than or equal to two physical cores for the ideal experiment in the tutorial, and more than or equal to four for the real atmospheric experiment.
- **Memory** : The system needs 512 MB and 2 GB memory for the ideal experiment and the real atmospheric experiment, respectively. Note that this applies to the case involving the use of double-precision floating points.
- HDD : The system needs to have 3 GB of free disk space in the real atmospheric experiment.

### **Required Softwares**

- **OS** : Linux OS, Mac OS
- Compiler : C, Fortran

Since the source code of SCALE is written in FORTRAN 2008 standard syntax, the compiler must support it. For example, GNU gfortran version 4.8 or later versions is necessary. Refer to Table 2.1.1 for compilers already confirmed as supported.

### **Required** libraries

The required external libraries are described below:

• netCDF Library (http://www.unidata.ucar.edu/software/netcdf/)

| Name of compiler                |                                       |
|---------------------------------|---------------------------------------|
| GNU (gcc/gfortran)              | Version 4.8 or later is supported.    |
| Intel (icc/ifort)               | Version 15.0.0 or later is supported. |
| NVIDIA HPC SDK (nvcc/nvfortran) |                                       |

Table 2.1.1: Compiler already checked

Table 2.1.2: Compiler list

| Name of MPI library | <u>^</u>                             |
|---------------------|--------------------------------------|
| openMPI             | Version 1.7.2 or later is supported. |
| Intel MPI           | Version 5.0 or later is supported.   |

- MPI Library (e.g., openMPI http://www.open-mpi.org/)
- LAPACK ( http://www.netlib.org/lapack/ ) (only required for SCALE-GM )

netCDF 4 is recommended, but netCDF 3 is also available. Note that with netCDF 3 there are some restrictions (See Section 5.1.1). You can also use distributed binary packages for Linux and Mac.

The MPI library should support the MPI 1.0/2.0 protocol. Refer to Table 2.1.2 for MPI libraries already confirmed as supported.

The tutorials in Chapters 3.1 and 3.2 assume that the above library environment has been prepared.

### Drawing tools

In this subsection, drawing tools that can draw the initial conditions, boundary data, and the simulation results with SCALE-RM are introduced.

The GPhys and GrADS are used for a quick view and the drawing model output in the tutorial in Chapters 3.1 and 3.2, respectively. Other tools are also available, if they can be read in netCDF file format, which is the output of SCALE-RM.

- GPhys / Ruby-DCL by GFD DENNOU Club
  - URL: http://ruby.gfd-dennou.org/products/gphys/
  - Note: SCALE outputs the split files in netCDF format according to domain decomposition by the MPI process. "gpview" and/or "gpvect" in GPhys can directly draw the split file without post-processing.
  - How to install: On the GFD DENNOU Club webpage, the installation is explained for major OSs

http://ruby.gfd-dennou.org/tutorial/install/

- Grid Analysis and Display System (GrADS ) by COLA
  - URL: http://cola.gmu.edu/grads/
  - Note: This is among the most popular drawing tools, but the split files with netCDF generated by SCALE are not directly readable. The post-processing tool SNO is needed to combine the output of SCALE in one file that is readable from GrADS. Refer to SNO for installation instructions in Section 2.3.1, and to Chapters 3 and 4 and Section 4.6.1 for details pertaining to its use.
  - How to install: Refer to http://cola.gmu.edu/grads/downloads.
- Neview: netCDF visual browser developed by David W. Pierce
  - URL: http://meteora.ucsd.edu/~pierce/ncview\_home\_page.html
  - Note: Notice is a quick viewer for the netCDF file format. Although it cannot combine split files in SCALE, it is useful in drawing the result file by file.
  - How to install: Refer to http://meteora.ucsd.edu/~pierce/ncview\_home\_page.html



### Useful tools (not always necessary)

- Data conversion tool: wgrib, wgrib2, NCL These tools can generate input data readable by SCALE-RM . In the tutorial for the real atmospheric experiment, wgrib is used.
- Evaluation tool of computational performance: The PAPI library<sup>\*1)</sup> is available.

<sup>\*1)</sup>http://icl.utk.edu/papi/

## SCOLE

## Chapter 2.2

## **Compile of SCALE**

### 2.2.1 Download and environmental settings

The environment used in the explanation below is as follows:

- CPU: Intel Core i5 2410M 2 core /4 thread
- Memory: DDR3-1333 4GB
- OS: CentOS 6.6 x86-64, CentOS 7.1 x86-64, openSUSE 13.2 x86-64
- GNU C/C++, FORTRAN compiler

### Obtaining the source code

The source code for the latest release can be downloaded from https://scale.riken.jp/download/ index.html.

The directory scale-5.5.4/ can be seen when the tarball file of the source code is extracted.

\$ tar -zxvf scale-5.5.4.tar.gz
\$ ls ./scale-5.5.4/

### Setting Makedef file and environment variables

SCALE is compiled using a Makedef file specified in the environment variable "SCALE\_SYS." Several variations of the Makedef file corresponding to computer environment are prepared in the directory scale-5.5.4/sysdep/. Choose a Makedef file according to your environment. Table 2.2.1 shows environments that Makedef files have supported. If there is no file for your environment, create a Makedif file by modifying any existing one. For example, if you use Linux x86-64 OS, a GNU compiler and openMPI, "Makedef.Linux64-gnu-ompi" is apropriate. An environment variable must also be specified as follows:

### \$ export SCALE\_SYS="Linux64-gnu-ompi"

If the environment is always the same, it is convenient to explicitly describe the environmental variable in the environmental configuration file, such as .bashrc.

SCALE requires netCDF. In the most cases, the pathes of netCDF may be automatically found by using "nc-config" command. If the paths cannot be found automatically, you should set the following paths. You must set the environmental variables for netCDF as follows:

| Table 2.2.1. Examples of environments and their corresponding maneder mes. |              |                  |                            |
|----------------------------------------------------------------------------|--------------|------------------|----------------------------|
| OS/Computer                                                                | Compiler     | MPI              | Makedef file               |
|                                                                            | gcc/gfortran | openMPI          | Makedef.Linux64-gnu-ompi   |
| Linux OS x86-64                                                            | icc/ifort    | intelMPI         | Makedef.Linux64-intel-impi |
| Mac OS                                                                     | gcc/gfortran | openMPI          | Makedef.MacOSX-gnu-ompi    |
| Fujitsu FX700/FX1000                                                       | fccpx/frtpx  | mpiccpx/mpifrtpx | Makedef.FX700              |

Table 2.2.1: Examples of environments and their corresponding Makedef files.

### 2.2.2 Compile

### Compile of SCALE-RM

Move to the SCALE-RM source directory and compile it by executing the following command:

```
$ cd scale-5.5.4/scale-rm/src
$ make -j 4
```

The number of -j option shows a number of parallel compile processes; it is four-parallel in this example. To reduce elapsed time of compile, it is better to specify this option to execute parallel compilation. Specify this number according to your environment. When a compilation is successful, the following three executable files are generated under the scale-5.5.4/bin directory.

scale-rm scale-rm\_init scale-rm\_pp

### Compile of SCALE-GM

Move to the SCALE-GM source directory and compile it by executing the following command:

```
$ cd scale-5.5.4/scale-gm/src
$ make -j 4
```

When a compilation is successful, the following three executable files are generated under the scale-5.5.4/bin directory.

When a compilation is successful, the following executable files are created in the scale-5.5.4/bin directory. "fio" is original format based on binary with header information.

| (executable binary of \scalegm)                                               |
|-------------------------------------------------------------------------------|
| (cat command tool for fio format)                                             |
| (dump tool for fio format file)                                               |
| (convert tool from icosahedral grid data with fio format to LatLon grid data) |
| (sel command tool for fio format)                                             |
| (generation tool of icosahedral horizontal grid using spring grid)            |
| (generation tool of LatLon horizontal grid)                                   |
| (tool for creating management file of MPI process)                            |
| (generation tool of icosahedral horizontal grid)                              |
| (generation tool of vertical grid)                                            |
|                                                                               |

### Points to note

If you want to compile them again, remove the created binary files by the following command:

\$ make clean

Note that, the library already compiled is not deleted by this command. When you recompile the files by changing the compilation environment and options, use the following command to remove all files created by compilation:

\$ make allclean



In SCALE, a compilation and an archive are conducted in directory scale-5.5.4/scalelib/. Object files are placed in a hidden directory called ".lib" under this directory when you carry out a compilation.

When you want to compile it in debug mode, compile it using "make -j 4 SCALE\_DEBUG=T" (All the environment variables applied at compile time are listed in Table 2.2.2). If you want to change the compilation options in detail, edit Makedef.\*\*\* file.

| Environment variable   | Description                                                   |
|------------------------|---------------------------------------------------------------|
| SCALE_SYS              | Selection of system (required)                                |
| SCALE_DEBUG            | Use compile option for debug                                  |
| SCALE_QUICKDEBUG       | Use compile option for quick debug (detect floating point     |
|                        | error while maintaining speed-up option)                      |
| SCALE_USE_SINGLEFP     | Use single precision floating-point number (for all sources)  |
| SCALE_ENABLE_OPENMP    | Enable to use OpenMP                                          |
| SCALE_ENABLE_OPENACC   | Enable to use OpenACC                                         |
| SCALE_USE_AGRESSIVEOPT | Conduct strong optimization (only for FX and intel, this can  |
|                        | be a side effect)                                             |
| SCALE_DISABLE_INTELVEC | Suppress option for vectorization (only with Intel compiler)  |
| SCALE_NETCDF_INCLUDE   | Include path of NetCDF library                                |
| SCALE_NETCDF_LIBS      | Directory path of NetCDF library and specifying libraries     |
| SCALE_ENABLE_PNETCDF   | Use Parallel NetCDF                                           |
| SCALE_COMPAT_NETCDF3   | Limit to NetCDF3-compatible features                          |
| SCALE_ENABLE_MATHLIB   | Use numerical calculation library                             |
| SCALE_MATHLIB_LIBS     | Directory path of numerical library and specifying libraries  |
| SCALE_ENABLE_PAPI      | Use Performance Application Programming Interface             |
|                        | (PAPI)                                                        |
| SCALE_PAPI_INCLUDE     | Include path of PAPI library                                  |
| SCALE_PAPI_LIBS        | Directory path of PAPI library and specifying libraries       |
| SCALE_DISABLE_LOCALBIN | Disable making local binary files in directory for test cases |
| SCALE_IGNORE_SRCDEP    | Ignore dependency check at the compile time                   |
| SCALE_ENABLE_SDM       | Use Super Droplet Method (SDM) model                          |

Table 2.2.2: List of environment variables applied at compile time



### Chapter 2.3

## Compile of post-processing tool

### 2.3.1 Compilation of SNO

SNO is a post-processing tool for the SCALE-netCDF file generated by the SCALE version 5.3 or later. The output file of SCALE-RM is divided and stored in every computational node. SNO combines the output files (history file, history.\*\*\*\*\*.nc) and converts them into a single netCDF file readable in GrADS. The compiled binary is used in the tutorials of Chapters 3.1 and 3.2. The details of how to use is explained in Section 4.6.1.

SNO uses the SCALE library, i.e., libscale.a, generated at the time of compilation of SCALE-RM, for the compilation of SNO. This library is located under the scale-5.5.4/lib directory. To compile SNO, execute the following command after the compilation of SCALE-RM:

\$ cd scale-5.5.4/scale-rm/util/sno
\$ make

If the compilation is succeeded, the executable binary file is generated under the scale-5.5.4/bin directory. The execution of SNO is as follows:

\$ mpirun -n 2 ./sno sno.conf

In this example, SNO is executed with two MPI processes by using "mpirun" command. The last argument is the configuration file for SNO .



## Part 3 Tutorial for SCALE-RM



### Chapter 3.1

## Operation check and basic usage

### 3.1.1 Introduction

In this chapter, the basic operations of SCALE-RM for numerical experiments are explained. For this purpose, an ideal experiment case is prepared. It is strongly recommended that the user perform this tutorial because it includes a check for whether the compilation of SCALE in Part 2 has been completed. This chapter assumes that the following file has been already generated:

scale-5.5.4/bin/scale-rm
scale-5.5.4/bin/scale-rm\_init
scale-5.5.4/bin/scale-rm\_pp
scale-5.5.4/bin/sno

Furthermore, GrADS is used as a drawing tool. "gpview" can also be used for the confirmation of the result. Refer to Section 2.1.1 for their installation procedures.

The tutorial is described in order of preparation: creating the initial data, conducting the simulation, post-processing the output, and drawing the results.

### 3.1.2 How to execute model

### Experimental setup

For this tutorial for an ideal experiment, a case of cumulus cloud convection in a 2-dimensional model is used here. In this experiment, a cumulus appears and develops by providing a typical atmospheric vertical profile and an initial disturbance in the lower troposphere. Table 3.1.1 shows the experimental settings.

### Preparations

This ideal experiment is conducted in the directory of scale-rm/test/tutorial/ideal. Move to this directory and create a static link to the executable binary in scale-5.5.4/bin as follows:

```
$ cd scale-rm/test/tutorial/ideal
$ ln -s ../../../bin/scale-rm ./
$ ln -s ../../../bin/scale-rm_init ./
```

where "scale-rm" is the executable binary of the simulation and "scale-rm\_init" is a tool for creating the initial and the boundary conditions.

#### Creating initial conditions

To create the initial conditions, the configuration file for scale-rm\_init is required. The configuration file init\_R20kmDX500m.conf has been prepared according to Table 3.1.1. Reading the

|                              | Configuration                  | Note                            |
|------------------------------|--------------------------------|---------------------------------|
| Number of MPI processes      | 1: eastward direction, 2:      | 2 MPI parallelization           |
|                              | northward direction            |                                 |
| Horizontal grid spacing      | 500 m: eastward direction, 500 | The 2-dimensional experiment    |
|                              | m: northward direction         | in the northward and vertical   |
|                              |                                | directions.                     |
| Number of horizontal grids   | 1: eastward direction, 40:     |                                 |
|                              | northward direction            |                                 |
| Number of vertical layers    | 97 layers with model top of 20 | Stretched grid with finer reso- |
|                              | km                             | lution in the lower layers.     |
| Lateral boundary condition   | Periodic condition             | Both eastward and northward     |
| Time step                    | 5 sec                          | 10 sec in microphysics scheme   |
| Integration time             | 3,600 sec                      | The total number of time step   |
|                              |                                | is 720.                         |
| Time interval of data output | 300 sec                        |                                 |
| Physical scheme              | Only the microphysics scheme   | 6-class single-moment bulk      |
|                              |                                | model (Tomita, 2008)            |
| Initial vertical profile     | GCSS Case1 squall line (Re-    | The wind profile based on       |
|                              | delsperger et al., 2000)       | Ooyama (2001) is given as the   |
|                              |                                | vertical shear.                 |
| Initial disturbance          | Warm bubble                    | Horizontal radius of 4 km and   |
|                              |                                | vertical radius of 3km with     |
|                              |                                | maximum intensity of 3K.        |

 Table 3.1.1: Experimental settings of ideal experiment

configuration file,  $\texttt{scale-rm_init}$  calculates the stratified atmospheric structure and the initial disturbance.

The general form of the executable command in SCALE-RM is given as follows:

## \$ mpirun -n [the number of processes] \\ [executable binary name] [the configuration file]

The number of processes using MPI parallel processing is given at [the number of processes]. The name of the executable binary is given to [executable binary name], such as scale-rm, scale-rm\_init, and so on. The configuration file, where the experimental settings are described, is given to [the configuration file]. If sample/init\_R20kmDX500m.conf is used as the configuration file and scale-rm\_init using two-MPI parallel is executed, give the command as follows:

\$ cp sample/init\_R20kmDX500m.conf init\_R20kmDX500m.conf \$ mpirun -n 2 ./scale-rm\_init ./init\_R20kmDX500m.conf

If it is successfully completed, the following message is output in the command line:

```
*** Start Launch System for SCALE-RM
*** Execute preprocess? : T
*** Execute model? : F
*** End Launch System for SCALE-RM
```

Through the above, the following three files are generated under the given directory:

init\_LOG.pe000000
init\_00000101-000000.000.pe000000.nc
init\_00000101-000000.000.pe000001.nc



The entire calculation domain is horizontally divided by the number of MPI processes. The number followed by **pe** in the file name shows the process number of MPI. In log file <code>init\_LOG.pe000000</code>, detailed information that is not displayed in the command-line is recorded. Although the two MPI processes are used in the case, only the log file of the 0th process (master rank) is output as default. If the execution is normally concluded, the statements below are output at the end of this LOG file:

+++++ Closing LOG file

The two files init\_00000101-000000.000.pe000000.nc

and init\_00000101-000000.000.pe000001.nc are the initial-condition files, and each is approximately 600 KB. The file whose name ends with ".nc" is formatted by netCDF. It can be directly read by GPhys/Ruby-DCL and neview.

### Execution of simulation

The number of parallel processes is required to be the same as that when creating the initial conditions. The configuration file for the run is sample/run\_R20kmDX500m.conf.

\$ cp sample/run\_R20kmDX500m.conf ./run\_R20kmDX500m.conf \$ mpirun -n 2 ./scale-rm run\_R20kmDX500m.conf

If a computer satisfying the necessary requirements is used, the calculation is concluded within two minutes. The following three files are then generated under the given directory:

LOG.pe000000 history.pe000000.nc history.pe000001.nc

When the execution concludes normally, the following message is output at the end of this LOG file:

+++++ Closing LOG file

The two files history.pe000000.nc and history.pe000001.nc are history files containing the results of the calculation. They are formatted by netCDF , and size of each file is approximately 1.5 MB.

### 3.1.3 Post-processing and drawing

In this section, we explain post-processing and the method of drawing the calculation result. In the tutorial, the distributed files in netCDF format are merged into one file and converted into a single netCDF file that can be read by GrADS. The binary form makes it easy for users to analyze the result. Link to the post-processing tool SNO compiled in Section 2.3.1:

\$ ln -s ../../../bin/sno ./

The method of execution of SNO is the same as that of SCALE-RM, i.e.,

\$ mpirun -n [the number of the processes] ./sno [the configuration file]

The configuration file sample/sno\_R20kmDX500m.conf is intended for special uses of SNO. Give this configuration file to SNO and execute it as follows:

\$ cp sample/sno\_R20kmDX500m.conf ./sno\_R20kmDX500m.conf \$ mpirun -n 2 ./sno ./sno\_R20kmDX500m.conf



If there is no error message and the following message is displayed to the standard output, the conversion is completed without problem:

\*\*\* End SCALE-NetCDF Operator

The execution of SNO should be handled, so that the number of MPI processes is a divisor of the number of the grids in the calculation domain which does not contain the halo region. The following file is generated under the same directory by this execution:

```
merged_history.pe000000.nc
```

The netCDF file is the converted file obtained by merging the divided files, and readable in GrADS by "sdfopen" command without the "ctl" file.

To confirm whether the calculation is satisfactory, draw a figure using GrADS script checkfig\_ideal.gs. Note that the grammar depends on the version of GrADS. If a warning appears, the GrADS script should be rewritten appropriately:

```
$ grads -blc checkfig_ideal.gs
```

If it is successfully completed, the following files are generated:

ideal\_qhyd.png
ideal\_W.png

The same figures as Fig. 3.1.1 can be found in the simulation, and post-processing is successfully concluded.

### 3.1.4 Guideline for further study

In this chapter, the method for the execution of SCALE-RM was explained by using a simple ideal experiment. We recommend studying methods of changing the model resolution, the calculation domain, and the number of MPI processes for further study. With regard to the ideal experiment, several files of other configurations, e.g., to increase resolution, the number of domains, and the physical scheme, are prepared in the directory "sample" under the same directory as was used in this experiment. These configuration files are useful to change such configurations. Moreover, various ideal experimental settings have been prepared in the directory "scale-rm/test/case." For some ideal experiments, it may be necessary to carry out the "make" command again in the same directory as in the configuration file because some test cases need special source codes according to their experimental settings. The procedures for the generation of the initial conditions and those for simulation execution are the same as in the tutorial in this chapter.

It is important to study the method for the configuration of physical processes, such as cloud microphysics, radiation, and turbulence schemes. Methods to alter them in detail are described in Part 4.





Figure 3.1.1: The horizontal-vertical cross-section after t=1200 s (20 minutes later); Figure (a) shows the mass concentration of the hydrometeor, and Figure (b) shows the vertical velocity. In both of figures, the vector indicates flow.



## Chapter 3.2

## Real atmosphere experiment

### 3.2.1 Overview

In this chapter, the basic execution procedure of the real atmospheric experiment is described using a simple case according to the workflow in Fig. 3.2.1.

- 1. Preparations for input data. The input data must be prepared by users themselves.
- 2. pp: Making topographical data
- 3. init: Making initial and boundary data
- 4. run: Executing the simulation
- 5. **sno**: Converting netCDF output data (optional)

Hereinafter, the absolute path scale-5.5.4/scale-rm/test/tutorial/ is denoted by  ${Tutorial_DIR}$ .

The settings for the calculation domain used in this tutorial are given in Table 3.2.1. Figure 3.2.2 shows the target domain. Since this tutorial focuses on learning how to conduct real atmospheric experiments using SCALE-RM quickly, the experiment is designed to be completed in a short time. Note that this setting may not be appropriate as a physically valid experiment, and in practical application one should examine the experimental setup as needed.



Figure 3.2.1: SCALE-RM procedure of model execution

| Table 5.2.1. Overview of experimental settings              |                                      |
|-------------------------------------------------------------|--------------------------------------|
| Item                                                        | Configuration                        |
| MPI process decomposition (east-west $\times$ north-south)  | $2 \times 2$ (total: 4 processes)    |
| Number of horizontal grids (east-west $\times$ north-south) | $90 \times 90$                       |
| Number of vertical layers                                   | 36                                   |
| Horizontal grid intervals                                   | $\Delta x = \Delta y = 20 \text{km}$ |
| Integration period                                          | July 14, 2007, 18UTC - July 15       |
|                                                             | 00UTC (6-hour integration)           |
| Time step                                                   | 90 s/step (total:240 steps)          |

Table 3.2.1: Overview of experimental settings



Figure 3.2.2: Topographical and land-ocean distribution in the domain

### 3.2.2 Preparations for input data (boundary data)

When a realistic atmospheric experiment is conducted, boundary data need to be provided to SCALE-RM. Table 3.2.2 shows the items for external input data to create boundary data. The variables denoted by blue character in this table are always needed, whereas the others (black character) are optional.

### Topography and land-use classification data

The external topography and land-use classification data are used to obtain the altitude, the ocean to land ratio, the lake ratio, urban covering and vegetation rates, and the classification of land use at every grid point. In order to allow users to calculate at any areas over the globe, the altitude data GTOPO30 from the USGS (U.S. Geological Survey) and land-use classification data from the GLCCv2 are provided in SCALE-RM . These files have already been formatted for SCALE-RM .

1. Downloading database

Obtain the data for altitude and land-use classification formatted for SCALE-RM from https://scale.riken.jp/archives/scale\_database.tar.gz, and extract them to any directory:



| Table 3.2.2: Items of external input data for real atmospheric experiments       |
|----------------------------------------------------------------------------------|
| Data to create the topography and land-use data (in general, in-situ data)       |
| Altitude data                                                                    |
| Land-use classification data                                                     |
| data to create the initial and boundary data for SCALE-RM (in general, GCM data) |
| Information for latitude and longitude of the parent model                       |
| -3D atmospheric data $-$                                                         |
| zonal and meridional winds, temperature, specific humidity (relative humidity),  |
| pressure, geopotential height                                                    |
| -2D atmospheric data $-$                                                         |
| sea-level pressure, surface pressure, zonal and meridional wind at 10m,          |
| temperature and specific humidity (relative humidity) at 2m                      |
| -2D land data $-$                                                                |
| land and sea map in the parent model                                             |
| surface skin temperature                                                         |
| information of depth of soil data in the parent model, soil temperature,         |
| soil moisture (volume content or degree of saturation)                           |
| -2D ocean data at the surface $-$                                                |
| sea surface temperature (omitted if skin temperature is also used for SST)       |
|                                                                                  |
|                                                                                  |

```
$ tar -zxvf scale_database.tar.gz
$ ls
scale_database/topo/ <- altitude data
scale_database/landuse/ <- land use classification data</pre>
```

### 2. Setting of the path

To prepare the files used in the realistic atmospheric experiment, the "making tool for the complete settings of the experiment" is available. To use the tool, set the directory name including above database to an environment variable SCALE\_DB (hereinafter, it denoted as SCALE\_DB):

```
$ export SCALE_DB="${path_to_directory_of_scale_database}/scale_database"
```

where  $f_{ath_to_directory_of_scale_database}$  is the directory name which the tar file including topography and land-use database is extracted in. For example, if the absolute path where you expanded scale\_database.tar.gz was /home/user/scale, you need to set as follows.

\$ export SCALE\_DB="/home/user/scale/scale\_database"

### Data for atmosphere, land, and sea surface temperature

The initial and boundary data are readable when they are converted into four-byte binary (GrADS form. Hereinafter, it is denoted by "binary data."). The users prepare the "binary" data by themselves as mentioned above. However, the programs to prepare the "binary" data are provided in the directory  $Tutorial_DIR/real/tools/$  for the execution of this tutorial. A procedure is explained below. Note that it is assumed that the installation of  $wgrib^{*1}$  is complete to use NCEP FNL (Final) Operational Global Analysis data with grib1 format.

 Downloading data Download 12-hour data from July 14, 2007 1800UTC from the NCAR website http://rda.ucar.edu/datasets/ds083.2/ and place them in the directory \${Tutorial\_DIR}/real/tools/FNL\_input/grib1/2007. The following is the data list, formatted by grib1:

<sup>\*1)</sup> http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html



fnl\_20070714\_18\_00.grib1
fnl\_20070715\_00\_00.grib1

2. Conversion of data from grib to binary format Execute convert\_FNL-grib2grads.sh in the directory \${Tutorial\_DIR}/real/tools/:

```
$ cd ${Tutorial_DIR}/real/tools/
```

\$ sh convert\_FNL-grib2grads.sh 2007071418 2007071500 FNL\_input FNL\_output

The following files are found if it is successful:

\$ ls FNL\_output/\*/\*
FNL\_output/200707/FNL\_ATM\_2007071418.grd
FNL\_output/200707/FNL\_ATM\_2007071500.grd
FNL\_output/200707/FNL\_LND\_2007071418.grd
FNL\_output/200707/FNL\_SFC\_2007071418.grd
FNL\_output/200707/FNL\_SFC\_2007071500.grd

If the generation of the intended files is failed because of changing data format and variable names in NCEP-FNL data, convert\_FNL-grib2grads.sh should be fixed according to the used NCEP-FNL data.

### 3.2.3 Preparation for experiment set

In the real atmospheric experiment, many execution procedures and a large number of files are needed in comparison with the ideal experiment. In addition, it is necessary to maintain consistency between settings in the configuration file (\*\*\*.conf) between pre-processing pp, initial value making init, and simulation execution run. The inconsistency between these settings and the lack of files in the preparation step may cause an abnormal model run. To avoid such situations, the tool "the making tool for the complete settings of the experiment" is prepared for the generation of a set of necessary files. You first move to the following directory and prepare a series of files for the tutorial for the real atmospheric experiment using the next procedure:

```
$ cd ${Tutorial_DIR}/real/
$ ls
   Makefile : Makefile for generation of a set of necessary files.
             : README related to use of the script
   README
   USER.sh : Description of experimental setting.
   config/
              : Each of configurations for generation of a set of files
                (basically, unnecessary for users to be rewritten)
   sample/
              : sample script of USER.sh
              : tools for the tutorial
   data/
              : tools for initial condition used in the tutorial
   tools/
                (basically, users do it themselves except for the tutorial case)
$ make
$ ls experiment/
                       : directories added by the above make command
   init/
   pp/
   run/
   sno/
```

According to the settings described in USER.sh, an experiment set is generated under the directory experiment when the make command is executed. Refer to Section 4.2.1 for a detailed explanation of "the making tool for the complete settings of the experiment."



### 3.2.4 Creating topographical data: pp

Move to the directory **pp** and create topographical data for the experiment as follows:

```
$ cd ${Tutorial_DIR}/real/experiment/pp/
$ ls
    pp.d01.conf
    scale-rm_pp
```

In the directory pp, there exists configuration file pp.d01.conf. It is necessary to edit pp.d01.conf according to the experiment settings, such as the position of the domain and the number of grids. Since pp.d01.conf has already been edited for this tutorial, it can be used without any change. The setting of this experiment is shown in Table 3.2.1.

In Namelists in pp.d01.conf, the parameters related to the domain are configured in [PARAM\_PRC\_CARTESC], [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX], and [PARAM\_ATMOS\_GRID\_CATESC]. The domain is decomposed along each of the X and Y directions into two domains. Thus, four MPI processes are used. The total number of grids is (IMAXG)=90 and (JMAXG)=90 along the X and Y directions, respectively. Thus, the number of grids per MPI process is 45 (= 90/2). The grid spacings in each direction (DX, DY) in [PARAM\_ATMOS\_GRID\_CARTESC] is 20,000 m (20 km). This means that the domain of calculation is an area of 1,800 km × 1,800 km because one side has length 90 × 20 km.

```
&PARAM_PRC_CARTESC
PRC_NUM_X = 2,
PRC_NUM_Y = 2,
PRC_PERIODIC_X = .false.,
PRC_PERIODIC_Y = .false.,
1
&PARAM_ATMOS_GRID_CARTESC_INDEX
KMAX = 36,
IMAXG = 90,
JMAXG = 90,
1
&PARAM_ATMOS_GRID_CARTESC
DX = 20000.0,
DY = 20000.0,
FZ(:) = 80.841, 248.821, 429.882, 625.045, 835.409, 1062.158,
      1306.565, 1570.008, 1853.969, 2160.047, 2489.963, 2845.575,
      3228.883, 3642.044, 4087.384, 4567.409, 5084.820, 5642.530,
      6243.676, 6891.642, 7590.074, 8342.904, 9154.367, 10029.028,
      10971.815, 11988.030, 13083.390, 14264.060, 15536.685, 16908.430,
      18387.010, 19980.750, 21698.615, 23550.275, 25546.155, 28113.205,
BUFFER_DZ = 5000.0,
BUFFER_DX = 400000.0
BUFFER_DY = 400000.0,
```

scale-rm\_pp has a particular namelist of [PARAM\_CONVERT]. If (CONVERT\_TOPO) = .true., the
altitudes are processed. If (CONVERT\_LANDUSE) = .true., land-use classification data are processed.

&PARAM\_CONVERT CONVERT\_TOPO = .true., CONVERT\_LANDUSE = .true.,



(GTOPO30\_IN\_DIR) in [PARAM\_CNVTOPO\_GTOPO30] and (GLCCv2\_IN\_DIR) in

[PARAM\_CNVLANDUSE\_GLCCv2] specify the locations of altitude data and land-use classification data, respectively.

```
&PARAM_CNVTOPO_GTOPO30
GTOPO30_IN_DIR = "./topo/GTOPO30/Products",
GTOPO30_IN_CATALOGUE = "GTOPO30_catalogue.txt",
/
&PARAM_CNVLANDUSE_GLCCv2
GLCCv2_IN_DIR = "./landuse/GLCCv2/Products",
GLCCv2_IN_CATALOGUE = "GLCCv2_catalogue.txt",
limit_urban_fraction = 0.3D0,
/
```

After preparation of the configuration file, execute scale-rm\_pp to create topographical data by the following command:

\$ mpirun -n 4 ./scale-rm\_pp pp.d01.conf

In the case of this tutorial, the number of MPI processes is four as in Table 3.2.1. When the job is finished normally, the following message is output at the end of the log file: pp\_LOG\_d01.pe000000.

```
+++++ Closing LOG file
```

Furthermore, the files topo\_d01.pe######.nc (file size of approximately 310 KB) and landuse\_d01.pe######.nc (file size of approximately 380 KB) are generated, dividing four files according to the MPI processes used. ###### represents the MPI process number. The information concerning altitude, the ocean and land ratio, the lake ratio, urban covering and vegetation rates, and the classification of land use are stored at every grid point in these files.

### **OPTION**.

When "gpview" is installed, you can confirm whether topographical data has been correctly generated by the following command:

```
$ gpview topo_d01.pe00000*@topo --aspect=1 --nocont --range 0:1750 --int 50
$ gpview landuse_d01.pe00000*@FRAC_LAND --aspect=1 --nocont
```

The same figure as Fig. 3.2.2 is generated if the results are correct.

### 3.2.5 Creating the initial and boundary data: init

Move to the directory init and create the initial and boundary data for the SCALE-RM simulation as follows:

```
$ cd ${Tutorial_DIR}/real/experiment/init
$ ls
    init.d01.conf
    init.launch.conf
    param.bucket.conf
    scale-rm_init
```

In the directory init, there exists the configuration file init.d01.conf. The file init.launch.conf also exists but is not used here. It is necessary to edit the file init.d01.conf according to such



experimental settings as pp.d01.conf. init.d01.conf has been already edited for this tutorial experiment as shown in Table 3.2.1. To create the initial and boundary data, the topographical data generated in the previous section is used. This is set in init.d01.conf to refer the relative path as follows:

```
&PARAM_TOPOGRAPHY
TOPOGRAPHY_IN_BASENAME = "../pp/topo_d01",
/
&PARAM_LANDUSE
LANDUSE_IN_BASENAME = "../pp/landuse_d01",
```

In particular, the contents of [PARAM\_MKINIT\_REAL\_ATMOS], [PARAM\_MKINIT\_REAL\_OCEAN] and [PARAM\_MKINIT\_REAL\_LAND] are handled. It should be confirmed that the settings in init.do1.conf are correct.

| &PARAM_MKINIT_REAL_ATMOS                  |                                                       |
|-------------------------------------------|-------------------------------------------------------|
| NUMBER_OF_FILES = 2,                      | : number of files read                                |
| <pre>FILETYPE_ORG = "GrADS",</pre>        | : choose from Table 4.1.2                             |
| BASENAME_ORG = "namelist.grads_bound      | ary.FNL.2005053112-2015011400",                       |
| BASENAME_BOUNDARY = "boundary_d01",       | : output name of boundary data                        |
| BOUNDARY_UPDATE_DT = 21600.0,             | : time interval of input data                         |
| $PARENT_MP_TYPE = 3,$                     |                                                       |
| USE_FILE_DENSITY = .false.,               | : use the atmospheric density in the parent model or  |
|                                           | not?                                                  |
| /                                         |                                                       |
|                                           |                                                       |
| &PARAM_MKINIT_REAL_OCEAN                  |                                                       |
|                                           |                                                       |
| <pre>INTRP_OCEAN_SFC_TEMP = "mask",</pre> | : how to treat the missing value of SST               |
| <pre>INTRP_OCEAN_TEMP = "mask",</pre>     | : how to treat the missing value of SST               |
| /                                         |                                                       |
|                                           |                                                       |
| &PARAM_MKINIT_REAL_LAND                   |                                                       |
|                                           |                                                       |
| USE_FILE_LANDWATER = .true.,              | : use soil moisture data in the parent model or not?  |
| <pre>INTRP_LAND_TEMP = "mask",</pre>      | : how to treat the missing value of soil temperature  |
| <pre>INTRP_LAND_WATER = "fill",</pre>     | : how to treat the missing value of soil moisture     |
| <pre>INTRP_LAND_SFC_TEMP = "fill",</pre>  | : how to treat the missing value of surface temperate |
| $\langle \rangle$                         |                                                       |

The file format of the meteorological field data is specified in (FILETYPE\_ORG). In this case, it is given as "GrADS" to read data in GrADS format. Refer to Section 4.1.2 for the details of the input file.

Link the input data (FNL) that are converted into binary form in Section 3.2.2 to the current working directory. A shell script for this appropriate linkage is prepared as "gradsinput-link\_FNL.sh" in the directory {Tutorial\_DIR}/real/data:

\$ cp ../../data/gradsinput-link\_FNL.sh ./
\$ sh gradsinput-link\_FNL.sh

If the following linkages are found, it is successfully concluded.



| ATM_00000.grd ->/tools/FNL_output/200707/FNL_ATM_2007071418.grd |  |
|-----------------------------------------------------------------|--|
| ATM_00001.grd ->/tools/FNL_output/200707/FNL_ATM_2007071500.grd |  |
| LND_00000.grd ->/tools/FNL_output/200707/FNL_LND_2007071418.grd |  |
| LND_00001.grd ->/tools/FNL_output/200707/FNL_LND_2007071500.grd |  |
| SFC_00000.grd ->/tools/FNL_output/200707/FNL_SFC_2007071418.grd |  |
| SFC_00001.grd ->/tools/FNL_output/200707/FNL_SFC_2007071500.grd |  |

Then, link a namelist file to the directory init to read the binary (GrADS ) data format in SCALE.

\$ ln -s ../../data/namelist.grads\_boundary.FNL.2005053112-2015011400 ./

After the above preparations, execute the scale-rm\_init using four MPI processes.

```
$ mpirun -n 4 ./scale-rm_init init.d01.conf
```

If the job finishes normally, the following files are generated:

```
$ ls
```

```
boundary_d01.pe000000.nc
boundary_d01.pe000001.nc
boundary_d01.pe000002.nc
boundary_d01.pe000003.nc
init_d01_20070714-180000.000.pe000000.nc
init_d01_20070714-180000.000.pe000002.nc
init_d01_20070714-180000.000.pe000002.nc
init_d01_20070714-180000.000.pe000003.nc
init_L0G_d01.pe000000
```

The file init\_LOG\_d01.pe000000 is a log file. The following message is output at the end of the file init\_LOG\_d01.pe000000:

+++++ Closing LOG file

The file sizes of the boundary and initial data, boundary\_d01.pe######.nc and init\_d01\_20070714-180000.000.pe######.nc, are approximately 18.9 MB and 12.6 MB, respectively, where ###### represents the MPI process number.

*NOTICE*: Reduction of memory usage when reading input data .

In SCALE-RM , only the master process reads input data and broadcasts the data to each node. This algorithm can reduce file I/O and process the input data fast. On the other hand, the algorithm may cause insufficient memory error when reading large input data, especially on a high-performance computing system. To avoid the error, you can choose the method that each node reads input data by itself.

```
&PARAM_MKINIT_REAL_ATMOS
   SERIAL_PROC_READ = .false., : Does only the master process read input data?
/
```

The default setting is .true., which means that the master process only reads input data. When setting .false., each node accesses to only the data it needs, resulting in the reduction of memory usage. However, because the algorithm places a load on file I/O, the computational performance may deteriorate due to locking file access.



### OPTION.

When "gpview" is installed, one can confirm whether the initial and boundary data have been created correctly by the following command:

If the same figure as Fig. 3.2.3 is found, it is successfully concluded.





Figure 3.2.3: Initial field at z=1500m for the tutorial experiment. The color indicates specific humidity and the vector horizontal momentum flux.

### 3.2.6 Execution of simulation: run

### Preparations for run.conf

Move to the directory run.

### \$ cd \${Tutorial\_DIR}/real/experiment/run

In this directory, the configuration file run.d01.conf has already been prepared according to the tutorial settings shown in Table 3.2.1. Although the file run.launch.conf also exists in this directory, it is not used here.

The topographical data and the initial/boundary data previously generated are used for this execution of the simulation model. These files are configured in the following part of run.d01.conf:



```
&PARAM_TOPOGRAPHY
TOPOGRAPHY_IN_BASENAME = "../pp/topo_d01",
/
&PARAM_LANDUSE
LANDUSE_IN_BASENAME = "../pp/landuse_d01",
/
&PARAM_RESTART
RESTART_OUTPUT = .true.,
RESTART_OUT_BASENAME = "restart_d01",
RESTART_IN_BASENAME = "../init/init_d01_20070714-180000.000",
1
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_TYPE = "REAL",
ATMOS_BOUNDARY_IN_BASENAME = "../init/boundary_d01",
ATMOS_BOUNDARY_USE_DENS = .true.,
ATMOS_BOUNDARY_USE_QHYD = .false.,
ATMOS_BOUNDARY_ALPHAFACT_DENS = 1.0,
ATMOS_BOUNDARY_LINEAR_H = .false.,
ATMOS_BOUNDARY_EXP_H = 2.0,
```

With regard to temporal integration, it is configured in [PARAM\_TIME] in run.d01.conf. Specify the initial time in (TIME\_STARTDATE) in UTC. In the tutorial, it is given as 18:00 UTC on July 14, 2007. The integration period is specified at (TIME\_DURATION). The time steps for the physical processes can be configured process by process.

```
&PARAM_TIME
TIME_STARTDATE = 2007, 7, 14, 18, 0, 0, : starting time of integration
TIME\_STARTMS = 0.DO,
TIME_DURATION = 6.0DO,
                                              : integration period
                                              : unit of TIME_DURATION
TIME_DURATION_UNIT = "HOUR",
TIME_DT = 90.0D0,
                                             : time step for tracer advection
TIME_DT_UNIT = "SEC",
                                             : unit of TIME_DT
TIME_DT_ATMOS_DYN = 45.0DO,
                                              : time step of dynamical process except for tracer
                                             advection
TIME_DT_ATMOS_DYN_UNIT = "SEC",
                                              : unit of TIME_DT_ATMOS_DYN
 . . . . . . . . . . . . . . .
```

The output of the results of the calculation are configured in (PARAM\_FILE\_HISTORY).

```
&PARAM_FILE_HISTORY
FILE_HISTORY_DEFAULT_BASENAME = "history_d01", : output file name
FILE_HISTORY_DEFAULT_TINTERVAL = 3600.D0, : time interval for output
FILE_HISTORY_DEFAULT_TUNIT = "SEC", : unit of output time interval
FILE_HISTORY_DEFAULT_TSTATS_OP = "none",
FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",
FILE_HISTORY_DEFAULT_ZCOORD = "model", : no vertical interpolation
FILE_HISTORY_OUTPUT_STEPO = .true., : output at initial time(t=0) or not
```

According to the above setting, variables listed in the following (HISTORY\_ITEM) are output. It



is possible to change output intervals at every variable in (HISTORY\_ITEM) by adding options if needed. The mean value instead of the snapshot value can be output. Refer to Section 4.2.6 for the details.

| / | &HISTORY ITEM | NAME="MSLP" /     | : | Sea-level pressure                                  |     |
|---|---------------|-------------------|---|-----------------------------------------------------|-----|
|   | &HISTORY_ITEM | NAME="PREC" /     | : | Precipitation intensity (2D)                        | ``` |
|   | &HISTORY_ITEM | NAME="OLR" /      | : | Outgoing longwave radiation (2D)                    |     |
|   | &HISTORY_ITEM | NAME="U1Om" /     | : | Zonal wind vector at 10 m (2D)                      |     |
|   | &HISTORY_ITEM | NAME="V1Om" /     | : | Meridional wind vector at 10 m (2D)                 |     |
|   | &HISTORY_ITEM | NAME="U10" /      | : | Horizontal wind speed along X direction at 10 m(2D) |     |
|   | &HISTORY_ITEM | NAME="V10" /      | : | Horizontal wind speed along Y direction at 10 m(2D) |     |
|   | &HISTORY_ITEM | NAME="T2" /       | : | Temperature at 2m (2D)                              |     |
|   | &HISTORY_ITEM | NAME="Q2" /       | : | Specific humidity at 2m (2D)                        |     |
|   | &HISTORY_ITEM | NAME="SFC_PRES" / | : | Surface pressure (2D)                               |     |
|   | &HISTORY_ITEM | NAME="SFC_TEMP" / | : | Bulk surface temperature(2D)                        |     |
|   | &HISTORY_ITEM | NAME="DENS" /     | : | Density (3D)                                        |     |
|   | &HISTORY_ITEM | NAME="QV" /       | : | Specific humidity (3D)                              |     |
|   | &HISTORY_ITEM | NAME="QHYD" /     | : | Mass concentration of total hydrometeor (3D)        |     |
|   | &HISTORY_ITEM | NAME="PRES" /     | : | Pressure (3D)                                       |     |
|   | &HISTORY_ITEM | NAME="Umet" /     | : | Zonal wind vector (3D)                              |     |
|   | &HISTORY_ITEM | NAME="Vmet" /     | : | Meridional wind vector (3D)                         |     |
|   | &HISTORY_ITEM | NAME="U" /        | : | Horizontal wind speed along X direction (3D)        |     |
|   | &HISTORY_ITEM | NAME="V" /        | : | Horizontal wind speed along Y direction (3D)        |     |
|   | &HISTORY_ITEM | NAME="T" /        | : | Temperature (3D)                                    |     |
|   | &HISTORY_ITEM | NAME="W" /        | : | Vertical wind speed (3D)                            |     |
|   | &HISTORY_ITEM | NAME="Uabs" /     | : | Absolute value of wind velocity(3D)                 |     |
|   | &HISTORY_ITEM | NAME="PT" /       | : | Potential temperature (3D)                          |     |
|   | &HISTORY_ITEM | NAME="RH" /       | : | Relative humidity (3D)                              |     |

If other schemes for the dynamics process and the physical processes are used, configure [PARAM\_ATMOS\_DYN] for the dynamical process and [PARAM\_ATMOS, PARAM\_OCEAN, PARAM\_LAND, PARAM\_URBAN] for the physical processes. Refer to Sections 4.3.1 and 4.4 for the details.

### Execution of simulation

The lists below are the necessary files for the execution. They have already been prepared:

If all preparations are complete, execute SCALE-RM by using four-MPI parallel:

\$ mpirun -n 4 ./scale-rm run.d01.conf >& log &

The execution takes some time to complete. It takes 10-20 minutes in the recommended environment. It is convenient to execute it as a background job so that the standard output is written to a file. The processed results are output to the file "LOG\_d01.pe000000" while the computation is progressing. If the job finishes normally, the following messages are output in the file:

+++++ Closing LOG file

The following files are also generated:



```
$ ls
history_d01.pe000000.nc
history_d01.pe000001.nc
history_d01.pe000002.nc
history_d01.pe000003.nc
```

The size of each file is approximately 34 MB. The output files (history\_d01.pe######.nc) are split according to number of MPI processes, where ###### represents the MPI process number. In these files, the variables specified in (HISTORY\_ITEM) are output. The files are formatted by NetCDF, corresponding to climate and forecast (CF) metadata convention.

### 3.2.7 Quick look at simulation result: sno

In this section, we explain how to use SNO. The SNO program merges the netCDF files (history.\*\*.nc)  $^{*2)}$ , which are divided process by process, into a single netCDF file that can be read in GrADS. The simulation results are also validated using the converted netCDF data.

### Conversion to GrADS binary

Use **sno** to convert a single netCDF file from the history files of netCDF having divided every process. Only a minimum of the procedures is explained here. Refer to Section 4.6.1 for their detailed use.

Move to the directory **sno**:

```
$ cd ${Tutorial_DIR}/real/experiment/sno
$ ls
    sno -> ../../../../bin/sno
    sno.hgridope.d01.conf
    sno.vgridope.d01.conf
```

There are some configuration files and a binary file in this directory. The binary file is linked to the executable file compiled in Section 2.3.1. As an example, a procedure to convert 3-dim variables on model levels to pressure levels and interpolate to equivalent longitude-latitude data is explained here.

Since **sno** cannot simultaneously convert the data for the vertical and horizontal direction, they must be converted separately as follows. First, **sno** converts the data from model levels to pressure levels. When **sno** is executed, the number of processes needs to be a divisor of the number of the grids in the calculation domain. The number of processes used here is four.

```
$ mpirun -n 4 ./sno sno.vgridope.d01.conf
```

Next, **sno** converts the vertically interpolated data horizontally to longitude-latitude data and then combines the node-separated netCDF files into a single file. Due to the limitation of the number of processes that can be used in parallel execution of SNO, one process is used here.

\$ mpirun -n 1 ./sno sno.hgridope.d01.conf

The conversion succeeds only if the following messages are found in the standard output without an error message:

\*\*\* End SCALE-NetCDF Operator

If the process has succeeded, the below files are created.

```
^{*2)}If "gpview" is installed, it can also be used for drawing. This tool is more suitable for quick check because it is available without the conversion of history data.
```


```
merged-p_history_d01.pe000000.nc
merged-p_history_d01.pe000001.nc
merged-p_history_d01.pe000002.nc
merged-p_history_d01.pe000003.nc
merged-h_history_d01.pe000000.nc
```

### Validation of simulation result

Confirm the calculation results using a GrADS script checkfig\_real.gs:

```
$ cp ../../data/checkfig_real.gs ./
$ grads -blc checkfig_real.gs
```

The following files are generated when the conversion is successfully finished. Note that the script changes accordingly when a warning appears. This is because the syntax is different according to the version of GrADS .

real\_mslp.png
real\_prec.png
real\_wind.png

If the calculation is successful, the same figures as Figs. 3.2.4, 3.2.5, and 3.2.6 are obtained.





Figure 3.2.4: Sea-level pressure after 6 hours



Figure 3.2.5: Precipitation flux after 6 hours



Figure 3.2.6: Wind velocity after 6 hours



# Part 4 Various settings



## Chapter 4.1

## **Pre-processing**

## 4.1.1 Setting the topography

SCALE-RM employs the terrain-following coordinates to represent topography. In these coordinates, the bottom face of the lowest grid is given such that it can follow the surface altitude, i.e., topography. Topography data used in the program scale-rm\_init and scale-rm should be prepared in SCALE format beforehand, except for some ideal experiments. SCALE-RM has a pre-processing function to convert external topography data to the format.

The program scale-rm\_pp converts external topography data when (CONVERT\_TOPO) in [PARAM\_CONVERT] is .true.. Then, the converted data is saved in the file specified by (TOPOGRAPHY\_OUT\_BASENAME) in [PARAM\_TOPOGRAPHY]. The generated file is used in scale-rm\_init and scale-rm by setting to (TOPOGRAPHY\_IN\_BASENAME) in [PARAM\_TOPOGRAPHY].

```
&PARAM_CONVERT
CONVERT_TOPO = .true.,
                                                ; Whether execute the conversion of topography
                                                data
 . . . . . .
&PARAM_TOPOGRAPHY
TOPOGRAPHY_IN_BASENAME = ''
                                                ; (Input) Base name of input topography file
TOPOGRAPHY_IN_VARNAME = 'topo'
                                                ; (Input) Variable name of topography in the in-
                                                put file
                                                ; (Input) Whether read from one file with
TOPOGRAPHY_IN_AGGREGATE = .false.
                                                PnetCDF
TOPOGRAPHY_IN_CHECK_COORDINATES = .false.
                                                ; (Input) Whether check coordinate variables in
                                                the input file
TOPOGRAPHY_OUT_BASENAME = ''
                                                ; (Output) Base name of output file
TOPOGRAPHY_OUT_AGGREGATE = .false.
                                                ; (Output) Whether aggregate to one file with
                                                PnetCDF
TOPOGRAPHY_OUT_DTYPE = 'DEFAULT'
                                                ; (Output) Data type to output
                                                   ("DEFAULT","REAL4","REAL8")
```

The configurations for the conversion, including information of external input data, are specified in [PARAM\_CNVTOPO].



As external topography data, SCALE-RM supports GTOPO30 provided by the U.S. Geological Survey and DEM50M<sup>\*1)</sup> provided by the Geospatial Information Authority of Japan. The user-defined binary data is also supported (refer to Section 4.1.1.1 for the details).

The types of the external data used are specified by (CNVTOPO\_(UseGTOPO30|UseDEM50M|UseUSERFILE)) and/or (CNVTOPO\_name). It the switches of (CNVTOPO\_(UseGTOPO30|UseDEM50M|UseUSERFILE)) are set to .true., the GTOPO30, DEM50M, and user-defined data are used, respectively. The default settings of (CNVTOPO\_(UseGTOPO30|UseDEM50M|UseUSERFILE)) are .false.. User can use (CNVTOPO\_name) to specify which data to be used, instead of the individual switches; preset values of (CNVTOPO\_(UseGTOPO30|UseDEM50M|UseUSERFILE)) are set by (CNVTOPO\_name) as shown in Table 4.1.1. The mark of asterisk (\*) in Table 4.1.1 indicates that settings of the (CNVTOPO\_(UseGTOPO30|UseDEM50M|UseUSERFILE)) are also valid.

The combination of these datasets is also available. Set all parameters of (CNVTOPO\_UseGTOPO30), (CNVTOPO\_UseDEM50M), and (CNVTOPO\_UseUSERFILE), which are to be used, to .true..

| CNVTOPO_name | CNVTOPO_UseGTOPO30 | CNVTOPO_UseDEM50M | CNVTOPO_UseUSERFILE |  |
|--------------|--------------------|-------------------|---------------------|--|
| NONE         | *                  | *                 | *                   |  |
| GTOPO30      | .true.             | .false.           | .false.             |  |
| DEM50M       | .false.            | .true.            | .false.             |  |
| USERFILE     | *                  | *                 | .true.              |  |

Table 4.1.1: The relationship between (CNVTOPO\_name) and (CNVTOPO\_UseGTOPO30), (CNVTOPO\_UseDEM50M), and (CNVTOPO\_UseUSERFILE).

The program makes the data according to the settings described above as follows:

- 1) Set all simulation grid points to undefined value.
- 2) If (CNVTOPO\_UseGTOPO30) = . true., interpolate GTOPO30 dataset to the simulation grid points.
- 3) If (CNVTOPO\_UseDEM50M) = .true., interpolate DEM50M dataset to the simulation grid, and overwrite the data of step 2 where the interpolated DEM50M data is not the missing value.
- 4) If (CNVTOPO\_UseUSERFILE) = .true., interpolate the user-defined data to the simulation grid, and overwrite the data of step 3 where the interpolated user data is not the missing value.

<sup>&</sup>lt;sup>\*1)</sup>DEM50M is available only in the Japan area. If you want to use it, you must buy the original data from <a href="https://net.jmc.or.jp/mapdata/map/jmc\_mesh50.html">https://net.jmc.or.jp/mapdata/map/jmc\_mesh50.html</a>. Regarding a program converting to SCALE input format, please contact the SCALE developer.



5) Set zero where the grid points that remain undefined.

#### 6) Apply smoothing.

The GTOPO30 and DEM50M data are interpolated with the bi-linear interpolation method, while the user-defined data is interpolated with the method specified in the configuration (see Section 4.1.1.1).

To use the GTOPO30 data, the directory where the data is stored and the path of the catalogue file must be specified by (GTOPO30\_IN\_DIR) and (GTOPO30\_IN\_CATALOGUE) in [PARAM\_CNVTOPO\_GTOPO30], respectively. If the data is stored as explained in Section 3.2.2, they should be

\$SCALE\_DB/topo/GTOP030/Products and \$SCALE\_DB/topo/GTOP030/Products/GTOP030\_catalogue.txt, respectively (\$SCALE\_DB must be expanded to the actual path.). In the same manner, for the DEM50M data, (DEM50M\_IN\_DIR) and (DEM50\_IN\_CATALOGUE) in [PARAM\_CNVTOP0\_DEM50M] is need to be set such as \$SCALE\_DB/topo/DEM50M/Products and

**\$SCALE\_DB/topo/DEM50M/Products/DEM50M\_catalogue.txt**, respectively. Configurations for the user-defined data are explained in Section 4.1.1.1.

There are two types of filter for smoothing the elevation with the steep slope in the interpolated topography: Laplacian and Gaussian filters. The type is specified by (CNVTOPO\_smooth\_type). The Laplacian filter is used in default. In the smoothing operation, the filter is applied multiple times until the angle of the topography slope is below the maximum allowable angle  $\theta_{max}$ . The maximum allowable angle [radian] is calculated as follows:

$$\theta_{\max} = \arctan(\text{RATIO} \times \Delta z / \Delta x),$$

where  $\Delta z$  and  $\Delta x$  are the vertical and horizontal grid spacings at the bottom layer, respectively. As shown in the above equation,  $\theta_{\max}$  depends on spatial resolution. Greater RATIO results in a finer topography. Note that the risk of numerical instability increases as RATIO becomes greater. The RATIO is specified by (CNVTOPO\_smooth\_maxslope\_ratio), and its default value is 0.5. Instead of (CNVTOPO\_smooth\_maxslope\_ratio), you can directly set the maximum angle  $\theta_{\max}$ by setting (CNVTOPO\_smooth\_maxslope) in degree. The number limit of the smoothing iteration is 10000 times in default. You can increase the limit by setting (CNVTOPO\_smooth\_itelim). When (CNVTOPO\_smooth\_local) is set to .true., the operation for smoothing is continued only at the grid points where the smoothing is not completed.

Additional hyperdiffusion is prepared to smooth the rugged terrain on a small spatial scale. We recommend applying this filtering to reduce the numerical noise induced by the rugged terrain in the simulation. The order of the hyperdiffusion is specified by (CNV\_TOPO\_smooth\_hypdiff\_norder). The hyperdiffusion is applied repeatedly for the number of times specified by

(CONV\_TOPO\_smooth\_hyperdiff\_niter). If (CNVTOPO\_smooth\_hypdiff\_niter) is set to negative, the hyperdiffusion is not applied.

The smoothing filter and the hyperdiffusion blur coast line and raise the elevation of the sea surface near the coast above zero. If (CNVTOPO\_smooth\_trim\_ocean) is set to .true., the land is trimmed along the coast line in each iteration of the filtering operation and then the coast line is fixed. Note that the total volume of the soil is not conserved in this case.

(CNVTOPO\_copy\_parent) is the parameter used for the nesting computation. Since the spatial resolution of the child domain is higher than the parent domain in general, the topography in the child domain is finer than that in the parent domain. At this time, problems may occur due to an inconsistency between the atmospheric data in the buffer region of the child domain and the boundary data which is generated from the parent data. To avoid this problem, the topography in the buffer region of the child domain can be the same as that in the parent domain by setting (CNVTOPO\_copy\_parent)=.true.. If there is no parent domain, (CNVTOPO\_copy\_parent) must be .false.. Section 4.2.8.1 provides a more detailed explanation of the case that involves the use of (CNVTOPO\_copy\_parent).

## 4.1.1.1 Preparation of user-defined topography

When (CNVTOPO\_UseUSERFILE) is set to .true., the scale-rm\_pp creates the SCALE topography data from the user-defined data according to [PARAM\_CNVTOPO\_USERFILE]. The input data sup-



ports the type of "GrADS" and "TILE"; they are specified by (USERFILE\_TYPE). The details for these file types are described in Section 4.1.3. The available items for [PARAM\_CNVTOPO\_USERFILE] as follows:

| &PARAM_CNVTOPO_USERFILE          |                                                                |
|----------------------------------|----------------------------------------------------------------|
| USERFILE_TYPE = '',              | ; "GrADS" or "TILE"                                            |
| USERFILE_DTYPE = 'REAL4',        | ; (for TILE) Type of the data                                  |
|                                  | ("INT2","INT4","REAL4","REAL8")                                |
| USERFILE_DLAT = $-1.0$ ,         | ; (for TILE) Interval of the grid (latitude, degree)           |
| USERFILE_DLON = $-1.0$ ,         | ; (for TILE) Interval of the grid (longitude, degree)          |
| USERFILE_CATALOGUE = '',         | ; (for TILE) Name of the catalogue file                        |
| USERFILE_DIR = '.',              | ; (for TILE) Directory path of input file                      |
| USERFILE_yrevers = .false.,      | ; (for TILE) If data is stored from north to south, set .true. |
| USERFILE_MINVAL = 0.0,           | ; (for TILE) The data lower than MINVAL is recognized as       |
|                                  | missing value                                                  |
| USERFILE_GrADS_FILENAME = '',    | ; (for GrADS) Name of the namelist for the GrADS data          |
| USERFILE_GrADS_VARNAME = 'topo', | ; (for GrADS) Name of the target variable in the namelist      |
| USERFILE_GrADS_LATNAME = 'lat',  | ; (for GrADS) Name of latitude in the namelist                 |
| USERFILE_GrADS_LONNAME = 'lon',  | ; (for GrADS) Name of longitude in the namelist                |
| USERFILE_INTERP_TYPE = 'LINEAR', | ; (for GrADS) Type for the horizontal interpolation            |
| USERFILE_INTERP_LEVEL = 5,       | ; (for GrADS) Level of the interpolation                       |
| $\langle  $                      |                                                                |

The read data is interpolated at the target grid. The type of the interpolation is specified by (USERFILE\_INTERP\_TYPE), and two types are supported: LINEAR and DIST-WEIGHT. Pleas see Section 4.1.2 for the details. The number of neighbor points is specified by (USERFILE\_INTERP\_LEVEL) in the case of DIST-WEIGHT.

For the "GrADS" type, the namelist file specified by (USERFILE\_GrADS\_FILENAME) is required to set the information of the GrADS binary data. Please see Section 4.1.2 for the details of the namelist file. As the default, the variable name for the topography, latitude, and longitude are "topo", "lat", and "lon", respectively. If the name is different from the default value, it can be specified with (USERFILE\_GrADS\_VARNAME), (USERFILE\_GrADS\_LATNAME), and (USERFILE\_GrADS\_LONNAME), respectively.

For the "TILE" type, the catalogue file specified by (USERFILE\_CATALOGUE) is required; it contains information of the name of individual tiled data files and the area where the tiled data covers. Refer the catalogue files of the \$SCALE\_DB/topo/DEM50M/Products/DEM50M\_catalogue.txt and \$SCALE\_DB/topo/GTOPO30/Products/GTOPO30\_catalogue.txt as samples. The sample setting of [PARAM\_CNVTOPO\_USERFILE] for the "TILE" data is as follows. In this sample, the catalogue file named catalogue.txt is located in the directory ./input\_topo. The data is stored with a 2-byte integer.

| &PARAM_CNVTOPO_USERFILE               |                                                     |
|---------------------------------------|-----------------------------------------------------|
| USERFILE_CATALOGUE = "catalogue.txt", | ; Name of the catalogue file                        |
| USERFILE_DIR = "./input_topo",        | ; Directory path of input file                      |
| USERFILE_DLAT = 0.00833333333333300,  | ; Interval of the grid (latitude, degree)           |
| USERFILE_DLON = 0.00833333333333300,  | ; Interval of the grid (longitude, degree)          |
| USERFILE_DTYPE = "INT2",              | ; Type of the data                                  |
|                                       | ("INT2", "INT4", "REAL4", "REAL8")                  |
| <pre>USERFILE_yrevers = .true.,</pre> | ; Data is stored from north to south in latitudinal |
| ·                                     | direction?                                          |
| < /                                   |                                                     |

## 4.1.2 How to prepare initial and boundary data

| Data type     | FILETYPE_ORG Note |                                              |
|---------------|-------------------|----------------------------------------------|
| NetCDF format | NetCDF            | NetCDF file format.                          |
| Binary format | GrADS             | Another namelist for data input is required. |

Table 4.1.2: External input data supported in SCALE

The program scale-rm\_init converts external data into boundary and initial data by using the configuration file init.conf. It can treat various types of external data as shown in Table 4.1.2. The format of input data is specified by (FILETYPE\_ORG) in [PARAM\_MKINIT\_REAL\_(ATMOS|OCEAN|LAND)].

The "NetCDF format" is mainly used for offline nesting experiments (Sec. 4.2.8.2). Other netCDF formatted data, such as WRF data, is also available.

The "Binary format" is defined as binary format with single-precision floating point values that FORTRAN can directly access. The example of practical usage of binary format data is described in Sec. 3.2.2.

Other format data, such as GRIB/GRIB2 data, can be read in SCALE by converting the data to the binary format data. Note that the format of output files in the latest version is different from that in the version 5.3 or older. Therefore, the init/boundary files which are made in the version 5.3 or older can't be used in the current version (SCALE 5.5.4).

#### Settings common to NetCDF format and Binary format

The base name of the initial file to be output is set by (**RESTART\_OUT\_BASENAME**) in [**PARAM\_RESTART**] as follows:

```
&PARAM_RESTART
RESTART_OUTPUT = .true., ; whether initial (or restart) files is output.
RESTART_OUT_BASENAME = "init", ; base name of initial (or restart) files
//
```

To generate initial file, (RESTART\_OUTPUT) is set to .true.. The base name of initial file is specified by (RESTART\_OUT\_BASENAME). For example, in the tutorial described in Sec. 3.2.1, (RESTART\_OUT\_BASENAME) = "init\_d01". These settings are used when you want to output restart files in executing SCALE-RM (see Sec. 4.2.7 for details). The structure of generated restart files is same as that of initial files.

The settings for input data and boundary files are specified by [PARAM\_MKINIT\_REAL\_(ATMOS|OCEAN|LAND)] in the file init.conf.

```
C/D
SCOLE
```

```
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_FILES = 1,
                                             ; Number of input files
NUMBER_OF_TSTEPS = 1,
                                             ; Number of time step for each input files for Binary
                                             format
FILETYPE_ORG = '',
                                             ; Select from Table4.1.2
BASENAME_ORG = '',
                                             ; Information about input files
                                               (the specified value depends on FILETYPE_ORG)
                                              Switch to number the name of file when
BASENAME_ADD_NUM = .false.,
                                             NUMBER_OF_FILES = 1
BASENAME_BOUNDARY = '',
                                             ; Base name of boundary files
BOUNDARY_UPDATE_DT = 0.0,
                                             ; Time interval for input data [s]
USE_FILE_DENSITY = .false.,
                                             ; Switch to use data of density stored in input files
PT_dry = .true.,
                                             ; If the potential temperature is defined associated
                                             with dry air
USE_NONHYDRO_DENS_BOUNDARY = .false.,
                                             ; Switch to use nonhydrostatic density as boundary
                                             data
USE_SFC_DIAGNOSES = .false.,
                                             ; Switch to use diagnostic variables at surface in par-
                                             ent model
USE_DATA_UNDER_SFC = .true.,
                                             ; Switch to use values below the surface in parent
                                             model
SAME_MP_TYPE = .false.,
                                             ; (For SCALE format) Whether the microphysics
                                             scheme is same as that used in parent model
UPPER_QV_TYPE = 'ZERO',
                                             ; How to fill the QV value when it is missing at upper
                                             layers ("ZERO", "COPY")
INTRP_TYPE = 'LINEAR',
                                             ; Type of horizontal interpolation ("LINEAR",
                                             "DIST-WEIGHT")
SERIAL_PROC_READ = .true.,
                                             ; Whether only the master process read input data?
SKIP_VERTICAL_RANGE_CHECK = .false.,
                                             ; Turn it to true when the top layer-height of the file
                                             data is lower than the model level
&PARAM_MKINIT_REAL_OCEAN
NUMBER_OF_FILES = 1,
                                             ; Number of input files
NUMBER_OF_TSTEPS = 1,
                                             ; Number of time steps for each input files for Binary
                                             format
FILETYPE_ORG = '',
                                             ; Select from Table4.1.2
BASENAME_ORG = '',
                                             ; Information about input file
                                                (the specified value depends on FILETYPE_ORG)
                                            ; (For GrADS format) ("off", "mask", "fill")
; (For GrADS format) ("off", "mask", "fill")
INTRP_OCEAN_SFC_TEMP = 'off',
INTRP_OCEAN_TEMP = 'off',
                                             ; Whether only the master process read input data?
SERIAL_PROC_READ = .true.,
&PARAM_MKINIT_REAL_LAND
NUMBER_OF_FILES = 1,
                                             ; Number of input files
NUMBER_OF_TSTEPS = 1,
                                             ; Number of time steps for each input files for Binary
                                             format
FILETYPE_ORG = '',
                                             ; Select from Table4.1.2
BASENAME_ORG = '',
                                             ; Information about input file
                                               (the specified value depends on FILETYPE_ORG)
USE_FILE_LANDWATER = .true.,
                                             ; Switch to use data of soil moisture stored in input
                                             file
INTRP_LAND_TEMP = 'off',
                                            ; (For GrADS format) ("off", "mask", "fill")
INTRP_LAND_WATER = 'off',
                                            ; (For GrADS format) ("off", "mask", "fill")
INTRP_LAND_SFC_TEMP = 'off',
                                            ; (For GrADS format) ("off", "mask", "fill")
                                             ; Switch to correct the difference of topography eleva-
ELEVATION_CORRECTION = .true.,
                                             tion from parent model
SERIAL_PROC_READ = .true.,
                                             ; Whether only the master process read input data?
```

(NUMBER\_OF\_FILES) is the number of input files. The program scale-rm\_init reads these files

enumerated from 00000 to the given number (NUMBER\_OF\_FILES)-1. For the case of (NUMBER\_OF\_FILES)=1 where the enumeration is not automatically performed, you should set (BASENAME\_ADD\_NUM)=.true. to enumerate the files. (NUMBER\_OF\_TSTEPS) is the number of time steps stored in each input file. It is ignored when (FILETYPE\_ORG) is "NetCDF".

(BOUNDARY\_UPDATE\_DT) is the time interval of input data; the time interval of boundary data is the same as that of the input data. (BASENAME\_BOUNDARY) is the base name of the output boundary files. If (BASENAME\_BOUNDARY) is not specified, no boundary files are output. For example, in the above case, the boundary file(s) are created only for the atmospheric variables; the initial file is prepared for all atmospheric, ocean, and land variables. In order to perform model integration, the boundary data for atmospheric variables must have two time steps at least. On the other hands, whether boundary data for variables of ocean and land is necessary depends on schemes employed in executing models.

(INTRP\_TYPE) is the type of horizontal interpolation; "LINEAR" and "DIST-WEIGHT" are available. If "LINEAR" is selected, the bi-linear interpolation is used. This type can not be used when the total number of horizontal gird cells in either the x- or y-direction is 1, i.e., (IMAXG) = 1 or (JMAXG) = 1, such as a case of 2-dimensional experiment or an unstructured grid data which is stored in one-dimensional array in the horizontal direction. If "DIST-WEIGHT" is selected, distance-weighted mean of the nearest N-neighbors is used. In the case of distance-weighted mean, the number of the neighbors is set by (COMM\_CARTESC\_NEST\_INTERP\_LEVEL) in [PARAM\_COMM\_CARTESC\_NEST].

(upper\_qv\_type) is the type how to fill the missing value in qv data at the upper layers. For (upper\_qv\_type)='ZERO', the value of QV is set to zero. For (upper\_qv\_type)='COPY', the value at the highest layer where input data exists is copied. The default value of upper\_qv\_type is "ZERO".

In SCALE-RM, as default, only the master process reads input data, and then broadcasts the data to each node. At this time, the algorithm may cause insufficient memory error when reading large input data, especially on a high-performance computing system. By setting (SERIAL\_PROC\_READ) to .false., each node accesses by itself to only the data it needs, resulting in the reduction of memory usage. Note that, the computational performance may deteriorate due to locking file access because the algorithm places a load on file I/O.

The above configurations except for (BASENAME\_BOUNDARY) can be shared between ATMOS and OCEAN (or LAND); namely, if the items of namelist are not specified in [PARAM\_MKINIT\_REAL\_(OCEAN|LAND)], the values same as that in [PARAM\_MKINIT\_REAL\_ATMOS] are used.

#### Settings for PARAM\_MKINIT\_REAL\_ATMOS

The method to calculate density is specified by (USE\_FILE\_DENSITY) and (USE\_NONHYDRO\_DENS\_BOUNDARY). For the default setting where both of values are .false., the density in initial and boundary data is calculated with hydrostatic balance, i.e.,  $\frac{dp}{dz} = -\rho g$  from the input data of temperature and humidity. If (USE\_FILE\_DENSITY) = .true., the density read from the input file(s) is used as well as the other variables. Regardless of the (USE\_FILE\_DENS), if (USE\_NONHYDRO\_DENS\_BOUNDARY) = .true., the density of boundary data is calculated using the equation of state, i.e.,  $\rho = p/RT$ and the input temperature, pressure, and humidity data (the initial data is not affected). This density is generally consistent with that in the parent model. The reason why the option for density boundary data is provided is the following. In most cases, the density satisfying the hydrostatic balance is preferred for the initial data to reduce initial shock in the simulation. Therefore, (USE\_FILE\_DENSITY) = .false. is recommended. On the other hand, since the density constructed with the hydrostatic balance could differ from that in the parent model (or realistic value), this may cause a significant mass bias in the simulation. In such cases, in terms of representation of the simulation such as pressure field, it could be better to use consistent density with the parent's one using (USE\_NONHYDRO\_DENS\_BOUNDARY) = .true.. The vertical acceleration or waves due to the use of hydrostatically inbalanced density as the boundary data is expected to be quickly dumped by the lateral nudging.

(USE\_SFC\_DIAGNOSES) is the switch of method to calculate the values at layers on SCALE below the lowermost layer of input data. If (USE\_SFC\_DIAGNOSES) = .true., the surface quantities, such as T2, RH2, U10, V10, and PSFC are used. Otherwise, constant potential temperature and hydrostatic balance are assumed. (USE\_DATA\_UNDER\_SFC) is switch whether the input data below



its surface is used or ignored.

#### Settings for PARAM\_MKINIT\_REAL\_LAND

The soil water is configured by (USE\_FILE\_LANDWATER) of [PARAM\_MKINIT\_REAL\_LAND] in init.conf. There are two options in preparation of soil moisture: i) the data provided from the input file ((USE\_FILE\_LANDWATER) = .true.) and ii) a constant value in the entire region ((USE\_FILE\_LANDWATER) = .false.). In the case of the option i), either fraction of volume of soil moisture (SMOISVC) or saturation ratio (SMOISDS) is required as the 3D soil moisture data. Here, the fraction of volume of soil moisture is the ratio of water volume  $(V_w)$  to soil volume (V), i.e.,  $V_w/V$ , and the saturation ratio is the ratio of water volume  $(V_w)$  to void spaces in  $V(V_v)$ , i.e.,  $V_w/V_v$ . In the case of the option ii), the saturation ratio is specified by (INIT\_LANDWATER\_RATIO) whose default value is 0.5. The porosity of the soil  $(V_v/V)$  depends on the land use.

```
&PARAM_MKINIT_REAL_LAND
 INIT_LANDWATER_RATIO = 0.5
 . . . . . . . . . .
```

```
USE_FILE_LANDWATER = .false. ; Switch to give soil moisture by input files. The default is .true.
                                  ; (For USE_FILE_LANDWATER=.false.) saturation ratio
```

(ELEVATION\_CORRECTION) in [PARAM\_MKINIT\_REAL\_LAND] determines whether soil temperature and land surface temperature for the initial and boundary data are corrected according to the topographical difference between the parent model and the SCALE-RM. In general, topographies of the parent model and the SCALE-RM are different. Therefore, if soil temperature and land surface temperature for the initial and boundary data are made by simply interpolating the data of the parent model, there could be inconsistency of temperature according to the height difference of the topography. If (ELEVATION\_CORRECTION) is .true., soil temperature and land surface temperature for the initial and boundary data are corrected according to the height difference. For example, if the topography made by the SCALE-RM is  $\Delta h$  higher than that of the parent model, soil temperature and land surface temperature are uniformly reduced by  $\Delta h\Gamma$ , where  $\Gamma$  is lapse rate of the international standard atmosphere (ISA):  $\Gamma = 6.5 \times 10^{-3}$  [K/m]. The default value is (ELEVATION\_CORRECTION) = .true..

### Input from NetCDF format data

An example of configurations in [PARAM\_MKINIT\_REAL\_(ATMOS|OCEAN|LAND)] for the NetCDF format data is as follows:

```
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_FILES = 2,
FILETYPE_ORG = "NetCDF",
BASENAME_ORG = "history_d01",
BASENAME_ADD_NUM = .true.,
BASENAME_BOUNDARY = 'boundary_d01',
SAME_MP_TYPE = .false.,
...
&PARAM_MKINIT_REAL_OCEAN
FILETYPE_ORG = "NetCDF",
BASENAME_ORG = "history_d01",
1
&PARAM_MKINIT_REAL_LAND
FILETYPE_ORG = "NetCDF",
BASENAME_ORG = "history_d01",
```



(FILETYPE\_ORG) is set to "NetCDF". The base name of input files is specified by (BASENAME\_ORG). Given BASENAME\_ORG="history\_d01", the input file should be named history\_d01.peYYYYYY.nc or history\_d01.nc when the number of input file is 1. When the number of input files is larger than 1 or (BASENAME\_ADD\_NUM) = .true. in [PARAM\_RESTART], the name of the input files should be numbered as "history\_d01\_XXXXX.peYYYYYY.nc" or "history\_d01\_XXXXX.nc".

If cloud microphysical scheme used is same as that in the parent model, specify (SAME\_MP\_TYPE). For the output files of SCALE or WRF, necessary information is automatically determined internally. For other files, namelist providing such information is required. In the [PARAM\_MKINIT\_REAL\_(ATMOS|LAND|OCEAN)\_NetCDF], file type is specified by (FILE\_TYPE). It should be "SCALE-RM", "WRFARW", "NAMELIST", or "AUTO". If it is "AUTO", the type is detected automatically. The namelist file is specified by (NM\_FILE) of [PARAM\_MKINIT\_REAL\_(ATMOS|LAND|OCEAN)\_NetCDF] as follows:

```
&PARAM_MKINIT_REAL_ATMOS_NetCDF
FILE_TYPE = "NAMELIST", ; "SCALE-RM", "WRFARW", "NAMELIST" or "AUTO"
NM_FILE = "namelist_netcdf.nml", ; namelist file name
MIXING_RATIO = .false.,
/
&PARAM_MKINIT_REAL_LAND_NetCDF
FILE_TYPE = "NAMELIST",
NM_FILE = "namelist_netcdf.nml",
/
&PARAM_MKINIT_REAL_OCEAN_NetCDF
FILE_TYPE = "NAMELIST",
NM_FILE = "namelist_netcdf.nml",
/
```

Definition of the magnitude of the water contents in the file is specified by (MIXING\_RATION). It is ".true." when it is mixing ratio, that is ratio to the dry air mass, otherwise ratio to the total air mass.

In the namelist file, the information is specified as follows:

```
&NetCDF_MAPPROJECTION ; settings for map projecton
 mapping_name = "lambert_conformal_conic",
 longitude_of_central_meridian = 135.0,
 longitude_of_projection_origin = 135.0,
 latitude_of_projection_origin = 34.5,
 standard_parallel = 30.0, 40.0,
 rotation = 0.0D0
&NetCDF_DIMS
zname = "z", ; name of the coordinate in the z dimension
 zhname = "zh", ; name of the coordinate in the z dimension for the staggered grid
 xname = "x", ; name of the coordinate in the x dimension
 xhname = "xh", ; name of the coordinate in the x dimension for the staggered grid
 yname = "y", ; name of the coordinate in the y dimension
 yhname = "yh", ; name of the coordinate in the y dimension for the staged grid
tname = "time", ; name of the coordinate in the time dimension
&NetCDF_ITEM item="Umet", name="u", xstg=.true. /
&NetCDF_ITEM item="Vmet", name="v", ystg=.true. /
&NetCDF_ITEM item="T", name="t", offset=273.0 /
```



The correspondence of the names of coordinates are specified by the [NetCDF\_DIMS]. The names for the staggered grid is required only for atmosphere.

The correspondence of variable names are specified with the [NetCDF\_ITEM]. The explanations of [NetCDF\_ITEM] is described in Table ??. The list of the (item) is in the table 4.1.5. Note that other item is available for tracer variables which depending on experimental configuration.

| item of NetCDF_ITEM | Explanation                                                  | Note          |
|---------------------|--------------------------------------------------------------|---------------|
| item                | Variable name                                                | Select from   |
|                     |                                                              | Table $4.1.5$ |
| name                | Variable name in the netCDF file                             |               |
| zstg                | If the variable is at the staggered point in the z-direction | (optional)    |
| xstg                | If the variable is at the staggered point in the x-direction | (optional)    |
| ystg                | If the variable is at the staggered point in the y-direction | (optional)    |
| offset              | Offset value                                                 | (optional)    |
| factor              | Factor value                                                 | (optional)    |

| Table 4.1.3: | Variables o | of [NetCDF] | _ITEM] |
|--------------|-------------|-------------|--------|
|              |             |             |        |

#### Input from binary format data

If the binary data is used as input files, you need to prepare data according to the format used in GrADS. For the details, see http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html# structure.

An example of configurations in [PARAM\_MKINIT\_REAL\_(ATMOS|OCEAN|LAND)] for the binary format data is as follows:

```
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_FILES = 2,
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.2005053112-2015011400",
BASENAME_ADD_NUM = .true.,
BASENAME_BOUNDARY = 'boundary_d01',
BOUNDARY_UPDATE_DT = 21600.0,
...
1
&PARAM_MKINIT_REAL_OCEAN
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.2005053112-2015011400",
INTRP_OCEAN_SFC_TEMP = "mask",
INTRP_OCEAN_TEMP = "mask",
&PARAM_MKINIT_REAL_LAND
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.2005053112-2015011400",
INTRP_LAND_TEMP = "fill",
INTRP_LAND_WATER = "fill";
INTRP_LAND_SFC_TEMP = "fill",
```

(FILETYPE\_ORG) is set to "GrADS". In SCALE-RM, the file name and the data structure of the GrADS formatted binary data are specified in the namelist file specified by (BASENAME\_ORG) instead of the "ctl" file. The namelist file needs to be prepared beforehand by users.



The following is an example of the namelist file namelist.grads\_boundary\* which provides information of the data file name and data structure.

```
# Dimension
&GrADS_DIMS
nx = 360.
            ; Default value of the number of grids in x direction
ny = 181,
            ; Default value of the number of grids in y direction
nz = 26,
             ; Default value of the number of layers in z direction
#
# Variables
#
&GrADS_ITEM name='lon', dtype='linear', swpoint=0.0d0, dd=1.0d0 /
&GrADS_ITEM name='lat', dtype='linear', swpoint=90.0d0, dd=-1.0d0 /
&GrADS_ITEM name='pressure', dtype='levels', lnum=26,
  lvars=100000,97500,....,2000,1000, /
&GrADS_ITEM name='height', dtype='map', fname='FNLatm', startrec=1, totalrec=125 /
&GrADS_ITEM name='U', dtype='map', fname='FNLatm', startrec=27, totalrec=125 /
&GrADS_ITEM name='V', dtype='map', fname='FNLatm', startrec=53, totalrec=125 /
&GrADS_ITEM name='T', dtype='map', fname='FNLatm', startrec=79, totalrec=125 /
&GrADS_ITEM name='RH', dtype='map', fname='FNLatm', startrec=105,totalrec=125, nz=21 /
&GrADS_ITEM name='MSLP', dtype='map', fname='FNLsfc', startrec=1, totalrec=9 /
&GrADS_ITEM name='SFC_PRES', dtype='map', fname='FNLsfc', startrec=2, totalrec=9 /
&GrADS_ITEM name='SFC_TEMP', dtype='map', fname='FNLsfc', startrec=3, totalrec=9 /
&GrADS_ITEM name='topo', dtype='map', fname='FNLsfc', startrec=4, totalrec=9 /
&GrADS_ITEM name='lsmask', dtype='map', fname='FNLsfc', startrec=5, totalrec=9 /
&GrADS_ITEM name='U10', dtype='map', fname='FNLsfc', startrec=6, totalrec=9 /
&GrADS_ITEM name='V10', dtype='map', fname='FNLsfc', startrec=7, totalrec=9 /
&GrADS_ITEM name='T2', dtype='map', fname='FNLsfc', startrec=8, totalrec=9 /
&GrADS_ITEM name='RH2', dtype='map', fname='FNLsfc', startrec=9, totalrec=9 /
&GrADS_ITEM name='llev', dtype='levels', lnum=4, lvars=0.05,0.25,0.70,1.50, /
      missval=9.999e+20 /
&GrADS_ITEM name='LAND_TEMP', dtype='map', fname='FNLland', nz=4, startrec=1, totalrec=8
      missval=9.999e+20 /
&GrADS_ITEM name='LAND_WATER', dtype='map', fname='FNLland', nz=4, startrec=5, totalrec=$,
      missval=9 999e+20 /
```

The default value of the number of grids is specified as nx, ny, nz in [GrADS\_DIMS]. Configurations for the variables are individually specified by [GrADS\_ITEM]. The explanations of [GrADS\_ITEM] is described in Table 4.1.6.

The base name of input files is set as fname in the [GrADS\_ITEM]. Given the base name is set as fname="filename", the input binary data file should be named filename.grd in the case that the number of the input binary file is one ((NUMBER\_OF\_FILES) = 1). In the case that there is more than one input files or (BASENAME\_ADD\_NUM) = .true. in [PARAM\_RESTART], prepare the files numbered as "filename\_XXXXX.grd".

If the number of grids for a variable is different from the default value, the value is specified by nx, ny, nz of [GrADS\_ITEM]. For example, specific humidity (QV) and relative humidity (RH) in upper levels are not always available. In such case, the number of layers where the data exist is specified as nz.

The variables required for the calculation with SCALE-RM are listed in Table 4.1.7.

|                  | Table 4.1.4: Item names for (item) in [N | etCDF_ITEM]                      |
|------------------|------------------------------------------|----------------------------------|
| Item name (item) | Explanation                              | Note                             |
| lon              | longitude                                |                                  |
| lat              | latitude                                 |                                  |
| height           | height                                   |                                  |
| pressure         | pressure                                 |                                  |
| DENS             | air density                              |                                  |
| W                | vertical wind speed                      |                                  |
| MOMZ             | vertical moment                          |                                  |
| Umet             | eastward wind speed                      |                                  |
| U                | wind speed in the x-direction            |                                  |
| MOMX             | moment in x-direction                    |                                  |
| Vmet             | northward wind speed                     |                                  |
| V                | wind speed in the y-direction            |                                  |
| MOMY             | moment in y-direction                    |                                  |
| PT               | potential temperature                    | c.f. (PT_dry) in                 |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS]        |
| RHOT             | density weighted potential temperature   | c.f. (PT_dry) in                 |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS]        |
| Т                | temperature                              |                                  |
| QV               | vapor mass                               | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| RH               | relative humidity                        |                                  |
| QC               | ratio of cloud water mass                | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| QR               | ratio of rain water mass                 | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| QI               | ratio of cloud ice mass                  | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| QS               | ratio of snow mass                       | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| QG               | ratio of graupel mass                    | c.f. (mixing_ratio) in           |
|                  |                                          | [PARAM_MKINIT_REAL_ATMOS_NETCDF] |
| MSLP             | mean sea level pressure                  |                                  |
| SFC_PRES         | surface pressure                         |                                  |
| Umet10           | eastward 10m wind speed                  |                                  |
| U10              | 10m wind speed in the x-direction        |                                  |
| Vmet10           | northward 10m wind speed                 |                                  |
| V10              | 10m wind speed in the y-direction        |                                  |
| T2               | 2m temperatuer                           |                                  |
| Q2               | 2m vapor mass                            |                                  |
| RH2              | 2m relative humidity                     |                                  |



| Item name (item)      | Explanation                       | Note |
|-----------------------|-----------------------------------|------|
| lz                    | soil depth                        |      |
| topo                  | surface elevation                 |      |
| lsmask                | land mask                         |      |
| LAND_TEMP             | soil temperature                  |      |
| LANS_WATER            | soil water                        |      |
| LAND_SFC_TEMP         | land surface temperature          |      |
| LAND_SFC_ALB_IR_dir   | land albedo for IR (direct)       |      |
| LAND_SFC_ALB_IR_dif   | land albedo for IR (diffused)     |      |
| LAND_SFC_ALB_NIR_dir  | land albedo for NIR (direct)      |      |
| LAND_SFC_ALB_NIR_dif  | land albedo for NIR (diffued)     |      |
| LAND_SFC_ALB_VIS_dir  | land albedo for VIS (direct)      |      |
| LAND_SFC_ALB_VIS_dif  | land albedo for VIS (diffued)     |      |
| LAND_SFC_EMIS_IR_dif  | land emissivity for IR (diffued)  |      |
| URBAN_SFC_TEMP        | urban surface temperature         |      |
| OCEAN_TEMP            | sea temperature                   |      |
| OCEAN_SFC_TEMP        | sea surface temperature           |      |
| OCEAN_SFC_ZOM         | sea surface roughness             |      |
| OCEAN_SFC_ALB_IR_dir  | ocean albedo for IR (direct)      |      |
| OCEAN_SFC_ALB_IR_dif  | ocean albedo for IR (diffused)    |      |
| OCEAN_SFC_ALB_NIR_dir | ocean albedo for NIR (direct)     |      |
| OCEAN_SFC_ALB_NIR_dif | ocean albedo for NIR (diffued)    |      |
| OCEAN_SFC_ALB_VIS_dir | ocean albedo for VIS (direct)     |      |
| OCEAN_SFC_ALB_VIS_dif | ocean albedo for VIS (diffued)    |      |
| OCEAN_SFC_EMIS_IR_dif | ocean emissivity for IR (diffued) |      |

Table 4.1.5: Item names for (item) in [NetCDF\_ITEM], following the previous page.

|                      | Table 4.1.6: Variables of [GrADS_ITEM]                    |                   |
|----------------------|-----------------------------------------------------------|-------------------|
| item of GrADS_ITEM   | Explanation                                               | Note              |
| name                 | Variable name                                             | Select from       |
|                      |                                                           | Table 4.1.7       |
| dtype                | Data type                                                 | "linear","levels" |
|                      |                                                           | or "map"          |
| namelist at (dtype)= | -"linear" (specific use of "lon", "lat" )                 |                   |
| fname                | Header name of files                                      |                   |
| swpoint              | Value of start point                                      |                   |
| dd                   | Increment                                                 |                   |
| namelist at (dtype)' | <pre>'=levels" (specific use of "plev", "llev")</pre>     |                   |
| lnum                 | Number of levels (layers )                                |                   |
| lvars                | Values of each layer                                      |                   |
| namelist at (dtype)= | ="map"                                                    |                   |
| startrec             | Recorded number of variables (item)                       | time at $t=1$     |
| totalrec             | Recorded length of all variables per time                 |                   |
| missval              | Missing value                                             | (option)          |
| nx                   | Number of grids in x direction                            | (option)          |
| ny                   | Number of grids in y direction                            | (option)          |
| nz                   | Number of layers in z direction                           | (option)          |
| yrev                 | If the data is stored from the north to south, set .true. | (option)          |

|    | Variable name (name)           | Explanation                      | Unit           | Data        |
|----|--------------------------------|----------------------------------|----------------|-------------|
|    |                                | 1                                |                | type        |
|    |                                |                                  |                | (dtype)     |
|    | lon                            | longitude data                   | [deg.]         | linear, map |
|    | lat                            | latitude data                    | [deg.]         | linear, map |
|    | pressure, plev                 | pressure data                    | [Pa]           | levels, map |
|    | height, HGT                    | geopotential height data         | [m]            | map         |
| *  | DENS                           | air density                      | [kg/m3]        | map         |
|    | U                              | eastward wind speed              | [m/s]          | map         |
|    | V                              | northward wind speed             | [m/s]          | map         |
| ** | W                              | vertical wind speed              | [m/s]          | map         |
|    | Т                              | temperature                      | [K]            | map         |
|    | RH                             | relative humidity                | [%]            | map         |
|    |                                | (optional if QV is given)        |                |             |
|    | QV                             | specific humidity                | [kg/kg]        | map         |
|    |                                | (optional if RH is given)        |                |             |
| ** | QC                             | ratio of cloud water mass        | [kg/kg]        | map         |
| ** | QR                             | ratio of rain water mass         | [kg/kg]        | map         |
| ** | QI                             | ratio of cloud ice mass          | [kg/kg]        | map         |
| ** | QS                             | ratio of snow mass               | [kg/kg]        | map         |
| ** | QG                             | ratio of graupel mass            | [kg/kg]        | map         |
| ** | MSLP                           | sea level pressure               | [Pa]           | map         |
| ** | SFC_PRES, PSFC                 | surface pressure                 | [Pa]           | map         |
| ** | U10                            | eastward 10m wind speed          | [m/s]          | map         |
| ** | V10                            | northward 10m wind speed         | [m/s]          | map         |
| ** | T2                             | 2m temperature                   | [K]            | map         |
| ** | RH2                            | 2m relative humidity             | [%]            | map         |
|    |                                | (optional if $Q2$ is given)      |                |             |
| ** | Q2                             | 2m specific humidity             | [kg/kg]        | map         |
|    |                                | (optional if RH2 is given)       |                |             |
| *  | ТОРО                           | topography of GCM                | [m]            | map         |
| *  | lsmask                         | ocean–land distribution of GCM   | 0:ocean,1:land | map         |
|    | LAND_SFC_TEMP, SFC_TEMP, SKINT | surface temperature              | [K]            | map         |
|    | llev                           | soil depth                       | [m]            | levels      |
|    | LAND_TEMP, STEMP               | soil temperature                 | [K]            | map         |
|    | LAND_WATER, SMOISVC            | soil moisture (volume fraction)  | [-]            | map         |
|    |                                | (optional if SMOISDS is given)   |                |             |
|    | SMOISDS                        | soil moisture (saturation ratio) | [-]            | map         |
|    |                                | (optional if SMOISVC is given)   |                |             |
|    | OCEAN_SFC_TEMP, SST            | sea surface temperature          | [K]            | map         |
|    |                                | (optional if SKINT is given)     |                |             |

## Table 4.1.7: Variable list of (name) in [GrADS\_ITEM]. The asterisk means "it is optional but recommended as possible". The double-asterisk means "it is available but not recommended".

## 4.1.3 How to prepare input data from user-defined data

Some schemes requires other input data than initial and boundary data. In order to use these schemes, the data are necessary be prepared before the simulation. The input data must be SCALE-netCDF file and have the grid information according to the experimental settings. To prepare the input data, SCALE-RM provide a system to convert user-defined data to a SCALE-netCDF file. When (CNVERT\_USER) = .true. in [PARAM\_CONVERT], the data conversion can be executed by scale-rm\_init. The supported formats of the user-defined data are shown in Table 4.1.8. Since only one variable can be converted in a single execution, the execution must be repeated as for the number of the user-defined variables to be converted. At this moment, the conversion is available only for spatially two dimensional data.

Table 4.1.8: Types of user-defined data supported in SCALE

| Data type | Description                                |
|-----------|--------------------------------------------|
| GrADS     | GrADS binary data.                         |
| TILE      | horizontally decomposed tiled binary data. |

The configurations for the user-defined data are specified in [PARAM\_CNVUSER] as follows:

| &PARAM_CNVUSER                              |                                                   |
|---------------------------------------------|---------------------------------------------------|
| CNVUSER_FILE_TYPE = '',                     | ; Type of the user-defined data. See Table 4.1.8. |
| CNVUSER_INTERP_TYPE = 'LINEAR',             | ; Type for the horizontal interpolation.          |
| CNVUSER_INTERP_LEVEL = 5,                   | ; Level of the interpolation.                     |
| CNVUSER_OUT_TITLE = 'SCALE-RM 2D Boundary', | ; Title in the output file.                       |
| CNVUSER_OUT_VARNAME = '',                   | ; Variable name in the output file.               |
| CNVUSER_OUT_VARDESC = '',                   | ; Description of the output variable.             |
| CNVUSER_OUT_VARUNIT = '',                   | ; Unit of the output variable.                    |
| CNVUSER_OUT_DTYPE 'DEFAULT',                | ; Data type of the output variable (DE-           |
|                                             | FAULT,INT2,INT4,REAL4,REAL8).                     |
| $CNVUSER_NSTEPS = 10,$                      | ; The number of time steps in the data.           |
| $CNVUSER_OUT_DT = -1.0D0$ ,                 | ; Time interval in second of the output vari-     |
|                                             | able.                                             |
| CNVUSER_GrADS_FILENAME = '',                | ; Name of the namelist for the GrADS data.        |
| CNVUSER_GrADS_VARNAME = '',                 | ; Name of the target variable in the namelist.    |
| CNVUSER_GrADS_LATNAME = 'lat',              | ; Name of latitude in the namelist.               |
| CNVUSER_GrADS_LONNAME = 'lon',              | ; Name of longitude in the namelist.              |
| CNVUSER_TILE_DIR = '',                      | ; Directory name where the catalogue and tiled    |
|                                             | data files exist.                                 |
| CNVUSER_TILE_CATALOGUE = '',                | ; Name of the catalogue file.                     |
| CNVUSER_TILE_DLAT = 1.0D0,                  | ; Latitude interval in the tiled data.            |
| CNVUSER_TILE_DLON = 1.0D0,                  | ; Longitude interval in the tiled data.           |
| CNVUSER_TILE_DTYPE = 'REAL4',               | ; Data type of the tiled data                     |
|                                             | (INT2,INT4,REAL4,REAL8).                          |
| /                                           |                                                   |
|                                             |                                                   |

The type and level for the horizontal interpolation is specified by (CNVUSER\_INTERP\_TYPE) and (CNVUSER\_INTERP\_LEVEL), respectively. See Section 4.1.2 for the details for the interpolation. (CNVUSE\_OUT\_TITLE), (CNVUSE\_OUT\_VARNAME), (CNVUSE\_OUT\_VARDESC), and

(CNVUSE\_OUT\_VARUNIT) are settings for the title, variable name, variable description, and variable unit in the output file, respectively. When the data type is GrADS and the (CNVUSE\_OUT\_VARNAME) is not set, (CNVUSER\_GrADS\_VARNAME) is used as the output variable name.

If (CNVUSER\_OUT\_DTYPE) is DEFAULT, it is the same as the data type used in the simulation; it is REAL8 as default, and REAL4 when SCALE-RM is compiled with the environment variable SCALE\_USE\_SINGLEFP = "T" (See Section 2.2.2).



The number of time steps contained in the user-defined data is specified by (CNVUSER\_NSTEPS). The initial time of the time coordinate in the output file is specified by (TIME\_STARTDATE) in [PARAM\_TIME] (See Section 4.2.5), and the time interval in second is specified by (CNVUSER\_OUT\_DT).

For the GrADS type, another namelist file which contains structure of input file is necessary. (USERFILE\_GrADS\_FILENAME) is used to set the namelist file. See Section 4.1.2 for the details of the namelist file. As the default, the variable name for latitude, and longitude are lat, and lon, respectively. If the name is different from the default value, it can be specified with (CNVUSER\_GrADS\_LATNAME), and (CNVUSER\_GrADS\_LONNAME), respectively. Two samples to convert GrADS-type use-defined data are provided at scale/scale-rm/test/framework/cnvuser The following is an example of the namelist file.

The TILE-type data means the horizontally decomposed tiled data. The individual tiled data should a direct access binary file. The binary data type is specified by (CNVUSER\_TILE\_DTYPE). The data must be structured on a latitude-longitude grid with equal intervals, specified by (CNVUSER\_TILE\_DLAT) and (CNVUSER\_TILE\_DLON) for latitude and longitude, respectively. A catalogue file is required; the catalogue contains information of the name of individual tiled data files and the area which the tiled data covers. The name of the catalogue file is specified by (CNVUSER\_TILE\_CATALOGUE). The catalogue and tiled data files are located at the directory specified by (CNVUSER\_TILE\_DIR). Each line of the catalogue file describes the serial number, the southernmost and the northernmost latitudes, the westernmost and the easternmost longitudes, and the name of the tiled data. The following is an example of the catalogue file for the global data decomposed into total 4 (2 x 2) files.

| 001 -90.0 0.0 -180.0 0.0 TILE_sw.grd | ; latitude: -90-0, longitude: -180-0, name: TILE_sw.grd |
|--------------------------------------|---------------------------------------------------------|
| 002 -90.0 0.0 0.0 180.0 TILE_se.grd  | ; latitude: -90-0, longitude: 0-180, name: TILE_se.grd  |
| 003 0.0 90.0 -180.0 0.0 TILE_nw.grd  | ; latitude: 0-90, longitude: -180-0, name: TILE_nw.grd  |
| 004 0.0 00.0 0.0 180.0 TILE_ne.grd   | ; latitude: 0–90, longitude: 0–180, name: TILE_ne.grd   |



## Chapter 4.2

## Framework for SCALE-RM

## 4.2.1 Supporting tool for preparation of configuration files

The configuration files **\*\*\*.conf** for experiment are required to be individually prepared for **pp**, **init**, **run**. Some items in namelist are required to be the same among these configuration files. If there is an inconsistency among them, the model does not run properly. To avoid such mistakes, a convenient supporting tool for the preparation of configuration files is provided as follows:

```
$ cd ${Tutorial_DIR}/real/
$ ls
    Makefile
      : Makefile for generation of necessary files for experiment
    README
      : README file
    USER.sh
      : Shell script for specifying the settings
    config/
      : Configuration files for each setting (not necessary for user to rewrite it)
    sample
      : Sample scripts of USER.sh
    data
      : Files for tutorial real
    tools
      : Files for tutorial real, converting FNL data from grib format to binary format
Although this tool is intended for the tutorial experiment of real atmosphere as initial setting,
users can change the settings in USER.sh.
   Under the directory sample/, several sample scripts are provided for the typical configuration.
Use them as necessary by copying them to USER.sh.
$ ls sample/
```

```
USER.default.sh
  : USER.sh same as for the tutorial experiment of real atmosphere
  ( single domain )
USER.offline-nesting-child.sh
  : for the child domain for off-line nesting experiment
USER.offline-nesting-parent.sh
  : for the parent domain for off-line nesting experiment
USER.online-nesting.sh
  : for the on-line nesting experiment
```



#### How to use the tool

The use of this tool is described as follows (or refer to README):

- 1. Edit USER.sh according to experimental settings intended by the users.
- 2. Execute make command.

All the necessary files for the experiment are generated under the directory experiment.

Since the configuration in USER.sh is that for tutorial of real atmosphere, it is recommended to leave the tutorial setting as a different file as follows:

```
$ mv experiment/ tutorial/
        : (In the case of already existing experiment directory)
$ cp USER.sh USER_tutorial.sh
... edit USER.sh ...
$ make
$ cp -rL experiment/ arbitrary_directory/
        : '`arbitrary_place'' means directory name of arbitrary place
```

## Editing USER.sh

In the beginning part of script file, there is NUM\_DOMAIN for specifying the number of domains. Then, there are some items specified to configuration files generated by the script, and so change the items appropriately. When an item is followed by "# require parameters for each domain", values of the item must be described in proportion to the number of domains and separated by space. Note that if the number of item's values and the number of nesting domains according to NUM\_DOMAIN are different, the set of files for the experiment cannot be generated. When items do not appear in USER.sh, edit directly the configuration file generated under the directory experiment.

## 4.2.2 Configuration File Converter from Previous Version

From version 5.4 to 5.5, there are some changes in namelist parameters. So, we provide the configuration file converter from 5.4 to 5.5. It requires "ruby" (https://www.ruby-lang.org/en/).

Usage of the converter is the following:

## 4.2.3 Setting the target domain

In this section, the number of grids, and the target domain and its relationship with the MPI process are explained. The calculation domain is determined by the horizontal grid spacing and the number of grid points. The parallelization is implemented by a 2D domain decomposition in the horizontal directions.

Figure 4.2.1 shows an example of this relationship. The total numbers of grids are specified by (IMAXG, JMAXG) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX]. The entire domain is divided into (PRC\_NUM\_X) along the X direction and (PRC\_NUM\_Y) in the Y direction; the (PRC\_NUM\_X) and (PRC\_NUM\_Y) are specified in [PARAM\_PRC\_CARTESC]. The process number starts zero and is numbered in order from the bottom left to the top right (Arrow in Fig. 4.2.1). Each subdomain is managed by an MPI process, each of which takes charge of a grid block of (IMAX) × (JMAX) × (KMAX), where (KMAX) is the number of grids along the vertical direction specified in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX]. Care is taken to ensure that (IMAX) and (JMAX) must be identical for all MPI processes. Therefore, (PRC\_NUM\_X) and (PRC\_NUM\_Y) must be a divisor of (IMAXG) and (JMAXG), respectively.

The total number of grids along each horizontal direction and that in the entire domain are summarized as

$$\texttt{IMAXG} = \texttt{IMAX} \times \texttt{PRC}\_\texttt{NUM}\_\texttt{X} \tag{4.2.1}$$

$$JMAXG = JMAX \times PRC_NUM_Y.$$
(4.2.2)

Total number of grids in the domain

$$=$$
 IMAXG  $imes$  JMAXG  $imes$  KMAX,

$$= (\texttt{IMAX} \times \texttt{PRC}\_\texttt{NUM}\_\texttt{X}) \times (\texttt{JMAX} \times \texttt{PRC}\_\texttt{NUM}\_\texttt{Y}) \times (\texttt{KMAX}). \tag{4.2.3}$$

When (IMAXG) and (JMAXG) are specified, (IMAX) and (JMAX) are internally calculated. Alternatively, user can specify (IMAX) and (JMAX) instead of (IMAXG) and (JMAXG). In this case, (IMAXG) and (JMAXG) are internally calculated by using Eqs. (4.2.1) and (4.2.2), respectively.

The size of the entire domain is determined as follows:

Domain length in the X direction = 
$$IMAXG \times DX$$
 (4.2.4)  
Domain length in the Y direction =  $IMAXG \times DY$ , (4.2.5)

where (DX, DY) is grid spacings specified in [PARAM\_ATMOS\_GRID\_CARTESC] as described in subsection 4.2.3.2.

In order to perform a horizontal-vertical two-dimensional experiment, set both the (IMAXG) and (PRC\_NUM\_X) to 1. In this case, the motion in the Y-Z section is calculated. The value of DX does not affect the simulation result.

In the next subsections, the number of grids, the grid interval, and the configuration of the MPI processes are described in more detail. Note that it is necessary that these settings must be identical among the configuration files for scale-rm\_pp, scale-rm\_init, and scale-rm.

## 4.2.3.1 Setting the number of horizontal and vertical grids

The number of grids is specified in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX] in the configuration files.

| &PARAM_ATMOS_GRID_CARTESC_INDEX |                                               |   |
|---------------------------------|-----------------------------------------------|---|
| KMAX = 97,                      | ; Number of vertical layers                   |   |
| IMAXG = 40,                     | ; Total number of grids along the X direction |   |
| JMAXG = 25,                     | ; Total number of grids along the Y direction |   |
| <u>_</u> /                      |                                               | , |



Figure 4.2.1: Relation between horizontal grid interval (DX, DY), the number of grids ((IMAX), (JMAX)) per MPI process, the total number of grids ((IMAXG), (JMAXG)) in the entire domain, and the number of MPI processes ((PRC\_NUM\_X), (PRC\_NUM\_Y)). The blue part corresponds to a region managed by an MPI process. The six digit number following "pe" indicates the process number.

## 4.2.3.2 Setting grid intervals along the horizontal and vertical directions

Excluding the buffer region explained in Section 4.2.3.5, the horizontal grid intervals are configured only equidistantly, whereas the vertical grid intervals are configured freely. When the grid intervals are configured uniformly along all directions, specify the grid intervals for the x, y, and z directions with (DX, DY, DZ) in [PARAM\_ATMOS\_GRID\_CARTESC], respectively. The unit is [m].

| ( | &PARAM_ATMOS_GRID_CARTESC |                                                  |
|---|---------------------------|--------------------------------------------------|
|   | DX = 500.D0,              | ; Grid interval along the X direction            |
|   | DY = 500.D0,              | ; Grid interval along the Y direction            |
|   | DZ = 500.D0,              | ; Grid interval along the vertical (Z) direction |
|   | /                         |                                                  |

An arbitrary non-uniform grid can be specified in the vertical direction. Since the model employs the C-grid system, the points of definition for the velocity vector and other scalars are staggered, deviating by a half grid. In this document, the scalar location is called the center point and the half-grid-deviated location the face point. Refer to Figure 4.2.2 for the details. The face point of the vertical grids can be specified with (FZ(:)) in [PARAM\_ATMOS\_GRID\_CARTESC] as an array <sup>\*1</sup>. Note that the number of elements specified in (FZ(:)) should correspond to the number of vertical layers ((KMAX) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX]). The following file for the ideal experiment is shown as an example:

 $<sup>^{*1)}</sup>$ In this case, the same precision as used in the simulation is recommended to be specified. By default, the model is compiled as a double-precision floating point model.





Figure 4.2.2: The definition of the face point in SCALE-RM. If (FZ) is given in [PARAM\_ATMOS\_GRID\_CARTESC], the top height at the first layer is given for the value at k = 1. Note that k = 1 is not the ground surface height.

|                           |                                                       | $\sim$ |
|---------------------------|-------------------------------------------------------|--------|
| &PARAM_ATMOS_GRID_CARTESC |                                                       |        |
| DX = 500.D0,              | Grid interval along the X direction (equidistant) [m] |        |
| DY = 500.D0,              | Grid interval along the Y direction (equidistant) [m] |        |
| FZ(:) =                   | Location at face point along the Z direction [m]      |        |
| 80.00000000000000000000,  |                                                       |        |
| 168.00000190734863D0 ,    |                                                       |        |
| 264.80000610351567D0 ,    |                                                       |        |
|                           |                                                       |        |
| 14910.428862936289D0 ,    |                                                       |        |
| 15517.262523292475D0 ,    |                                                       |        |
| 16215.121232702089D0 ,    |                                                       |        |
| 17017.658748523147D0 ,    |                                                       |        |
| 17940.576891717363D0 ,    |                                                       |        |
| 19001.932756390710D0 ,    |                                                       |        |
| 20222.492000765058D0 ,    |                                                       |        |
| $BUFFER_DZ = 5000.D0$ ,   | Refer to Section $4.2.3.5$                            |        |
| BUFFFACT = 1.0D0,         | Refer to Section $4.2.3.5$                            |        |
|                           |                                                       |        |

The above setting is processed at a topographical height of 0 m. The location of the vertical grids at the non-zero topography is appropriately treated by the terrain-following coordinate.

The locations of the vertical grids are configured arbitrarily. However, an unusual configuration sometimes leads to numerical instability. To avoid it, the tool for the generation of vertical grids is supported as a FORTRAN program make\_vgrid.f90 in the directory

scale-5.5.4/scale-rm/util/makevgrid/ with several samples of the namelist. If needed, use them as references. The tool generates the values of (FZ(:)) directly. Copy and paste them in the configuration file.



## 4.2.3.3 Setting the number of MPI processes

The number of MPI processes is specified in [PARAM\_PRC\_CARTESC] in the configuration file.

| / | &PARAM_PRC_CARTESC |                                                                               |
|---|--------------------|-------------------------------------------------------------------------------|
|   | $PRC_NUM_X = 2$ ,  | ; number of divisions by MPI parallelization in the X direction (zonal direc- |
|   |                    | tion)                                                                         |
|   | $PRC_NUM_Y = 1$ ,  | ; number of divisions by MPI parallelization in the Y direction (meridional   |
|   |                    | direction)                                                                    |
| ( | 1                  |                                                                               |

It should be noted that the number of MPI process must be a divisor of the total grid number (IMAXG) or (JMAXG) in the x- and y-directions, respectively. Otherwise, the program is terminated immediately with the following message:

number of IMAXG should be divisible by PRC\_NUM\_X

or

number of JMAXG should be divisible by PRC\_NUM\_Y

The total number of MPI processes is given by PRC\_NUM\_X  $\times$  PRC\_NUM\_Y. The above example expresses a two-MPI parallel by dividing the domain into two sub-domains along the X direction, but not dividing along the Y direction. The total number of processes must be given as the number of MPI processes in the MPI command at submitting job. If this condition is not satisfied, the program is terminated immediately without calculation and the following message is output to the standard output.

xxx total number of node does not match that requested. Check!

Since the input and output files of SCALE-RM are divided process by process according to the MPI, the total number of files is changed according to the number of MPI processes. For example, the initial and boundary files made by two-MPI processes cannot be used for model execution by four-MPI processes. If the number of MPI processes is changed, it is necessary to edit [PARAM\_PRC\_CARTESC] in pp.conf, init.conf, and run.conf, and then conduct once again the processes of pp and init. As another way, the postprocess SNO is also available for redistribution (Please refer Sec.4.6.1).

## 4.2.3.4 Setting sponge layer

SCALE-RM adopts height coordinate system in vertical. The uppermost boundary condition is a rigid lid, and the sound and gravity waves often reflect at the model top. To reduce worse effects of these reflecting waves, the damping layer named "sponge layer" is placed in the upper part of the model domain. In the sponge layer, a vertical velocity is dumped by Rayleigh friction. The relaxation time scale (= e-folding time) of damping is minimum at the model top and it increases with decreasing the height. Below the bottom boundary of sponge layer, the relaxation time scale is set to infinity. There are two methods to set the thickness of the sponge layer in [PARAM\_ATMOS\_DYN].

- specify number of layer of the sponge layer The number of layer appointed in (ATMOS\_DYN\_wdamp\_layer) is set as the sponge layer. The number is counted from the model top.
- 2. specify bottom boundary height [m] of the sponge layer The layer that is higher than altitude appointed in (ATMOS\_DYN\_wdamp\_height) is set as the



sponge layer.

Both parameters above are not set by default, and the sponge layer is not applied. If both are set, (ATMOS\_DYN\_wdamp\_layer) is given priority.

The relaxation time at the uppermost boundary is specified by (ATMOS\_DYN\_wdamp\_tau). The unit is [second]. This parameter is not allowed to set the value smaller than (TIME\_DT\_ATMOS\_DYN). When (ATMOS\_DYN\_wdamp\_tau) is not specified explicitly, the value ten times as large as (TIME\_DT\_ATMOS\_DYN) is automatically set. Please refer to section 4.2.5 for (TIME\_DT\_ATMOS\_DYN). The example of concrete setting is shown in section 4.3.1.2.

## 4.2.3.5 Setting Buffer Region and Boundary Nudging Method

In general, disagreement in values between input data as boundary condition and actual calculation output occurs at the lateral boundaries. They generate several problems, such as nonphysical mode, in calculation. To avoid these problems, the "buffer region" is placed in the domain.

As shown in Fig.4.2.3, SCALE-RM places the buffer region just inside the calculation domain. In the buffer region, prognostic variables are updated to be close to the specified values of boundary data and/or the parent model data with a certain relaxation time. Hereinafter, this relaxation is called nudging.

#### **Buffer Region**

The width of the buffer region is specified in [PARAM\_ATMOS\_GRID\_CARTESC] in the configuration file. Note again that the configuration in all procedures must be identical. There are two methods to configure the width of the buffer region.

- 1. specify number of grid of the buffer region with (BUFFER\_NX, BUFFER\_NY, BUFFER\_NZ)
- 2. specify width [m] of the buffer region with (BUFFER\_DX, BUFFER\_DY, BUFFER\_DZ)

Both parameters above are not set by default, and no buffer regions are set. If both are set, (BUFFER\_NX, BUFFER\_NY, BUFFER\_NZ) is given priority. The buffer regions along the horizontal directions are placed at the four domain boundaries, whereas those along the vertical direction are placed just at the top of the domain. Nothing is affected in the bottom region. Note that the actual target region unaffected by the nudging (the region excluding the buffer regions) narrows compared to the calculation domain because the buffer region is placed on the inside of calculation domain.

Two examples are as below.

| &PARAM_ATMOS_GRID_CARTESC |                                                                  |
|---------------------------|------------------------------------------------------------------|
| $BUFFER_NX = 30$ ,        | ; The number of grid for the buffer region along the X direction |
| $BUFFER_NY = 30$ ,        | ; The number of grid for the buffer region along the Y direction |
| BUFFFACT = 1.DO,          | ; Stretched factor for grid intervals in the buffer region       |
| /                         |                                                                  |

```
&PARAM_ATMOS_GRID_CARTESC
BUFFER_DZ = 5000.D0,
                               ; The width of the buffer region along the Z direction from the top
                               of the model (a reference) [m]
                               ; The width of the buffer region along the X (zonal) direction ( a
BUFFER_DX = 300000.D0,
                               reference ) [m]
BUFFER_DY = 300000.D0,
                               ; The width of the buffer region along the Y (meridional) direction (
                               a reference ) [m]
                               ; Stretched factor for grid intervals along the Z direction
BUFFFACT_Z = 1.20D0,
BUFFFACT_X = 1.05DO,
                               ; Stretched factor for grid intervals along the X (zonal) direction
BUFFFACT_Y = 1.05D0,
                               ; Stretched factor for grid intervals along the Y (meridional) direction
```





Figure 4.2.3: Location of the buffer region in the entire calculation domain: the shaded area indicates the buffer region. This figure shows the XZ cross-section. It is the same as the YZ cross-section.

The setting procedure of buffer region for the X direction is described as follows. The number of grids ibuff in the buffer region is equal to BUFFER\_NX. If BUFFER\_DX is configured instead of BUFFER\_NX, ibuff is automatically calculated as the minimum integer satisfying the following condition:

$$\sum_{n=1}^{\texttt{ibuff}} \texttt{BDX}(n) \geq \texttt{BUFFER_DX}.$$

Thus, it should be noted that the width of the buffer region  $\text{BUFFER}_{X}$  (=  $\sum_{n=1}^{\text{ibuff}} \text{BDX}(n)$ ) does not always correspond to (BUFFER\_DX). At the end, the actual target region excluded by the buffer region is expressed as

$$DX \times (IMAXG - 2 \times ibuff).$$
 (4.2.6)

Although the situations along the Y and Z directions are similar to this, note that the actual target region along the Z direction is expressed as

$$DZ \times (KMAX - kbuff), \qquad (4.2.7)$$

using the number of grids kbuff in the upper buffer region.

In general, there is no clear criterion for setting the width and locating grids in the buffer region. This depends on a problem to be solved. In SCALE-RM, the followings are recommended: the number of grids in the vertical buffer region at the top of the model is greater than 5, whereas that in the lateral boundaries is approximately  $20 \sim 40$ . Depending on the experiment, it may be necessary to increase the number of grids in the buffer region, to increase the buffer region itself by using the appropriate stretch factor, to tune relaxation time, and so on. The relaxation time is explained below.

The grid intervals in the buffer region are the same as (DX, DY, DZ) in [PARAM\_ATMOS\_GRID\_CARTESC] by default. But, it is possible for them to be stretched by setting (BUFFFACT) > 1. This specification of (BUFFFACT) is applied in all directions if the grid intervals are uniformly specified. When the stretched factor is configured separately in every direction, specify (BUFFFACT\_X, BUFFFACT\_Y,



BUFFFACT\_Z). Note that in case of the configuration of vertical levels by giving (FZ(:)) (refer to 4.2.3.2), the above stretched settings have no effect along the vertical direction.

The grid interval BDX in the buffer region is determined as follows:

$$BDX(n) = DX \times BUFFFACT^n$$

where n denotes the index of grids in the buffer region, in the order directed from the inner to the outer region in the domain. The grid interval is the same as the inner domain at (BUFFFACT=1.0), whereas it increases from the inner to the outer region by a factor of 1.2 at (BUFFFACT=1.2). Although any value of (BUFFFACT) can be configured, the value from 1.0 to 1.2 is recommended to avoid numerical instability.

Finally, the width of the buffer region  ${\tt BUFFER}_X$  is as follows:

$$\text{BUFFER}_{\mathbf{X}} = \text{DX} \times \frac{\text{BUFFFACT} (\text{BUFFFACT}^{\text{ibuff}} - 1)}{\text{BUFFFACT} - 1}$$
(4.2.8)

Even if the same width of buffer region (BUFFER\_DX) is specified, the number of grids in the buffer region decreases with increasing (BUFFFACT). When given by (BUFFER\_NX), only the width of buffer region is changed.

#### Nudging Methods in Buffer Region

[PARAM\_ATMOS\_BOUNDARY] has parameters to configure the nudging in the buffer region. The boundary data type is configurable by (ATMOS\_BOUNDARY\_TYPE) in [PARAM\_ATMOS\_BOUNDARY] (Table 4.2.1.)

| Table 4.2.1: Choices of the boundary data type              |  |  |
|-------------------------------------------------------------|--|--|
| Description of type                                         |  |  |
| Do not nudge                                                |  |  |
| Nudge to a prescribed constant value                        |  |  |
| Nudge to the initial value                                  |  |  |
| Nudge to value read from a file (temporally unchanged)      |  |  |
| Nudge to time-dependent value of the parent model or domain |  |  |
|                                                             |  |  |

The following is the parameters in [PARAM\_ATMOS\_BOUNDARY].

| 🖉 &PARAN | 1_ATMOS_BOUNDARY                  |                                                                 | / |
|----------|-----------------------------------|-----------------------------------------------------------------|---|
| ATMOS    | S_BOUNDARY_TYPE = 'NONE',         | ; The boundary data type. See Table $4.2.1$ .                   |   |
| ATMOS    | S_BOUNDARY_IN_BASENAME = '',      | ; File name of the boundary data for OFFLINE or REAL            |   |
|          |                                   | type                                                            |   |
| ATMOS    | S_BOUNDARY_IN_CHECK_COORDINATES \ |                                                                 |   |
| = .      | true.,                            | ; Flag to check coordinate variables in the boundary data file. |   |
| (contin  | nued on next page)                |                                                                 | / |

(continued from previous page) ATMOS\_BOUNDARY\_OUT\_BASENAME = '', ; File name to output the initial boundary data. ATMOS\_BOUNDARY\_OUT\_TITLE \ = 'SCALE-RM BOUNDARY CONDITION', ; Title for the output file. ATMOS\_BOUNDARY\_OUT\_DTYPE = 'DEFAULT', ; Data type (REAL4 or REAL8) for the output. ATMOS\_BOUNDARY\_USE\_DENS = .false., ; Switch of the nudging for the density. ATMOS\_BOUNDARY\_USE\_VELZ = .false., ; Switch for the w. ATMOS\_BOUNDARY\_USE\_VELX = .false., ; Switch for the u. ATMOS\_BOUNDARY\_USE\_VELY = .false., ; Switch for the v. ATMOS\_BOUNDARY\_USE\_PT = .false., ; Switch for the  $\theta$ . ATMOS\_BOUNDARY\_USE\_QV = .false., ; Switch for the vapor. ATMOS\_BOUNDARY\_USE\_QHYD = .false., ; Switch for the hydrometeors. ATMOS\_BOUNDARY\_VALUE\_VELZ = 0.0D0, ; Value of the w. Only for CONST type. ATMOS\_BOUNDARY\_VALUE\_VELX = 0.0D0, ; Value of the u. Only for CONST type. ATMOS\_BOUNDARY\_VALUE\_VELY = 0.0D0, ; Value of the v. Only for CONST type. ATMOS\_BOUNDARY\_VALUE\_PT = 300.0D0, ; Value of the  $\theta$ . Only for CONST type. ATMOS\_BOUNDARY\_VALUE\_QTRC = 0.0D0, ; Value of the vapor. Only for CONST type. ATMOS\_BOUNDARY\_ALPHAFACT\_DENS = 1.0D0, ; Factor of the  $1/\tau$  for the density. ATMOS\_BOUNDARY\_ALPHAFACT\_VELZ = 1.0D0, ; Factor for the w. ATMOS\_BOUNDARY\_ALPHAFACT\_VELX = 1.0D0, ; Factor for the u. ; Factor for the v. ATMOS\_BOUNDARY\_ALPHAFACT\_VELZ = 1.0D0, ATMOS\_BOUNDARY\_ALPHAFACT\_PT = 1.0D0, ; Factor for the  $\theta$ . ATMOS\_BOUNDARY\_ALPHAFACT\_QTRC = 1.0D0, ; Factor for the vapor. ATMOS\_BOUNDARY\_SMOOTHER\_FACT = 0.2D0, ; Factor of the horizontal smoother against the pointwise difference. ATMOS\_BOUNDARY\_FRACZ = 1.0D0, ; Fraction for the nudging region to the buffer region in the z-direction. ATMOS\_BOUNDARY\_FRACX = 1.0D0, ; Fraction in the x-direction. ATMOS\_BOUNDARY\_FRACY = 1.0D0, ; Fraction in the y-direction. ATMOS\_BOUNDARY\_TAUZ = DT \* 10.0D0, ; Time scale of the nudging at the top boundary (in second). ATMOS\_BOUNDARY\_TAUX = DT \* 10.0D0, ; Time scale at the western and eastern boundaries. ; Time scale at the southern and northern bound-ATMOS\_BOUNDARY\_TAUY = DT \* 10.0D0, aries. ATMOS\_BOUNDARY\_LINEAR\_V = .false., ; Profile type of the time scale in the z-direction. If .true., it is a linear profile, otherwise a sinusoidal profile. ATMOS\_BOUNDARY\_LINEAR\_H = .false., ; Profile type in the x- and y-direction. If .true., it is a linear profile, otherwise a exponential profile.  $ATMOS_BOUNDARY_EXP_H = 2.0DO$ , ; Factor of the exponent of the exponential profile. ATMOS\_BOUNDARY\_DENS\_ADJUST = .false., ; Switch of the mass flux adjustment. ATMOS\_BOUNDARY\_DENS\_ADJUST\_TAU \ = -1.0D0, ; Time scale of the density nudging when the mass flux adjustment is enabled (in second).

The tendency due to the nudging is written as

$$\frac{\partial \phi_{k,i,j}}{\partial t}\Big|_{\text{nudging}} = -\alpha \Delta \phi_{k,i,j} \qquad (4.2.9) \\
+ \alpha_s \left( \frac{\Delta \phi_{k,i-1,j} + \Delta \phi_{k,i+1,j} + \Delta \phi_{k,i,j-1} + \Delta \phi_{k,i,j+1}}{8} - \frac{\Delta \phi_{k,i,j}}{2} \right),$$

where  $\Delta \phi$  is difference from the boundary data and  $\alpha_s = \alpha \times \text{ATMOS}_\text{BOUNDARY}_\text{SMOOTHER}_FACT$ . The  $\alpha$  is the maximum of those in the tree directions  $\alpha_x, \alpha_y$  and  $\alpha_z$ . The  $\alpha$ s depend on a length scale e as

$$e = \max\left(1 - \frac{d}{\text{BUFFER} \times \text{ATMOS}_{\text{BOUNDARY}_{\text{FRAC}}}, 0\right), \qquad (4.2.10)$$



where d is distance from the boundary. If  $(ATMOS_BOUNDARY_LINEAR_V) = .true.$ ,

$$\alpha_z = e_z / \tau_z, \tag{4.2.11}$$

otherwise

$$\alpha_z = \sin^2(\pi e_z/2)/\tau_z, \tag{4.2.12}$$

where  $\tau_z$  is (ATMOS\_BOUNDARY\_TAUZ). For the horizontal direction, if (ATMOS\_BOUNDARY\_LINEAR\_H) = .true.,

$$\alpha_x = e_x / \tau_x, \tag{4.2.13}$$

otherwise

$$\alpha_x = e_x \exp\{-(1 - e_x) \times \text{ATMOS}_\text{BOUNDARY}_\text{EXP}_\text{H}\}/\tau_x. \tag{4.2.14}$$

 $\alpha_y$  is derived by the same way as  $\alpha_x$ .

The  $\tau$  is the relaxation time at the boundary (d = 0) with which the difference between the simulated value and the boundary value becomes 1/e. On the other hand, two grid scale component of  $\Delta \phi$  becomes 1/e with the time of  $\tau/\text{ATMOS}\_\text{BOUNDARY}\_\text{SMOOTHER}\_\text{FACT}$  by the second term of the right-hand side of Eq. 4.2.10. The default value of the  $\tau$  is ten times of (TIME\_DT). Please refer to Section 4.2.5 for (TIME\_DT).

If (ATMOS\_BOUNDARY\_TYPE) = "REAL" in [PARAM\_ATMOS\_BOUNDARY], the nudging at the top and lateral boundaries is applied for the horizontal velocities, potential temperature, density, and vapor, regardless of the settings of (ATMOS\_BOUNDARY\_USE\_{VELX,VELY,PT,DESN,QV}). The nudging for the vertical velocity and hydrometeors is applied when (ATMOS\_BOUNDARY\_USE\_VELZ)=.true. and (ATMOS\_BOUNDARY\_USE\_QHYD)=.true., respectively. In the case of an online nesting simulation (See Section 4.2.8.3), the same settings with the "REAL" boundary type is applied to the child domain, except that (ONLINE\_USE\_VELZ) and (ONLINE\_BOUNDARY\_USE\_QHYD) in [PARAM\_COMM\_CARTESC\_NEST] are used instead of (ATMOS\_BOUNDARY\_USE\_VELZ) and (ATMOS\_BOUNDARY\_USE\_QHYD), respectively.

The density nudging is effective to reduce the bias of total mass in the simulation. However, it also decreases the pressure gradient in the nudging region; the pressure gradient plays a role to transfer the information of boundary data into the inner domain especially in outflow region. As a way to reduce the mass bias keeping the pressure gradient, the adjustment of the mass flux is available. By using the adjustment of the mass flux, the density nudging could be weakened. If (ATMOS\_BOUNDARY\_DENS\_ADJUSTMENT) = .true., the mass flux at the lateral boundaries is adjusted so that the difference in the total mass between the parent model and the simulation becomes small. For example, if the total mass in the simulation is less than that in the parent model, the  $\rho u$  at the western boundary and the  $\rho v$  at the southern boundary are increased, and the  $\rho u$  at the eastern boundary and the  $\rho v$  at the northern boundary are decreased to enlarge the total mass convergence. The mass flux adjustment is available only for the REAL boundary type and child domain of the online nesting. When the mass flux adjustment is enabled, the time scale of the density nudging is specified by (ATMOS\_BOUNDARY\_DENS\_ADJUSTMENT\_TAU). If the value is negative, the time scale is internally determined as 6 times smaller than the time interval of the boundary data. To weaken the density nudging, set the time scale larger than (ATMOS\_BOUNDARY\_TAUX) and (ATMOS\_BOUNDARY\_TAUY). The adjustment method in SCALE-RM is constructed under the assumption that the total mass change due to convergence of the mass flux at the lateral boundaries is much larger than that due to the physical processes, such as precipitation and surface latent heat flux. The validity of the assumption depends on target domain and situation.

There exists a similar dumping method at near the top boundary, i.e., Rayleigh dumping. See Section 4.2.3.4.

### 4.2.3.6 Setting vertical grids for ocean, land, and urban models

Settings for horizontal grids of ocean, land, and urban models are same as those for the atmospheric model. The numbers of the grids are specified by (IMAXG, JMAXG) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX]. The horizontal grid intervals are specified by (DX, DY) in [PARAM\_ATMOS\_GRID\_CARTESC]. On the other hand, settings for vertical grids should be specified for each model separately.

Please see Sec. 4.4.7, Sec. 4.4.8 and Sec. 4.4.9 for vertical grid settings for ocean, land and urban models, respectively.

## 4.2.4 Setting the map projection

In SCALE-RM, grids are allocated based on actual distance. The latitude and longitude for all grids are calculated by using the latitude and longitude of a certain reference point using a map projection. All information pertaining to the latitude and longitude of the grids are output to all output files in netCDF format. The locations of the domain and the map projection can be configured in (PARAM\_MAPPROJECTION). This configuration must be shared among the configuration files pp.conf, init.conf, and run.conf. An example is as follows:

&PARAM\_MAPPROJECTION MAPPROJECTION\_basepoint\_lon = 138.727778D0, MAPPROJECTION\_basepoint\_lat = 35.360556D0, MAPPROJECTION\_type = 'MER', ; Choose from Table 4.2.2.

| TT J               |                                                    |  |
|--------------------|----------------------------------------------------|--|
| MAPPROJECTION_type | Map projection                                     |  |
| NONE               | No map projection for ideal experiment ( default ) |  |
| LC                 | Lambert conformal conic projection                 |  |
| PS                 | Polar stereo projection                            |  |
| MER                | Mercator projection                                |  |
| EC                 | Equi-rectangular projection                        |  |

Table 4.2.2: Map projections selectable in SCALE-RM

(MAPPROJECTION\_basepoint\_lat, MAPPROJECTION\_basepoint\_lon) are the latitude and longitude at a reference point. This reference point is the center of the calculation domain by the default setting. In SCALE-RM, the north and south latitudes are expressed by positive and negative values, respectively. The east and west longitudes are also expressed by positive and negative values, respectively. It is possible to express longitude using an angle greater than 180°. In above setting, the center of the domain is configured at 35.360556°N and 138.727778°E, where N and E denote the north latitude and east longitude, respectively. The entire calculation domain is placed at the center with a specified size.

(MAPPROJECTION\_type) provides the kind of map projection and MER the Mercator projection. Table 4.2.2 shows the selectable map projections in the current version of SCALE-RM. In the case of the Mercator projection, the standard latitude, to which a cylinder is tangent, is specified as (MAPPROJECTION\_M\_lat) in units of degrees. In general, the standard latitude is set to the Equator. In SCALE-RM, (MAPPROJECTION\_basepoint\_lat) is used as standard latitude, unless (MAPPROJECTION\_M\_lat) is explicitly specified. This is because this method is more precise with less distortion than the usual Mercator projection.

The text below explains the Lambert conformal conic projection, the usage frequency of which is highest. The example is the same as that in the file used in the tutorial for the real atmospheric experiment.

```
&PARAM_MAPPROJECTION
MAPPROJECTION_basepoint_lon = 135.220404,
MAPPROJECTION_basepoint_lat = 34.653396,
MAPPROJECTION_type = 'LC',
MAPPROJECTION_LC_lat1 = 30.0,
MAPPROJECTION_LC_lat2 = 40.0,
```

In SCALE-RM , two standard parallels are used for this projection. The north and south of them are specified in (MAPPROJECTION\_LC\_lat1, MAPPROJECTION\_LC\_lat2) in units of degrees. In the region between the latitudes, the ratio of the latitudinal to longitudinal length is adjusted



Figure 4.2.4: The relationship between projection center and calculation domain.; (a) Default setting and (b) the case where the center of projection is displaced at the center of the domain. The red line indicates the boundary of the calculation domain.

to be close to the Earth's ellipsoid face.

Furthermore, it is possible for the reference point ((MAPPROJECTION\_basepoint\_lon), (MAPPROJECTION\_basepoint\_lat)) to be displaced from the default setting, i.e., domain center as follows:

```
&PARAM_MAPPROJECTION
MAPPROJECTION_basepoint_lon = 135.220404,
MAPPROJECTION_basepoint_lat = 34.653396,
MAPPROJECTION_basepoint_x = 100.0,
MAPPROJECTION_basepoint_y = 100.0,
MAPPROJECTION_type = 'LC',
MAPPROJECTION_LC_lat1 = 30.0,
MAPPROJECTION_LC_lat2 = 40.0,
```

The location of the reference point is specified as the distance from the south-west corner (bottom-left corner).; (MAPPROJECTION\_basepoint\_x) and (MAPPROJECTION\_basepoint\_y) are the distances in units of meters between the south-west corner and the reference point in X directionand in Y direction, respectively. If they are not specified, the center of projection corresponds to that of the domain. Figure 4.2.4 shows both cases.

## 4.2.5 Setting integration period and time step

The integration period and time step are configured appropriately according to experimental design. The time step depends on the spatial resolution of the model. A shorter time step is sometimes required to avoid numerical instability. The period of integration and the time step are configured in [PARAM\_TIME] in the configuration file for simulation run.

```
&PARAM_TIME
TIME_STARTDATE = 2014, 8, 10, 0, 0, 0,
                                             Start date of integration: it is required for the cal-
                                             culation of the radiation process.
TIME_STARTMS = 0.DO,
                                             Start date [mili sec]
TIME_DURATION = 12.0DO,
                                             Integration
                                                                   init
                                                                                 defined
                                                                                           by
                                                           time
                                                                           is
                                             TIME_DURATION_UNIT
TIME_DURATION_UNIT = "HOUR",
                                             Unit for TIME_DURATION
TIME_DT = 60.0D0,
                                             Time step for time integration
TIME_DT_UNIT = "SEC",
                                             Unit for TIME_DT
TIME_DT_ATMOS_DYN = 30.0DO,
                                             Time step for calculation of dynamical process
TIME_DT_ATMOS_DYN_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_DYN
TIME_DT_ATMOS_PHY_CP = 600.0D0,
                                             Time step for calculation of cumulus parameteriza-
                                             tion process
TIME_DT_ATMOS_PHY_CP_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_CP
TIME_DT_ATMOS_PHY_MP = 60.0D0,
                                             Time step for calculation of microphysics process
TIME_DT_ATMOS_PHY_MP_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_MP
TIME_DT_ATMOS_PHY_RD = 600.0D0,
                                             Time step for calculation of radiation process
TIME_DT_ATMOS_PHY_RD_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_RD
TIME_DT_ATMOS_PHY_SF = 60.0D0,
                                             Time step for calculation of bottom boundary con-
                                             dition (surface process) for atmosphere
TIME_DT_ATMOS_PHY_SF_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_SF
TIME_DT_ATMOS_PHY_TB = 60.0D0,
                                             Time step for calculation of turbulence process
TIME_DT_ATMOS_PHY_TB_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_TB
TIME_DT_ATMOS_PHY_BL = 60.0D0,
                                             Time step for calculation of boundary layer process
TIME_DT_ATMOS_PHY_BL_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_BL
TIME_DT_OCEAN = 300.0D0,
                                             Time step for calculation of ocean process
TIME_DT_OCEAN_UNIT = "SEC",
                                             Unit for TIME_DT_OCEAN
TIME_DT_LAND = 300.0D0,
                                             Time step for calculation of land process
TIME_DT_LAND_UNIT = "SEC",
                                             Unit for TIME_DT_LAND
TIME_DT_URBAN = 300.0D0,
                                             Time step for calculation of urban process
TIME_DT_URBAN_UNIT = "SEC",
                                             Unit for TIME_DT_URBAN
TIME_DT_ATMOS_RESTART = 21600.D0,
                                             Output interval of restart files for atmospheric vari-
                                             ables
                                             Unit for TIME_DT_ATMOS_RESTART
TIME_DT_ATMOS_RESTART_UNIT = "SEC",
TIME_DT_OCEAN_RESTART = 21600.D0,
                                             Output interval of restart files for ocean variables
TIME_DT_OCEAN_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_OCEAN_RESTART
TIME_DT_LAND_RESTART = 21600.DO,
                                             Output interval of restart files for land variables
TIME_DT_LAND_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_LAND_RESTART
TIME_DT_URBAN_RESTART = 21600.D0,
                                             Output interval of restart files for urban variables
TIME_DT_URBAN_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_URBAN_RESTART
                                             Interval of checking wallclock
TIME_DT_WALLCLOCK_CHECK = 21600.DO,
                                             Unit for TIME_DT_WALLCLOCK_CHECK
TIME_DT_WALLCLOCK_CHECK_UNIT = "SEC",
TIME_WALLCLOCK_LIMIT = 86400.DO,
                                             Limit of elapse time of wall clock time [sec]
TIME_WALLCLOCK_SAFE = 0.95D0,
                                             Safety coefficient for elapse time limit
```

## 4.2.5.1 Time Step for Dynamical Processes

(TIME\_DT) is the time step for time integration, usually described as  $\Delta t$ . It is used as time



step for tracer advection as well as the basic unit for all physical processes. To avoid numerical instability, (TIME\_DT) must satisfy the following condition: it is less than the value calculated by dividing grid size by a supposed maximum advection velocity. A time step for dynamical process, i.e. (TIME\_DT\_ATMOS\_DYN), should be given shorter than  $\Delta t$  because the time integration of dynamic variables is constrained not by advection velocity, but by the speed of the acoustic wave. (TIME\_DT\_ATMOS\_DYN) depends on the time integration scheme in relation to the stability of calculation. As a criterion, the standard values of (TIME\_DT\_ATMOS\_DYN) are calculated by dividing the minimum grid interval by 420 m/s and 840 m/s, in the case (ATMOS\_DYN\_TINTEG\_SHORT\_TYPE="RK4, RK3"), respectively. Note that (TIME\_DT\_ATMOS\_DYN) needs to be a divisor of (TIME\_DT). When the ratio of (TIME\_DT) to (TIME\_DT\_ATMOS\_DYN) is too large, the numerical instability sometimes occurs. The ratio of (TIME\_DT)/(TIME\_DT\_ATMOS\_DYN) and (TIME\_DT\_ATMOS\_DYN), the ratio of (TIME\_DT)/(TIME\_DT\_ATMOS\_DYN) and (TIME\_DT\_ATMOS\_DYN). Integer is acceptable for (TIME\_NSTEP\_ATMOS\_DYN).

## 4.2.5.2 Check of CFL Condition

The time step for the advection (TIME\_DT) must be smaller than the grid spacing divided by velocity, i.e., the Courant-Friedrichs-Lewy (CFL) condition. A non-dimensional number  $U\Delta t/\Delta x$  is called the Courant number, where  $U, \Delta x$  and  $\Delta t$  are velocity, spatial grid spacing, and time step, respectively. The CFL condition is that the Courant number must be smaller than 1.

SCALE-RM has a functionality to check whether the Courant number exceeds a limit. To enable this function, set (ATMOS\_VARS\_CHECKCFL\_SOFT) and/or (ATMOS\_VARS\_CHECKCFL\_HARD) in [PARAM\_ATMOS\_VARS]. Their default values are 1.0 and 2.0, respectively. If the Courant number in simulations exceeds (ATMOS\_VARS\_CHECKCFL\_SOFT), the following message is output to the LOG file.

INFO [ATMOS\_vars\_monitor] Courant number = xxx exceeded the soft limit = yyy

If it exceeds (ATMOS\_VARS\_CHECKCFL\_HARD), the following message is output to the standard output, and the simulation aborts.

ERROR [ATMOS\_vars\_monitor] Courant number = xxx exceeded the hard limit = yyy

### 4.2.5.3 Time Step for Physical Processes

A time step for the physical process represents the timing of the tendency to update given by the process. Once the model starts, each physical process is called during the setup of the model to obtain the initial tendency. Each tendency is updated at every time step specified process by process. All time steps for the physical process must be a multiple of (TIME\_DT).

The surface fluxes are calculated by the surface process for the atmosphere. On the contrary, if a model grid contains several types of land use, such as ocean, urban, and land, ocean, land, and urban models are used and the fluxes are calculated by these models. The grid mean value of fluxes is obtained as the weighted average of fluxes over each instance of land use according to the fraction of land use.

As described above, the initial tendencies of all processes are updated during the setup of the model. Therefore, the output intervals of restart file are required as multiples of time steps for all processes. If not, a restart calculation disagrees with the continuous calculation. When (TIME\_DT\_ATMOS\_RESTART), (TIME\_DT\_OCEAN\_RESTART), (TIME\_DT\_LAND\_RESTART), and

(TIME\_DT\_URBAN\_RESTART), are not specified, the restart files are created at the end of the simulation, i.e. at (TIME\_DURATION). The details of the restarted simulation are described in Section 4.2.7.

## 4.2.5.4 Finalization by wall-clock timer

Some batch job system usually have the limit of the execution time. However, it is difficult to estimate the elapse time of the long-termed simulation, and the job sometimes exceeds the time limit. To solve this problem, SCALE-RM has the finalize option by using the self timer.

When the elapse time reached the time specified by (TIME\_WALLCLOCK\_LIMIT) (in second), the simulation outputs the restart file and finalize the time loop, even if the timestep is not finished. There is the safety factor for (TIME\_WALLCLOCK\_LIMIT). The default value is 0.9 and specified by (TIME\_WALLCLOCK\_SAFE).

As described above, the interval of the restart output should be a multiples of time steps for all physical processes and surface submodels. However, the self timer will stop the simulation suddenly. To avoid restart output at a time other than expected timing, you can specify the timing to check the wall clock time. The wall clock will be checked the time interval specified by (TIME\_DT\_WALLCLOCK\_CHECK) and (TIME\_DT\_WALLCLOCK\_CHECK\_UNIT). When these parameters are not specified, maximum time interval in the physical process and the surface submodel is set. Note that if you set a very long interval for checking, the timing of the finalization may delay.

In the sample above, the (TIME\_WALLCLOCK\_LIMIT) and (TIME\_WALLCLOCK\_SAFE) are set to 24 hours and 0.95, respectively. The wall clock is checked every 6 hours of the simulation time. When the elapse time exceeds 22.8 hours, the restart file will be generated and the simulation will stop.

## 4.2.6 Setting the history file and output variable

A history file and output variables are configured at [PARAM\_FILE\_HISTORY\_CARTESC], [PARAM\_FILE\_HISTORY] and [HISTORY\_ITEM] in run.conf. The default format of the history file is configured at [PARAM\_FILE\_HISTORY].

| /         | &PARAM_FILE_HISTORY_CARTESC                         |                                                      |
|-----------|-----------------------------------------------------|------------------------------------------------------|
|           | <pre>FILE_HISTORY_CARTESC_PRES_nlayer = -1,</pre>   | ; Number of pressure levels                          |
|           |                                                     | (OPTION for interpolation at pressure level)         |
|           | <pre>FILE_HISTORY_CARTESC_PRES = 0.D0</pre>         | ; Pressure levels in order from lower to upper [hPa] |
|           |                                                     | (OPTION for interpolation at pressure level)         |
|           | <pre>FILE_HISTORY_CARTESC_BOUNDARY = .false.,</pre> | ; Whether output data in halo or not.                |
|           |                                                     | .true.: Output, .false.: Not output.                 |
| $\langle$ | /                                                   |                                                      |



| &PARAM_FILE_HISTORY                                          |                                         |
|--------------------------------------------------------------|-----------------------------------------|
| <pre>FILE_HISTORY_TITLE = "",</pre>                          | ; Brief description of data (See        |
|                                                              | Sec. 5.1.1)                             |
| <pre>FILE_HISTORY_SOURCE = "",</pre>                         | ; Name of the source software (See      |
|                                                              | Sec. 5.1.1)                             |
| <pre>FILE_HISTORY_INSTITUTION = "",</pre>                    | ; Data author (See Sec. $5.1.1$ )       |
| <pre>FILE_HISTORY_TIME_UNITS = "seconds",</pre>              | ; Unit of time axis in netCDF           |
| <pre>FILE_HISTORY_DEFAULT_BASENAME = "history_d01",</pre>    | ; Base name of the output file          |
| <pre>FILE_HISTORY_DEFAULT_POSTFIX_TIMELABEL = .false.,</pre> | ; Add the time label to the file name?  |
| <pre>FILE_HISTORY_DEFAULT_ZCOORD = "model",</pre>            | ; Type of vertical coordinate           |
| <pre>FILE_HISTORY_DEFAULT_TINTERVAL = 3600.D0,</pre>         | ; Time interval of history output       |
| <pre>FILE_HISTORY_DEFAULT_TUNIT = "SEC",</pre>               | ; Unit of DEFAULT_TINTERVAL             |
| <pre>FILE_HISTORY_DEFAULT_TSTATS_OP = "none",</pre>          | ; Statistics operation                  |
| FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",                     | ; Output data type: REAL4 or REAL8      |
| <pre>FILE_HISTORY_OUTPUT_STEP0 = .true.,</pre>               | ; Output data at initial time $(t=0)$ ? |
| <pre>FILE_HISTORY_OUTPUT_WAIT = 0.D0,</pre>                  | ; Time to suppress output               |
| <pre>FILE_HISTORY_OUTPUT_WAIT_TUNIT = "SEC",</pre>           | ; Unit of OUTPUT_WAIT                   |
| <pre>FILE_HISTORY_OUTPUT_SWITCH_TINTERVAL = -1.DO,</pre>     | ; Time interval to switch the file      |
| <pre>FILE_HISTORY_OUTPUT_SWITCH_TUNIT = "SEC",</pre>         | ; Unit of OUTPUT_SWITCH_TINTERVAL       |
| <pre>FILE_HISTORY_ERROR_PUTMISS = .true.,</pre>              | ; Check missing preparation of the      |
|                                                              | data?                                   |
| <pre>FILE_HISTORY_AGGREGATE = .false.,</pre>                 | ; Aggregate to one file with PnetCDF?   |
|                                                              |                                         |

In default, each process output the history file. When (FILE\_HISTORY\_AGGREGATE) is set to .true., the distributed output file is aggregated into one file by using parallel NetCDF. The default setting of (FILE\_HISTORY\_AGGREGATE) is determined by the (FILE\_AGGREGATE) in [PARAM\_FILE]. Please refer to Section 5.1.1

(FILE\_HISTORY\_DEFAULT\_TINTERVAL) is time interval of history output and its unit is defined by (FILE\_HISTORY\_DEFAULT\_TUNIT). The unit can be selected from

"MSEC", "msec", "SEC", "sec", "s", "MIN", "min", "HOUR", "hour", "h", "DAY", "day". When the average value output is selected as (FILE\_HISTORY\_DEFAULT\_TSTATS\_OP) to = "mean", the history data averaged over the last period, given as (FILE\_HISTORY\_DEFAULT\_TINTERVAL), is output. As the same way, when "min" or "max" is set to (FILE\_HISTORY\_DEFAULT\_TSTATS\_OP), the minimam or maximam value over the last period is output, respectively.

The time interval of history output must be the equal to or a multiple of the time interval of its related scheme. When you want to disable checking this consistency, please set (FILE\_HISTORY\_ERROR\_PUTMISS) to .false..

When (FILE\_HISTORY\_DEFAULT\_POSTFIX\_TIMELABEL) is set to .true., the time label is added to the name of output file. The time label is generated from the current time in the simulation, and its format is defined by YYYYMMDD-HHMMSS.msec.

When (FILE\_HISTORY\_OUTPUT\_STEP0) is set to .true., the variables at the time before time integration (initial state) are output to history file. You can suppress history output during the time in the simulation defined by (FILE\_HISTORY\_OUTPUT\_WAIT) and (FILE\_HISTORY\_OUTPUT\_WAIT\_TUNIT). If the value is negative, no suppression occurs. (FILE\_HISTORY\_OUTPUT\_SWITCH\_TINTERVAL) is time interval of switching output file and its unit is defined by (FILE\_HISTORY\_OUTPUT\_SWITCH\_TUNIT). If the value is negative only one file per process is used for history output. If this option is enabled, the time label is added to the file name.

Three vertical coordinates are available to output atmospheric 3-D variables.

 $(FILE_HISTORY_DEFAULT_ZCOORD) = "model"$  is selected in default. In this case, the variable is output with original coordinate of the model (terrain-following,  $z^*$  coordinate for SCALE-RM ). When  $(FILE_HISTORY_DEFAULT_ZCOORD)$  is set to "z", the variables are interpolated to absolute height the number of levels in output data is the same as that of the model level. The height at each level is the same as that of the model level in a grid cell with no topography. The variables are interpolated to the pressure level when  $(FILE_HISTORY_DEFAULT_ZCOORD)$  is set to "pressure". In this case, the configurations of  $(FILE_HISTORY_CARTESC_PRES_nlayer)$  and
(FILE\_HISTORY\_CARTESC\_PRES) in [PARAM\_FILE\_HISTORY\_CARTESC] are required.

When (FILE\_HISTORY\_CARTESC\_BOUNDARY) in [PARAM\_FILE\_HISTORY\_CARTESC] is .true., the data in halo, which is located outside of a target domain, is also output except in the case of periodic boundary condition. The setting of (FILE\_HISTORY\_CARTESC\_BOUNDARY) is applied to all output variables.

The output variables are set by adding [HISTORY\_ITEM]. The list of variables that can be output can be found in the History Variables List on the Reference Manual of SCALE HP (see Section 5.3.2 for details). The output format follows the default setting specified at [PARAM\_FILE\_HISTORY]. By adding namelists with "(OPTION)", the format for a specific variable can be changed from the default setting.

| /         | &HISTORY_ITEM                           |                                                         | 1 |
|-----------|-----------------------------------------|---------------------------------------------------------|---|
|           | NAME = "RAIN",                          | Variable name                                           |   |
|           | OUTNAME = "",                           | (OPTION) same as NAME                                   |   |
|           | BASENAME = "rain_d01",                  | (OPTION) same as FILE_HISTORY_DEFAULT_BASENAME          |   |
|           | <pre>POSTFIX_TIMELABEL = .false.,</pre> | (OPTION) same as FILE_HISTORY_DEFAULT_POSTFIX_TIMELABEL |   |
|           | ZCOORD = "model",                       | (OPTION) same as FILE_HISTORY_DEFAULT_ZCOORD            |   |
|           | TINTERVAL = 600.D0,                     | (OPTION) same as FILE_HISTORY_DEFAULT_TINTERVAL         |   |
|           | TUNIT = "SEC",                          | (OPTION) same as FILE_HISTORY_DEFAULT_TUNIT             |   |
|           | TSTATS_OP = "mean",                     | (OPTION) same as FILE_HISTORY_DEFAULT_TSTATS_OP         |   |
|           | DATATYPE = "REAL4",                     | (OPTION) same as FILE_HISTORY_DEFAULT_DATATYPE          |   |
| $\langle$ | /                                       |                                                         | / |

If the variable requested by [HISTORY\_ITEM] is not prepared during the time stepping of the simulation, the execution will stop and error log is written to the log file. This case may occur if there is the spelling miss of the (NAME), or when requested variables are not used in the selected scheme.

Namelists with "(OPTION)" are applied only to the variable (NAME). If the default setting is used for the variable, the namelist with "(OPTION)" can be omitted. For example, let the below setting for [HISTORY\_ITEM] be added, maintaining the above setting of [PARAM\_FILE\_HISTORY]. The snapshot values of U and V are stored as four-byte real values at an interval of 3600 s in the file history\_d01.xxxxx.nc, whereas the value of RAIN averaged over the last 600 seconds is stored each time in the file. The value of T is output as T in a rule same as U and V, and is also output as T\_pres with interpolation to pressure coordinate.

```
&HISTORY_ITEM NAME="T" /
&HISTORY_ITEM NAME="U" /
&HISTORY_ITEM NAME="V" /
&HISTORY_ITEM NAME="RAIN", TINTERVAL=600.D0, TSTATS_OP="mean" /
&HISTORY_ITEM NAME="T", OUTNAME="T_pres", ZCOORD="pressure" /
```

# 4.2.7 How to restart run

The restart function is beneficial to avoid termination of simulations because of the limitation of the job execution time controlled by a computer system. You can divide a long sequential simulation into multiple runs by restarting. The restart files have the same format as the data generated by the initialization run. The function allows outputting multiple restart files at the specified time interval, not only the end of each simulation. The settings for the restart files are configured in [PARAM\_RESTART] and [PARAM\_TIME] in the configuration file for simulation run. The example below indicates that the simulation restarts by the file restart1\_\*\*\* and generates restart files



restart2\_\*\*\* every six hours.

&PARAM\_RESTART RESTART\_IN\_BASENAME = "restart1\_d01\_20070715-000000.000", Basename of input initial file or restart file. initial date after RESTART\_IN\_POSTFIX\_TIMELABEL = .false. Add and time RESTART\_IN\_BASENAME? Output restart file? Default is .false. RESTART\_OUTPUT = .true., RESTART\_OUT\_BASENAME = "restart2\_d01", Basename of output restart file. RESTART\_OUT\_POSTFIX\_TIMELABEL = .true. Add output date and time after RESTART\_OUT\_BASENAME? RESTART\_OUT\_TITLE = "", Title written in the restart file. RESTART\_OUT\_DTYPE = "DEFAULT", REAL4 or REAL8 or DEFAULT 1 &PARAM TIME TIME\_STARTDATE = 2007, 7, 15, 00, 0, 0, Start date of restart run  $TIME\_STARTMS = 0.DO$ , Start date [ms]  $TIME_DURATION = 12.0DO$ , Integration time TIME\_DURATION\_UNIT = "HOUR", Unit for TIME\_DURATION ..... \*snip\* ..... TIME\_DT\_ATMOS\_RESTART = 21600.D0, Output interval of restart files for atmospheric variables TIME\_DT\_ATMOS\_RESTART\_UNIT = "SEC", Unit for TIME\_DT\_ATMOS\_RESTART  $TIME_DT_OCEAN_RESTART = 21600.D0$ , Output interval of restart files for ocean variables TIME\_DT\_OCEAN\_RESTART\_UNIT = "SEC", Unit for TIME\_DT\_OCEAN\_RESTART  $TIME_DT_LAND_RESTART = 21600.D0$ , Output interval of restart files for land variables TIME\_DT\_LAND\_RESTART\_UNIT = "SEC", Unit for TIME\_DT\_LAND\_RESTART TIME\_DT\_URBAN\_RESTART = 21600.D0, Output interval of restart files for urban variables TIME\_DT\_URBAN\_RESTART\_UNIT = "SEC", Unit for TIME\_DT\_URBAN\_RESTART

The time intervals for output of restart files are specified by (TIME\_DT\_ATMOS\_RESTART), (TIME\_DT\_OCEAN\_RESTART), (TIME\_DT\_LAND\_RESTART), and (TIME\_DT\_URBAN\_RESTART). When they are not specified, the restart files are generated at the end of the simulation, i.e., (TIME\_DURATION). The file names of output restart files are specified by (RESTART\_OUT\_BASENAME). (RESTART\_OUT\_POSTFIX\_TIMELABEL) indicates whether date and time at output are automatically added to the file name after (RESTART\_OUT\_BASENAME).

```
The default setting is (RESTART_OUT_POSTFIX_TIMELABEL) = .true..
```

The restart files are not compatible for all simulation. The variables included in the restart file are different by the schemes, which chosen in the configuration file. The simple way for preparing restart files while keeping consistency is to use the same setting for the schemes in a series of the simulations.

The other settings are basically the same as the normal run. (RESTART\_IN\_BASENAME) is the name of the input file, which includes initial state of the atmosphere and surface sub-models. The normal run usually uses init\_\*\*\* prepared by scale-rm\_init, while the restart run uses a restart file output by the previous run. (RESTART\_IN\_POSTFIX\_TIMELABEL) is the same as (RESTART\_OUT\_POSTFIX\_TIMELABEL), but for (RESTART\_IN\_BASENAME). The default setting is (RESTART\_IN\_POSTFIX\_TIMELABEL) = .false..

In avobe example, setting (RESTART\_IN\_BASENAME) = "restart1\_d01\_20070715-000000.000" is equivalent to setting (RESTART\_IN\_POSTFIX\_TIMELABEL) = .true. and (RESTART\_IN\_BASENAME) = "restart1\_d01". (TIME\_STARTDATE) and (TIME\_DURATION) represent the start date and the integration time for the restart simulation.

For a realistic atmospheric experiment, the boundary data prepared by scale-rm\_init is needed in addition to the initial data. An example is as follows:



| &PARAM_ATMOS_BOUNDARY                                     |                             |
|-----------------------------------------------------------|-----------------------------|
| ATMOS_BOUNDARY_TYPE = "REAL",                             | "REAL": Real case experi-   |
|                                                           | ment                        |
| ATMOS_BOUNDARY_IN_BASENAME = "/init/output/boundary_d01", | Head of file name of bound- |
|                                                           | ary data                    |
|                                                           |                             |

In the restart simulation, an appropriate date of the boundary data will be read from the boundary file boundary\_\*\*\*.nc.



## 4.2.8 How to conduct nesting experiment

"Nesting" is the method for settings multiple computational domains overlapping one another in a nested structure. Figure 4.2.5 shows an example of nesting using three domains. An outer domain is configured to be wider with coarser resolution to express larger-scale phenomena, while an inner domain is set narrower with finer resolution to represent smaller-scale phenomena. The result calculated in the outer domain is used for the boundary condition for the inner domain. Hereinafter, the outer domain that sends data is called the "parent domain" and the inner domain which receives data is called the "child domain."

Nesting methods are categorized as follows:

#### • Execution procedure

#### Online nesting

The computations in the parent and child domains are simultaneously conducted by exchanging information.

#### **Off-Line nesting**

Following the computation of the parent domain, the initial and boundary conditions of the child domain are formulated, and then the child domain is computed.

• Method of data exchange

#### One-way nesting

The parent domain sends data to the child domain. The latter does not send data to the former. Thus, data flow is one way. The results of the parent domain are not affected by those of the child domain.

#### Two-way nesting

The parent domain sends data to the child domain. The former also receives data from the latter. Thus, the calculations of the domains influence each other. Although this method can be applied in the case of online nesting, it has not yet been implemented in SCALE-RM v5.5.4.

The difference between online and offline nestings lie in the update frequency of providing data from the parent domain to the child domain. In an online nesting experiment, the boundary conditions of the child domain are updated at every time step  $(\Delta t)$  of the parent domain. In an offline nesting experiment, the update interval depends on the output interval of the history file in the calculation of the parent domain.

Regardless of whether the nesting is online or offline, the ratio of the grid interval of the parent domain to that of the child domain  $(\mathrm{DX}_{\mathrm{d01}}/\mathrm{DX}_{\mathrm{d02}})$  is not limited in terms of code implementation. However, there is the possibility of degradation in the physical performance of the results of calculations if the ratio is too high. In SCALE-RM , it is recommended that this ratio be equal to or lower than 5.

In this section, the configuration files for the parent and child domains are denoted by **\*\*\*.d01.conf** and **\*\*\*.d02.conf**, respectively.

#### 4.2.8.1 Treatment of topography in child domain

In the nesting experiment, the resolutions of the topography were different between the parent and the child domains due to their different spatial resolutions. In the relaxation area of the child domain (refer to Section 4.2.3.5), the atmospheric variables were nudged toward those of the parent domain. If the representations of the topography are different between two domains, the reference data for nudging, calculated in the parent domain, often does not exist. In this case, atmospheric data at the missing levels are estimated by extrapolation. However, this may incur error if the estimation by the extrapolation is not accurate.

In order to avoid such inconsistency due to differences in topographies, the use of "the topographycopy" function in SCALE-RM is recommended. This function copies the topography of the parent



Figure 4.2.5: An example of domain nesting targeting the western area of Japan. Domain 1 is the outermost domain and domain 3 the innermost. The red rectangle and lines represents the domain's location and its relations with other domains. The horizontal grid spacings are 7.5 km, 2.5 km, and 0.5 km for Domains 1, 2, and 3, respectively.

domain onto that of the child domain in the relaxation area. If this function is used, the topography of the relaxation area in the child domain perfectly corresponds to that in the parent domain, as shown in 4.2.6. Furthermore, in order to increase the resolution of topography gradually from that in the parent domain to that in the inner domain, the topography transition area is present on the inside of the relaxation area. In the topography transition area, topography is generated by weighing those of the parent and the child domains. By default, the width of the topography transition area is identical to that of the relaxation area. In the calculation area inside the topography transition area, the topography is given by that of the child domain. If "the making tool for the complete settings of the experiment" is used (refer to 4.2.1), the topography-copy function is automatically applied.

The file pp.d0\*.conf mentioned in this section can be generated by "the making tool for the complete settings of the experiment" by renaming

**\${Tutorial\_dir}/real/sample/USER.online-nesting.sh** as USER.sh. This may help users understand this setting. The configuration and execution methods are explained below.

#### How to use topography-copy function

To use the parent topography for the topography-copy function, edit file pp.d02.conf for the child domain as follows. Here, the output data of topography in the parent domain is assumed to be saved as file topo\_d01.pe\*\*\*.nc in SCALE netCDF file format. As other file formats, GrADS format is supported (Sec. 4.1.2).





Figure 4.2.6: Horizontal distribution of topography when the topography-copy function is applied. The outermost grids shaded in light blue represent the HALO region, and the number of grids depends on the horizontal advection scheme. These grids are the lateral boundary. The area demarcated by the red line is the calculation domain. The green- and rose-colored areas are the relaxation and the topographical transition areas, respectively. The innermost area is where the resolution of topography is the same as that of the original child domain. In the topography transition area, topography is altered gradually from that of the parent domain to the original child domain.

| &PARAM_CNVTOPO                     |                                                                        |
|------------------------------------|------------------------------------------------------------------------|
| CNVTOPO_copy_parent = .true.,<br>/ | whether the topography-copy function is applied                        |
| &PARAM_COPYTOPO                    |                                                                        |
| COPYTOPO_IN_BASENAME = "topo_d01", | base name of the file of parent topography data                        |
| COPYTOPO_IN_FILETYPE = "SCALE",    | type of the file of parent topography data (SCALE,                     |
|                                    | Grads)                                                                 |
| $CUPYIUPU_TRANSITIUN_DX = -1,$     | Width of transition area in x-direction                                |
| $COPYTOPO_TRANSITION_DY = -1,$     | Width of transition area in y-direction                                |
| COPYTOPO_ENTIRE_REGION = .false.,  | whether the parent's topography is copied over the entire child domain |
| COPYTOPO_LINEAR_H = .true.,        |                                                                        |
|                                    |                                                                        |

If (CNVTOPO\_copy\_parent) in [PARAM\_CNVTOPO] is .true., the topography-copy function is applied. (COPYTOPO\_ENTIRE\_REGION) is an option whereby the parent's topography can be copied over the entire child domain If this is .true., the topography in the child domain is completely copied from that in the parent domain. (COPYTOPO\_LINEAR\_H) is the parameter to determine which the topography transition method is applied. If (COPYTOPO\_LINEAR\_H) = .true., the ratio of the parent's topography to the child's topography is linearly changed. Otherwise, it is changed exponentially. The width of transition area is specified by (COPYTOPO\_TRANSITION\_DX, COPYTOPO\_TRANSITION\_DY). If these have negative value, the default setting is applied: the width of transition area.



#### Generation of topography

In case of using the topography-copy function, the generation of the topography should start from the parent domain because a child domain requires the catalog file of the parent. If the number of domains is greater than three, the order of execution is as follows:

\$ mpirun -n [number of processes] ./scale-rm\_pp pp.d01.conf \$ mpirun -n [number of processes] ./scale-rm\_pp pp.d02.conf \$ mpirun -n [number of processes] ./scale-rm\_pp pp.d03.conf

#### 4.2.8.2 Offline Nesting Experiment

The following two limitations are imposed for the offline nesting experiment:

- The child domain is completely included in the parent domain.
- The integration time for the child domain is the same as or less than that for the parent domain.

Furthermore, the offline experiment is conducted in the following order:

- 1. The temporal integration of the parent domain is conducted.
- 2. The initial and boundary conditions for the child domain are generated using the history or init/restart output of the parent domain.
- 3. Using the generated initial and boundary data, the temporal integration of the child domain is conducted.

An explanation is provided according to the above workflow.

#### Time Integration of Parent Domain

In order to prepare the data in parent domain which is used as the boundary data for the child domain, there are some necessary settings. The configuration files for the simulation in the parent domain can be generated by using "the supporting tool for the preparation of configuration file" (See 4.2.1). Rename the sample files

\${Tutorial\_dir}/real/sample/USER.offline-nesting-parent.sh to USER.sh, edit it, and run
make.

The time integration of the parent domain is carried out as a single-domain computation. However, the following five aspects need to be considered in the configuration.

- All variables required for the computation in the child domain have already been generated with the computation of the parent domain as history or restart output.
- The interval of the history or restart output is sufficiently short.
- In case the starting time of the computation in the child domain is the same as that in the parent domain, history output data at t = 0 in the parent domain is required.

If you want to use history file, setting like the following is required.

```
&PARAM_FILE_HISTORY
FILE_HISTORY_DEFAULT_BASENAME = "history",
FILE_HISTORY_DEFAULT_TINTERVAL = 900.D0,
FILE_HISTORY_DEFAULT_TUNIT = "SEC",
FILE_HISTORY_DEFAULT_TSTATS_OP = "none",
FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",
FILE_HISTORY_OUTPUT_STEPO = .true.,
Include the output data at t = 0
```



(FILE\_HISTORY\_DEFAULT\_TINTERVAL) is the time interval of the history output, which is configured as the update time interval used in the calculation of the child domain. Take care of the free disk space if the time interval of the data output is relatively short. Refer to Section 4.2.6 for details of the items in [PARAM\_FILE\_HISTORY].

If you want to use restart files, the setting is like

```
&PARAM_RESTART
 RESTART_OUTPUT = .true.
 RESTART_OUT_BASENAME = 'restart_d01',
&PARAM_TIME
 TIME_DT_ATMOS_RESTART = 900.D0,
                                           Time interval of restart data output
 TIME_DT_ATMOS_RESTART_UNIT = "SEC",
 TIME_DT_OCEAN_RESTART = 900.D0,
                                           Time interval of restart data output
 TIME_DT_OCEAN_RESTART_UNIT = "SEC",
                                           Time interval of restart data output
 TIME_DT_LAND_RESTART = 900.D0,
TIME_DT_LAND_RESTART_UNIT = "SEC"
 TIME_DT_URBAN_RESTART = 900.D0,
                                           Time interval of restart data output
 TIME_DT_URBASN_RESTART_UNIT = "SEC",
```

For details of these parameters, see Section 4.2.7.

All necessary variables for the generation of initial and boundary data for the child domain must be described in [FILE\_HISTORY\_ITEM] in the file the configuration file for simulation run. The necessary variables for offline nesting depends on the setting of the simulation in the child domain, the following is variables in standard real atmospheric simulations.

```
DENS, W (or MOMZ), Umet (or U, MOMX), Vmet (or V, MOMY), PT (or RHOT, T), PRES, QV
LAND_SFC_TEMP, URBAN_SFC_TEMP, OCEAN_SFC_TEMP
OCEAN_SFC_ALB_IR_dir OCEAN_SFC_ALB_IR_dif,
OCEAN_SFC_ALB_NIR_dir OCEAN_SFC_ALB_NIR_dif,
OCEAN_SFC_ALB_VIS_dir OCEAN_SFC_ALB_VIS_dif,
LAND_SFC_ALB_IR_dir, LAND_SFC_ALB_IR_dif,
LAND_SFC_ALB_NIR_dir, LAND_SFC_ALB_NIR_dif,
LAND_SFC_ALB_VIS_dir, LAND_SFC_ALB_VIS_dif,
OCEAN_TEMP, OCEAN_SFC_ZOM, LAND_TEMP, LAND_WATER
```

(Output according to microphysics model used in the parent model)

QC, QR, QI, QS, QG NC, NR, NI, NS, NG

Once this configuration is complete, conduct the time integration of the parent domain by scale-rm.

#### Generation of Initial and Boundary Data for Child Domain

To prepare the configuration files for simulations in the child domain can be generated by using "the supporting tool for the preparation of configuration file" (See 4.2.1). Rename the sample files  ${Tutorial_dir}/real/sample/USER.offline-nesting-child.sh to USER.sh, edit it, and run make.$ 

In the case that you generate the initial and boundary data using the history data from the simulation for the parent domain, the configuration file for the initialization run is configured as follows:



In order to generate the initial and boundary data from the output of SCALE-RM format, (FILETYPE\_ORG) is specified as "NetCDF". (BOUNDARY\_UPDATE\_DT) is set to the same value of (FILE\_HISTORY\_DEFAULT\_TINTERVAL) as in the configuration file in the parent domain (run.d01.conf).

In the case that the restart files are used to generate the initial and boundary data, set (NUMBER\_OF\_FILES) to the number of the time steps. Additionally, the restart files must be renamed or symbolic links must be created to make file names have incremented number like restart\_d01\_00000.pe000000.nc as described in Section 4.1.2.

After editing the configuration file, form the initial and boundary data for the child domain by **scale-rm\_init**. If the execution is aborted with the message like the following, it means that the child domain is not completely contained in the parent domain:

```
ERROR [INTERP_domain_compatibility] REQUESTED DOMAIN IS TOO MUCH BROAD
-- LONGITUDINAL direction over the limit
```

#### Time Integration in Child Domain

Following the generation of the initial and boundary conditions, compute the time integration in the child domain by scale-rm. This is same as in the usual atmospheric experiment.

If an experiment involving multiple offline nestings is performed, the above procedure is repeated; the results of the above time integration for the child domain are regarded as those for the parent domain, and the initial and boundary data are generated for further inner domain calculations.

#### 4.2.8.3 Online Nesting Experiment

The following two limitations are imposed in carrying out the online nesting experiment:

- The integration time for the child domain is identical to that for the parent domain.
- The time step for the parent domain is a multiple of that for the child domain.



On the other hand, the configurations of vertical layers, map projections, and the physical scheme do not have to be identical in the parent and the child domains. In the online nesting experiment, computations of all domains are conducted simultaneously. In the current version, SCALE-RM supports only one-way nesting. The maximum number of domains allowed is 10.

In the online nesting experiment in SCALE-RM, the time integrations of multiple domains are not serial but parallel. As shown in Fig. 4.2.7, MPI processes are split into several groups; each group manages a domain and computes it, behaving like an independent model. The configuration file launch.conf is needed at execution to boot the multiple domains.



Figure 4.2.7: MPI process distribution in the online nesting experiment. In this example, 13 processes were launched at the beginning. These processes were distributed appropriately; 4-MPI parallel for  $2 \times 2$  in Domain 1 and 9-MPI parallel for  $3 \times 3$  in Domain 2 were executed. MPI communication flowed from Domain 1 to Domain 2.

The following explanation is provided for the most simple case of online nesting, two-domain nesting. The experimental set described here can be generated by renaming the sample files  ${Tutorial_dir}/real/sample/USER.online-nesting.sh as USER.sh and conducting "the supporting tool for the preparation of configuration file" (refer to Section 4.2.1). The below explanation assumes that the generations of the topography/land-use data and initial/boundary data for each domain have been completed. The procedures for topography generation are described in Section 4.2.8.1.$ 

#### **Configurations for Online Nesting**

In the configuration files run.\*\*\*.conf for the parent and child domains, some nesting settings are added to [PARAM\_COMM\_CARTESC\_NEST]:

— Configuration in run.d01.conf —

```
&PARAM_COMM_CARTESC_NEST
ONLINE_DOMAIN_NUM = 1,
ONLINE_IAM_PARENT = .true.,
ONLINE_IAM_DAUGHTER = .false.,
ONLINE_BOUNDARY_USE_QHYD = .false.,
ONLINE_USE_VELZ = .false.,
ONLINE_AGGRESSIVE_COMM = .false.,
```

The domain ID, which is enumerated from the outermost one as 1.



— Configuration in run.d02.conf —

&PARAM\_COMM\_CARTESC\_NEST ONLINE\_DOMAIN\_NUM = 2, ONLINE\_IAM\_PARENT = .false., ONLINE\_IAM\_DAUGHTER = .true., ONLINE\_BOUNDARY\_USE\_QHYD = .false., ONLINE\_USE\_VELZ = .false., ONLINE\_AGGRESSIVE\_COMM = .false.,

(ONLINE\_DOMAIN\_NUM) is the ID number of the domain, which is enumerated from the outermost domain to the innermost. In above example, the ID numbers of the parent and child domains are 1 and 2, respectively.

(ONLINE\_IAM\_PARENT) and (ONLINE\_IAM\_DAUGHTER) specify whether each domain has its parent domain and child domain or not. If (ONLINE\_IAM\_PARENT) = .true. in the Nth domain, the calculation data in the Nth domain is transferred to the child domain with the domain number of N + 1. If (ONLINE\_IAM\_DAUGHTER) = .true., then boundary data in the Nth domain is received from the parent with the domain number of N - 1. The outermost domain plays a role only in the parent domain, whereas the innermost domain is involved only in the child domain. Since the intermediate domains are involved in both the parent and child domains, both (ONLINE\_IAM\_PARENT) and (ONLINE\_IAM\_DAUGHTER) are .true.. Table 4.2.3 gives the configuration for an N-domain nesting experiment.

Table 4.2.3: A configuration for N-domain nesting

| domain               | ONLINE_DOMAIN_NUM | ONLINE_IAM_PARENT | ONLINE_IAM_CHILD |
|----------------------|-------------------|-------------------|------------------|
| the outermost domain | 1                 | .true.            | .false.          |
| intermediate domains | 2-(N-1)           | .true.            | .true.           |
| the innermost domain | N                 | .false.           | .true.           |

(ONLINE\_BOUNDARY\_USE\_QHYD) specifies whether water condensation (hydrometeors) is used for the boundary condition. When the boundary condition is generated from external input data, water condensations are not usually employed. However, in the SCALE-RM nesting experiment, water condensation calculated in the parent domain can be used for the boundary condition of the child domain because the two domains usually use the same physical schemes. By receivng hydrometeors' condition at the lateral boundary, the delay in the generation of clouds and rain near the inflow boundary of the nested domain is expected to be suppressed. (ONLINE\_USE\_VELZ) specifies whether vertical velocity is used for the boundary condition in the child domain. (ONLINE\_AGGRESSIVE\_COMM) is a setting related to MPI communication when passing data from the parent domain to the child domain. The parent domain passes boundary conditions to the child domain at each time step ((TIME\_DT)) of the parent domain. If (ONLINE\_AGGRESSIVE\_COMM) is .true., regardless of whether the child domain has received the data or not, the parent domain passes the data at the parent domain's timing and moves to the next time step of calculation; whereas if .false., the parent domain waits until the child domain has received the data of the previous step, and then passes the data of the current time step. In the case of .true., if the calculation time vastly differs between the parent and child domains, the memory usage will be extensive and the computation may stop due to hardware limitations.

#### **Configuration of Launcher**

The online nesting experiment requires the configuration of the launch file launch.conf other than run.\*\*\*.conf.

# &PARAM\_LAUNCHER NUM\_DOMAIN = 2, PRC\_DOMAINS = 4, 16, CONF\_FILES = run.d01.conf, run.d02.conf, LOG\_SPLIT = .false., COLOR\_REORDER = .true., number of domains MPI processes used for each domain (as many domains as necessary) Log\_SPLIT = .false., coloring reorder for mpi splitting?

(CONF\_FILES) must correspond to (PRC\_DOMAINS) in order. The above case means that the run is executed by the 4-MPI parallel for the parent domain and the 16-MPI parallel for the child domain; each number of processes in the launch file must correspond to the total number of MPI processes (PRC\_NUM\_X  $\times$  PRC\_NUM\_Y) specified in each configuration file run.\*\*\*.conf.

Log of MPI communicator splitting will be output, when (LOG\_SPLIT) is .true.. The default value of (LOG\_SPLIT) is .false..

Option of (COLOR\_REORDER) is the switch for job rearrangement in MPI communicator groups following the process size of the job. The job which has the largest process size is arranged at the front row; this would be reasonable to gain the efficient inter-node communication.

At execution, the total number of MPI processes is given, which different from that in the case of single-domain execution. For example, 20 processes are specified in the above case.

\$ mpirun -n [number of processes] ./scale-rm launch.conf

When multiple domain calculations are executed at the same time, the different file names must be used for input/output files among domains to avoid any confusion. For example, the configuration files prepared by the "the making tool for the complete settings of the experiment" use history\_d01.pe\*\*\*.nc, history\_d02.pe\*\*\*.nc for the file name of history output.

The calculation may sometimes abort, outputting the message below. This is the error message, meaning that the domain of computation of the child is larger than that of the parent domain. If such a message appears, retry creating the topography, the land-use data, and the initial/boundary data, and confirm again whether the configurations are correct:

ERROR [COMM\_CARTESC\_NEST\_domain\_relate] region of daughter domain is larger than that of parent

#### Guideline for Distribution of MPI Processes

As shown in Fig. 4.2.7, no MPI process is shared between the multiple domains in the online nesting experiment. In other words, each MPI process takes charge of a part of a specific domain. Therefore, the user should determine how many MPI processes to allocate to each domain. When this allocation is not appropriate, a long waiting time is incurred. To avoid this situation, it is reasonable to allocate processes so that the magnitude of time integrations for each process is as similar as possible among processes<sup>\*2)</sup>. Here, the magnitude of time integration, i.e., computational effort, is defined as the product of the number of grids and time steps.

Let us consider N-domain nesting. The total number of grids in the x, y, and z directions in n-th domain are denoted by  $IMAXG_n$ ,  $JMAXG_n$ , and  $KMAX_n$ , respectively.  $DT_n$  is the time interval (TIME\_DT) in the n-th domain. Using the time-step of the outermost domain (n=1)  $DT_1$  as a benchmark, the necessary number of time steps in the n-th domain is estimated as:

$$\texttt{ISTEP_n} = \texttt{DT_1}/\texttt{DT_n}$$

The calculation for the n-th domain is derived by multiplying the number of grids as

 $\texttt{OPR_n} = \texttt{IMAXG_n} \times \texttt{JMAXG_n} \times \texttt{KMAX_n} \times \texttt{TSTEP_n}$ 

 $<sup>^{*2)}</sup>$ More accurately, floating-point operations should be estimated.



Therefore, the standard number of processes allocated to the n-th domain (MPI\_n) is estimated as

$$MPI_n = MPI_total \times \frac{OPR_n}{\sum_{m=1}^{N} OPR_m}, \qquad (4.2.15)$$

where MPI\_total is the total number of MPI processes.

The number of processes that are distributed along the x and y directions (PRC\_NUM\_X, PRC\_NUM\_Y) out of MPI\_n can be arbitrarily decided. It is recommended to configure them so that the difference between the number of grid along X direction(IMAX = IMAXG/PRC\_NUM\_X) and that along Y direction(JMAX = JMAXG/PRC\_NUM\_Y) is as small as possible. This is because such a configuration can reduce the area of the halo. As a result, high computational performance can be obtained<sup>\*3</sup>.

In the above explanation, only the number of grids and time steps are considered. However, in actual calculations such as nesting simulation in real atmospheric experiment, the time interval for each physical process, and intra-domain and inter-domain communications affect the elapsed time. In the online nesting configuration, because the calculation in the innermost domain is largest in general, it is reasonable to distribute MPI processes so that waiting time caused by MPI communications is minimized in the innermost domain. In case of large-scale computations, long integration and many ensemble simulations, it is recommended to tune for the distribution of processes following the above rough estimation.

 $<sup>^{*3)}</sup>$ Note that in case of hybrid parallelization used together with thread parallelism, it is necessary to take a larger number of grids along the y-axis than the x-axis to minimize computational imbalance between threads.



# Chapter 4.3

# Setting the dynamical core

#### 4.3.1Dynamical Core for Cartesian C-grid

In this section, the dynamical core for the Cartesian C-grid is described. The Cartesian C-grid is employed in SCALE-RM. In the Cartesian C-grid, scalar quantities, such as density, thermodynamics variable and vapor, is defined at the cell center, while components of vector quantities, such as the momentums and fluxes, are defined at staggered point. See the description document of SCALE-RM for more details.

#### 4.3.1.1Setting Integration Numerical Method

The numerical method for time integration in the dynamical process is specified in (ATMOS\_DYN\_TYPE) in [PARAM\_ATMOS] in the configuration file.

```
&PARAM_ATMOS
 ATMOS_DYN_TYPE = "HEVE", ; Choose from Table 4.3.1.
```

Time step depends on the sound speed in the case of using the explicit method, while it does not in the case of using the implicit method. In most real atmospheric simulations, vertical grid spacing is much smaller than the horizontal ones. Thus, fully explicit scheme, that is "HEVE", requires a quite small time step, which depends on vertical grid spacing and sound speed. Therefore, "HEVI" is often used for the real atmospheric simulations.

| Table 4.3.1: Options of methods for time integration in dynamical process |                       |                      |  |  |  |
|---------------------------------------------------------------------------|-----------------------|----------------------|--|--|--|
| Scheme name Description of scheme Note                                    |                       |                      |  |  |  |
| HEVE                                                                      | Fully explicit method |                      |  |  |  |
| HEVI Horizontally explicit and vertically implicit methods                |                       | Recommended for real |  |  |  |
|                                                                           |                       | experiment           |  |  |  |

**T** 11 ( ) ( )

#### 4.3.1.2Setting Temporal and Spatial Schemes

The temporal and spatial schemes are configured in [PARAM\_ATMOS\_DYN]. An example of setting, which is recommended for real atmospheric simulations, is shown below.



| / | &PARAM_ATMOS_DYN                               |                                            |
|---|------------------------------------------------|--------------------------------------------|
|   | ATMOS_DYN_TINTEG_SHORT_TYPE = RK4,             | ; Choose from temporal schemes in Table    |
|   |                                                | 4.3.2                                      |
|   | ATMOS_DYN_TINTEG_TRACER_TYPE = RK3WS2002,      | ; Choose from temporal schemes             |
|   | ATMOS_DYN_FVM_FLUX_TYPE = UD3,                 | ; Choose from temporal spatial schemes in  |
|   |                                                | Table 4.3.2                                |
|   | ATMOS_DYN_FVM_FLUX_TRACER_TYPE = UD3KOREN1993, | ; Choose from spatial schemes              |
|   | ATMOS_DYN_FLAG_FCT_TRACER = .false.,           | ; Use FCT scheme (.true.) or not (.false.) |
|   | ATMOS_DYN_NUMERICAL_DIFF_COEF = 0.D0,          |                                            |
|   | ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER = 0.DO,   |                                            |
|   | $ATMOS_DYN_wdamp_height = 15.D3,$              | ; height [m] of the bottom of sponge layer |
|   |                                                | (for Rayleigh damping)                     |
|   | /                                              |                                            |
|   |                                                |                                            |

The other options for temporal and spatial schemes are shown in Table 4.3.2. Note that the time step should be set according to the used schemes in order to ensure numerical stability. An criteria to determine the time step is described in Section 4.2.5.

|                 | Table 4.3.2: Setting temporal and spatial set      | hemes                                   |  |  |
|-----------------|----------------------------------------------------|-----------------------------------------|--|--|
| Scheme name     | Description of scheme                              |                                         |  |  |
| Temporal scheme |                                                    |                                         |  |  |
| RK3             | Heun-type 3 stage and 3rd-order Runge–Kutta scheme |                                         |  |  |
| RK3WS2002       | 3 stage and generally 2nd-order Runge–Kutta        | scheme in Wicker and Skamarock (2002)   |  |  |
| RK4             | 4 stage and 4th-order Runge–Kutta scheme           |                                         |  |  |
| RK7s6o          | 7 stage and 6th-order Runge–Kutta scheme in        | Lawson (1967) (supported only for HEVE) |  |  |
| RK11s8o         | 11 stage and 8th-order Runge–Kutta scheme in       | n Cooper and Verner $(1972)$            |  |  |
|                 | (supported only for HEVE)                          |                                         |  |  |
| Spatial scheme  |                                                    | Minimum number of halos                 |  |  |
| CD2             | 2nd-order central flux                             | 1                                       |  |  |
| CD4             | 4th-order central flux                             | 2                                       |  |  |
| CD6             | 6th-order central flux                             | 3                                       |  |  |
| CD8             | 8th-order central flux                             | 3                                       |  |  |
| UD3             | 3rd-order upwind flux                              | 2                                       |  |  |
| UD5             | 5th-order upwind flux                              | 3                                       |  |  |
| UD7             | 7th-order upwind flux                              | 3                                       |  |  |
| UD3KOREN1993    | 3rd-order upwind flux + Koren (1993)'s filter      | 2                                       |  |  |

The default setting for advection scheme used for the prognostic variables in dynamics, specified by (ATMOS\_DYN\_FVM\_FLUX\_TYPE)), is the 4th-order central flux (CD4) in the SCALE-RM. When using CD4 in a simulation with a steep terrain, an artificial grid-scale vertical flow is often seen at the peak of mountains. This grid-scale flow may be reduced by using UD3. So, the use of UD3 is recommended for experiments with steep terrains.

#### 4.3.1.3 Numerical Diffusions

The numerical stability depends on schemes for the dynamical process used in simulations (Sec. 4.3.1.2). The stability would be improved by applying numerical diffusion. SCALE-RM has the hyper-diffusion and divergence dumping as the explicit numerical diffusion.

The setting for them is the following:

```
&PARAM_ATMOS_DYN
ATMOS_DYN_NUMERICAL_DIFF_LAPLACIAN_NUM = 2,
ATMOS_DYN_NUMERICAL_DIFF_COEF = 1.D-4,
ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER = 0.D0,
ATMOS_DYN_DIVDMP_COEF = 0.D0,
/
```

The hyper-diffusion reduces the high frequency component of a target variable; it is mainly used to remove numerical noise. The hyper-diffusion of a variable  $\phi$  is defined as

$$\nu \Delta^n \rho(\phi - \phi_0), \tag{4.3.1}$$

where  $\nu$  is diffusion coefficient,  $\phi_0$  is the reference state (See Section 4.3.1.7), and  $\Delta$  is the Laplacian operator,

$$\Delta^n = \nabla^{2n} = \frac{\partial^{2n}}{\partial x^{2n}} + \frac{\partial^{2n}}{\partial y^{2n}} + \frac{\partial^{2n}}{\partial z^{2n}}.$$
(4.3.2)

The order of the Laplacian operator is specified by

(ATMOS\_DYN\_NUMERICAL\_DIFF\_LAPLACIAN\_NUM). (ATMOS\_DYN\_NUMERICAL\_DIFF\_COEF) and

(ATMOS\_DYN\_NUMERICAL\_DIFF\_COEF\_TRACER) is a non-dimensional coefficient of the hyper-diffusion. (ATMOS\_DYN\_NUMERICAL\_DIFF\_COEF) is a coefficient for the dynamical prognostic variables, such as density, momentum and potential temperature,

and (ATMOS\_DYN\_NUMERICAL\_DIFF\_COEF\_TRACER) is a coefficient for the tracer variables, such as specific humidity, hydrometeors, and turbulent kinetic energy. The two-grid scale noise is dumped to 1/e in a one time step if the coefficient is unity. The dumping is stronger for a larger coefficient. The hyper-diffusion itself may cause numerical instability if the coefficient is larger than 1. (ATMOS\_DYN\_NUMERICAL\_DIFF\_COEF) can be set to zero when using the upwind schemes, such as UD3, UD5, because they have implicit numerical diffusion.

The divergence dumping can also be available to improve numerical stability. The divergence dumping reduces the three-dimensional divergence component; it is mainly used to remove sound waves. Its coefficient can be set by (ATMOS\_DYN\_DIVDMP\_COEF).

#### 4.3.1.4 Positive Definite

For tracer advection, guaranteeing a non-negative value is required in most cases.

The UD3KOREN1993 scheme guarantees a non-negative value, whereas other schemes do not. When schemes other than UD3KOREN1993 are used the FCT filter can be used to guarantee the non-negative value. The advection scheme is specified by (ATMOS\_DYN\_FVM\_FLUX\_TRACER\_TYPE), and switch for the FCT filter is (ATMOS\_DYN\_FLAG\_FCT\_TRACER)=.true..

#### 4.3.1.5 Halos

The necessary number of halos grid depends on the spatial difference scheme as shown in Table 4.3.2. Set (IHALO) and (JHALO) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX] for the number of halos grid for the x- and y-directions, respectively. By default, the number of the grid is 2, which is suitable for "UD3", "UD3KOREN1993", and "CD4". For example, the configuration of the halo for the fifth-order upwind difference scheme is as follows:

```
&PARAM_ATMOS_GRID_CARTESC_INDEX
IHALO = 3,
JHALO = 3,
/
```

#### 4.3.1.6 Setting for Coriolis Force

In this subsection, treatments of the Coriolis force in SCALE-RM is explained. The Coriolis parameter is zero as the default, so that you have to set (some) parameter(s) to introduce the Coriolis force in the simulation. There are two types of setting for the Coriolis parameter:  $f-/\beta$ -plane and sphere. The type can be specified by (CORIOLIS\_type) in [PARAM\_CORIOLIS].

#### f-/ $\beta$ -plane

If (CORIOLIS\_type) is set to "PLANE", the Coriolis parameter f is  $f = f_0 + \beta(y - y_0)$ . When  $f_0 = 0$  and  $\beta = 0$ , which is default, no Coriolis force is taken into account.

The plane for  $\beta = 0$  is called *f*-plane, otherwise it is called  $\beta$ -plane. The parameters of  $f_0, \beta$  and  $y_0$  is set with the parameters of [PARAM\_CORIOLIS] as follows:

```
&PARAM_CORIOLIS
CORIOLIS_type = 'PLANE', ! PLANE or SPHERE
CORIOLIS_f0 = 1.0D-5, ! f<sub>0</sub>
CORIOLIS_beta = 0.0D0, ! β
CORIOLIS_y0 = 0.0D0, ! y<sub>0</sub>
```

The default values of the (CORIOLIS\_f0), (CORIOLIS\_beta), and (CORIOLIS\_y0) are 0.0, 0.0, and y at the domain center, respectively.

If you want to add the geostrophic pressure gradient force that is in balance with the Coriolis force accompanied by the geostrophic wind, you need to modify the user specific file mod\_user.f90 (see Section 5.2.1). The test case of scale-rm/test/case/inertial\_oscillation/20km is an example of a simulation on the f-plane with the geostrophic pressure gradient force.

#### Sphere

On the sphere, the Coriolis parameter depends on the latitude as  $f = 2\Omega \sin(\phi)$ , where  $\Omega$  and  $\phi$  are angular velocity of the sphere and latitude, respectively. In this case, you have to set (CORIOLIS\_type) = "SPHERE". The angular velocity of the sphere is set by (CONST\_OHM) parameter of [PARAM\_CONST] (see Section 4.5.3). The latitude of the individual grids is determined depending on the map projection, which is explained in Section 4.2.4.

#### Lateral Boundary Condition for Coriolis Force

If there exists geostrophic wind, the periodic boundary conditions cannot be applied in its perpendicular direction, since the wind is not periodic. For the *f*-plane, the double periodic boundary conditions can be applied with no geostrophic wind. For the  $\beta$ -plane or sphere, the periodic boundary condition cannot be used in the y-direction, since the Coriolis parameter differs at the southern and northern boundaries. In the absent of meridional geostrophic wind, the periodic boundary in the x-direction is allowed for the all the settings (i.e., the *f*-plane,  $\beta$ -plane, and sphere).

The nudge lateral boundary conditions at the south and north boundaries might be used for f- and  $\beta$ -plane experiment. For the details of the nudging boundary, see Sections 4.2.3.5. The test case of scale-rm/test/case/rossby\_wave/beta-plane is an example of a simulation on the  $\beta$ -plane with the south and north nudging boundaries.

#### 4.3.1.7 Setting for Reference State

As explained in Section 4.3.1.3, the reference state is used in the calculation of numerical diffusion in the dynamical processes. It is also used to calculate the pressure gradients in the momentum equations. Since the reference state is defined under the hydrostatic balance, the deviation from the reference state can be used to calculate the pressure gradients.



The settings for the reference state are the following:

| &PARAM_ATMUS_REFSTATE                          |                                 |
|------------------------------------------------|---------------------------------|
| ATMOS_REFSTATE_IN_BASENAME = "",               | ! input file name               |
| ATMOS_REFSTATE_OUT_BASENAME = "",              | ! output file name              |
| ATMOS_REFSTATE_OUT_TITLE = "SCALE-RM RefState, | ! title in the output file      |
| ATMOS_REFSTATE_OUT_DTYPE = "DEFAULT",          | ! data type in the output file  |
| ATMOS_REFSTATE_TYPE = "UNIFORM",               | ! type of reference state       |
| ATMOS_REFSTATE_TEMP_SFC = 300.0D0,             | ! surface potential temperature |
| ATMOS_REFSTATE_RH = 0.0D0,                     | ! relative humidity             |
| ATMOS_REFSTATE_POTT_UNIFORM = 300.0D0,         | ! potential temperature         |
| $ATMOS_REFSTATE_UPDATE_DT = -1.0D0$ ,          | ! update interval [sec]         |
| \                                              | /                               |

If (ATMOS\_REFSTATE\_IN\_BASENAME) is specified, the reference state is read from the file. Otherwise, the reference state is generated at the initial time of a simulation with the type specified by (ATMOS\_REFSTATE\_TYPE). It can be "ISA", "UNIFORM", "ZERO", or "INIT":

- **ISA** The international standard atmosphere where the surface potential temperature, relative humidity, and the surface pressure are specified by (ATMOS\_REFSTATE\_TEMP\_SFC), (ATMOS\_REFSTATE\_RH), and (CONST\_Pstd) (See Section 4.5.3), respectively.
- **UNIFORM** The constant potential temperature and relative humidity profile specified by (ATMOS\_REFSTATE\_POTT\_UNIFORM) and (ATMOS\_REFSTATE\_RH), respectively.

**ZERO** The profile with all variables set to zero.

**INIT** The horizontally averaged initial state.

When (ATMOS\_REFSTATE\_TYPE) is "INIT", the reference state can be updated during the simulation. The update interval is specified by (ATMOS\_REFSTATE\_UPDATE\_DT).

The unit of (ATMOS\_REFSTATE\_UPDATE\_DT) is seconds. The updated reference state is the horizontally averaged value at the update time. If (ATMOS\_REFSTATE\_UPDATE\_DT) is set to a negative value, the reference state is not updated during the simulation.

For a restart simulation, you need to pay attention to the setting of the reference state. In order for the result of a restart simulation to be the same as that of the continuous simulation, it is necessary to set so that the reference state of both are the same. If you use an "INIT"-type and update the reference state ((ATMOS\_REFSTATE\_UPDATE\_DT) > 0), the reference states of the two simulations will be identical by setting the update interval ((ATMOS\_REFSTATE\_UPDATE\_DT)) to a divisor of the restart interval. If you use an "INIT"-type and do not update the reference state ((ATMOS\_REFSTATE\_UPDATE\_DT) < 0), you can use the same reference state by outputting the state to a file specified by (ATMOS\_REFSTATE\_OUT\_BASENAME) in the run before the restart and inputting the state from the file by specifying (ATMOS\_REFSTATE\_IN\_BASENAME) in the run after the restart.



# Chapter 4.4

# Setting the physical process

# 4.4.1 Cloud Micro-Physics

The cloud micro-physics scheme is configured in (ATMOS\_PHY\_MP\_TYPE) in [PARAM\_ATMOS] in files init.conf and run.conf, respectively. Note that it is necessary to specify the same scheme for (ATMOS\_PHY\_MP\_TYPE) in the configuration files for both init and run executions. The update interval for the cloud micro-physics scheme is specified in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of calling timing. The following example shows the configuration for cases involving a six-class one-moment bulk scheme that contains ice phase clouds:

```
&PARAM_ATMOS
ATMOS_PHY_MP_TYPE = "TOMITA08", ; Choose from Table 4.4.1.
/
```

|          | Table 4.4.1. List of cloud inicio-physics scheme types |                           |  |  |  |  |
|----------|--------------------------------------------------------|---------------------------|--|--|--|--|
| Schemes  | Description of scheme                                  | Reference                 |  |  |  |  |
| OFF      | Do not calculate phase change of water                 |                           |  |  |  |  |
|          | by cloud micro-physics.                                |                           |  |  |  |  |
| KESSLER  | Three-class one-moment bulk scheme                     | Kessler (1969)            |  |  |  |  |
| TOMITA08 | Six-class one-moment bulk scheme                       | Tomita (2008)             |  |  |  |  |
| SN14     | Six-class two-moment bulk scheme                       | Seiki and Nakajima (2014) |  |  |  |  |
| SUZUKI10 | Spectral bin scheme (consideration of ice              | Suzuki et al. (2010)      |  |  |  |  |
|          | cloud can be specified as option)                      |                           |  |  |  |  |

Table 4.4.1: List of cloud micro-physics scheme types

Four typical schemes are prepared:

#### 1. One-moment bulk scheme without ice Kessler (1969)

This scheme assumes that the particle size distribution function is expressed only by mass concentration. Considering two categories of water in cloud and rain, the ratios of the densities of cloud and rain to total air density are prognostically predicted.

2. One-moment bulk scheme with ice Tomita (2008) This scheme makes the same assumption as that in Kessler (1969) for the particle size distribution function, but with five categories of water: cloud, rain, ice, snow, and graupel.

#### 3. Two-moment bulk scheme with ice Seiki and Nakajima (2014)

In this scheme, the particle size distribution is expressed by the numerical concentration of particles and their mass concentration.

#### 4. One-moment bin scheme Suzuki et al. (2010)

This scheme explicitly expresses particle size distribution by discretizing it using an appropriate number of degrees of freedom for each category. There are six categories: cloud, rain, ice, snow, graupel, and hail. The accuracy of expressing the size distribution depends on the degrees of freedom.

The degrees of sophistication increases from 1 to 4, as does computational cost.

If SUZUKI10 is selected, in addition to the specification of (ATMOS\_PHY\_MP\_TYPE), the following configuration needs to be added to both configuration files of init and run executions:

In this case, [PARAM\_ATMOS\_PHY\_MP\_SUZUKI10\_bin] in the init configuration file must also be same as in the run configuration file. A necessary file micpara.dat is automatically generated. If file micpara.dat already exists, it is used for the calculation. When changing nbin as described in the first line, this file is regenerated. If nbin in file run.conf is different from that in file micpara.dat, the following error message is output and the simulation program is terminated instantaneously without calculation:

ERROR [ATMOS\_PHY\_MP\_suzuki10\_setup] nbin in inc\_tracer and nbin in micpara.dat is different check!

To avoid this error, it is necessary to delete the old micpara.dat beforehand and regenerate it. The regeneration is automatically done at the execution of SCALE-RM with SUZUKI10.

### 4.4.2 Cumulus Parameterization

The cumulus parameterization is specified in (ATMOS\_PHY\_CP\_TYPE) in [PARAM\_ATMOS] in files init.conf and run.conf. The timing of the calling of the cumulus parameterization is specified in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of the calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_CP_TYPE = "KF", ; Select the scheme shown in Table 4.4.2
```

| Table 4 | .4.2: | List | of | cumulus | paramet | terizat | tion | types |
|---------|-------|------|----|---------|---------|---------|------|-------|
|         |       |      |    |         | 1       |         |      | · · · |

| Schemes | Description of scheme                  | Reference                                 |
|---------|----------------------------------------|-------------------------------------------|
| OFF     | No use of the cumulus parameterization |                                           |
| KF      | Kain-Fritsch convective parameteriza-  | Kain and Fritsch $(1990)$ ; Kain $(2004)$ |
|         | tion                                   |                                           |

In this version of SCALE-RM , only KF is supported for cumulus parameterization. KF is a mass flux conservation type of cumulus parameterization scheme, representing one convection in



the sub-grid scale. The cumulus parameterization is recommended to be used when grid spacing is more than about 5 km to avoid calculation of unnatural strong deep convections. The cumulus parameterization and cloud micro-physics individually output precipitation named RAIN\_CP and RAIN\_MP, respectively. RAIN and PREC are the sum of precipitation from cumulus parameterization and cloud micro-physics schemes (i.e., RAIN = RAIN\_CP + RAIN\_MP and PREC = RAIN\_CP + RAIN\_MP). Note that KF calculates changes in the water vapor and hydrometeors such as cloud water and cloud ice in the atmosphere. The changes in hydrometeors is calculated further in micro physics schemes. The number concentration of cloud water, ice, and so on is not considered in KF. Therefore, the changes in the number concentration associated with the changes in hydrometeors in KF is estimated by a prescribed function and then provided to double-moment micro-physics schemes.

#### Configuration for Kain-Fritsch scheme

Following tuning parameters are available in KF:

```
&PARAM_ATMOS_PHY_CP_KF
ATMOS_PHY_CP_kf_trigger_type = 1,
                                       ; Trigger function type: 1=Kain, 3=Narita-Ohmori
ATMOS_PHY_CP_kf_dlcape = 0.1,
                                        ; Cape decrease rate
                                       ; Lifetime scale of deep convection [sec]
ATMOS_PHY_CP_kf_dlifetime = 1800,
ATMOS_PHY_CP_kf_slifetime = 2400,
                                       ; Lifetime scale of shallow convection [sec]
ATMOS_PHY_CP_kf_DEPTH_USL = 300,
                                       ; Depth of updraft source layer at the beginning of search
                                       [hPa]
ATMOS_PHY_CP_kf_prec_type = 1,
                                       ; Precipitation type: 1=Ogura-Cho, 2=Kessler
ATMOS_PHY_CP_kf_rate = 0.03,
                                       ; Ratio of cloud water and precipitation for Ogura-Cho
                                       precipitation function
ATMOS_PHY_CP_kf_thres = 1.E-3,
                                       ; Autoconversion rate for Kessler precipitation function
ATMOS_PHY_CP_kf_LOG = false,
                                       ; Output warning messages
```

Users can select trigger function from two options:

- 1. Kain Type Kain (2004) Default trigger function in SCALE-RM.
- 2. Narita and Ohmori Type Narita and Ohmori (2007) A trigger function which seems to be more suitable for Japan area.

Users can select precipitation function from two options:

- 1. Ogura-Cho Type Ogura and Cho (1973) Default precipitation function in SCALE-RM. For this type, additional tuning parameter of (ATMOS\_PHY\_CP\_kf\_rate) is available.
- Kessler Type Kessler (1969) Kessler type simple precipitation function. For this type, additional tuning parameter of (ATMOS\_PHY\_CP\_kf\_thres) is available.

The time interval of calling KF specified by (TIME\_DT\_ATMOS\_PHY\_CP) in [PARAM\_TIME] is also a tuning parameter, which is effective to the precipitation amount. As the first setting of (TIME\_DT\_ATMOS\_PHY\_CP), 300s is recommended. KF will output a warning message of "go off top/bottom of updraft source layer", if (PALAM\_ATMOS\_PHY\_CP\_kf\_LOG) is true. The updraft source layer should be thicker than the threshold layer depth (default is 50 hPa). However, the calculation is not aborted for these conditions.

## 4.4.3 Sub-Grid Scale Turbulence Scheme

The sub-grid scale turbulence model is for representing energy cascade to the sub-grid scale due to the advection terms in Large-eddy simulations (LESs).



The turbulence scheme is specified in (ATMOS\_PHY\_TB\_TYPE) in [PARAM\_ATMOS] in files init.conf and run.conf. The timing of the calling of the turbulence scheme is specified in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of the calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_TB_TYPE = "SMAGORINSKY", ; Select the scheme shown in Table 4.4.3
```

| Table 4.4.3: List of turbulence scheme types |                                      |                                                |  |  |  |
|----------------------------------------------|--------------------------------------|------------------------------------------------|--|--|--|
| Schemes                                      | Description of scheme                | Reference                                      |  |  |  |
| OFF                                          | Do not calculate the turbulence pro- |                                                |  |  |  |
|                                              | cess                                 |                                                |  |  |  |
| SMAGORINSKY                                  | Smagorinsky—Lilly-type sub-grid      | Smagorinsky $(1963)$ ; Lilly $(1962)$ ;        |  |  |  |
|                                              | model                                | Brown et al. $(1994)$ ; Scotti et al. $(1993)$ |  |  |  |
| D1980                                        | Deardorff-type sub-grid model        | Deardorff (1980)                               |  |  |  |

The SMAGORINSKY scheme can be also used for the horizontal eddy viscosity in RANS simulations. The planetary boundary layer parameterization (Section 4.4.4) is a scheme considering only vertical mixing. If you want to consider the horizontal eddy viscosity in RANS simulations, use the sub-grid scale turbulence model for horizontal mixing. When using the sub-grid scale turbulence model in conjunction with planetary boundary layer parameterization, the vertical eddy viscosity of the SMAGORINSKY scheme is disabled.

#### **Planetary Boundary Layer Scheme** 4.4.4

The planetary boundary layer (PBL) parameterization is a scheme for vertical mixing by turbulence in the PBL. It is for Reynolds-Averaged Navier-Stokes equations (RANS) simulations.

The planetary boundary layer parameterization scheme is specified in (ATMOS\_PHY\_BL\_TYPE) in [PARAM\_ATMOS] in files init.conf and run.conf. The timing of the calling of PBL scheme is specified in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of the calling timing.

| &PARAM_ATMOS                |                                          |
|-----------------------------|------------------------------------------|
| ATMOS_PHY_BL_TYPE = "MYNN", | ; Select the scheme shown in Table 4.4.4 |
| /                           |                                          |

|         | Table 4.4.4. List of planetary   | boundary layer scheme types         |
|---------|----------------------------------|-------------------------------------|
| Schemes | Description of scheme            | Reference                           |
| OFF     | Do not calculate the PBL process |                                     |
| MYNN    | MYNN level 2.5 boundary scheme   | Mellor and Yamada (1982); Nakanishi |
|         |                                  | and Niino (2004, 2009)              |

Table 4.4.4. List of planetary hour damy layor achieve two of

The PLB scheme calculate only vertical mixing. If you want to consider the horizontal eddy viscosity in RANS simulations, a sub-grid scale turbulence model can be used for the horizontal mixing. See Section 4.4.3 for the horizontal mixing.



# 4.4.5 Radiation scheme

The radiation scheme is specified in (ATMOS\_PHY\_RD\_TYPE) in [PARAM\_ATMOS] in files init.conf and run.conf. The timing of the calling of the radiation scheme is specified in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of calling timing.

&PARAM\_ATMOS
ATMOS\_PHY\_RD\_TYPE = "MSTRNX", ; Select the radiation scheme shown in Table 4.4.5
/

| Table 4.4.5: List of radiation scheme types |                                        |                               |  |
|---------------------------------------------|----------------------------------------|-------------------------------|--|
| Schemes                                     | Explanation of scheme                  | Reference                     |  |
| OFF or NONE                                 | Do not calculate the radiation process |                               |  |
| OFFLINE                                     | Use prescribed radiative data given    |                               |  |
|                                             | from a file                            |                               |  |
| MSTRNX                                      | mstrnX (A k-distribution-based broad-  | Sekiguchi and Nakajima (2008) |  |
|                                             | band radiation transfer model)         |                               |  |

#### Configuration for OFFLINE

When (ATMOS\_PHY\_RD\_TYPE) is OFFLINE in [PARAM\_ATMOS], the file name and information of the data are specified in [PARAM\_ATMOS\_PHY\_RD\_OFFLINE].

```
&PARAM_ATMOS_PHY_RD_OFFLINE
ATMOS_PHY_RD_OFFLINE_BASENAME = "",
                                                             ; base name of external data file
ATMOS_PHY_RD_OFFLINE_AXISTYPE = "XYZ",
                                                             ; order of spatial dimensions of the
                                                             data. 'XYZ' or 'ZXY'
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_YEAR = .false.,
                                                             ; whether annually cyclic data
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_MONTH = .false.,
                                                             ; whether monthly cyclic data
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_DAY = .false.,
                                                             ; whether daily cyclic data
                                                             ; step number when data at a cer-
ATMOS_PHY_RD_OFFLINE_STEP_FIXED = 0,
                                                             tain time step is used. Set the
                                                             value less than 1 for temporal var-
                                                             ied data.
ATMOS_PHY_RD_OFFLINE_CHECK_COORDINATES = .true.,
                                                             ; whether coordinate variables are
                                                             to be checked
ATMOS_PHY_RD_OFFLINE_STEP_LIMIT = 0,
                                                             ; maximum limit of steps. The
                                                             data at the time step exceed this
                                                             limit would not be read. 0 for no
                                                             limit
ATMOS_PHY_RD_OFFLINE_DIFFUSE_RATE = 0.5D0,
                                                             ; diffuse rate (diffuse solar ra-
                                                             diation/global solar radiation) of
                                                             short wave used when short-wave
                                                             direct flux data is not given
```

The file format of external data file is netCDF format with the same coordinate variables as that of initial/boundary data files. Variables required as the external data are shown in Table 4.4.6.

| Variable name  | Description                         | # of dimensions            |          |
|----------------|-------------------------------------|----------------------------|----------|
| RFLX_LW_up     | Upward long-wave radiative flux     | 3D  (spatial) + 1D  (time) |          |
| RFLX_LW_dn     | Downward long-wave radiative flux   | 3D  (spatial) + 1D  (time) |          |
| RFLX_SW_up     | Upward short-wave radiative flux    | 3D  (spatial) + 1D  (time) |          |
| RFLX_SW_dn     | Downward short-wave radiative flux  | 3D  (spatial) + 1D  (time) |          |
| SFLX_LW_up     | Upward long-wave radiative flux at  | 2D  (spatial) + 1D  (time) |          |
|                | the surface                         |                            |          |
| $SFLX_LW_dn$   | Downward long-wave radiative flux   | 2D  (spatial) + 1D  (time) |          |
|                | at the surface                      |                            |          |
| SFLX_SW_up     | Upward short-wave radiative flux at | 2D  (spatial) + 1D  (time) |          |
|                | the surface                         |                            |          |
| SFLX_SW_dn     | Downward short-wave radiative flux  | 2D  (spatial) + 1D  (time) |          |
|                | at the surface                      |                            |          |
| SFLX_SW_dn_dir | Downward short-wave direct radia-   | 2D  (spatial) + 1D  (time) | optional |
|                | tive flux at the surface            | · · · · ·                  |          |

Table 4.4.6: Radiative data as external file input

#### Configuration for MSTRNX

The solar radiation is calculated by using date, time, longitude, and latitude according to the model configuration of calculation. For the ideal experiment, they can be arbitrarily given as fixed values of time and location over the domain. The solar constant can also be changed. These are configured in [PARAM\_ATMOS\_SOLARINS] as follows:

```
&PARAM_ATMOS_SOLARINS
```

```
ATMOS_SOLARINS_constant = 1360.250117
                                               Solar constant [W/m2]
ATMOS_SOLARINS_set_ve = .false.
                                               Whether settings of the ideal vernal equinox are
                                               used
ATMOS_SOLARINS_set_ideal = .false.
                                               Whether values are fixed for obliquity and eccen-
                                               tricity
ATMOS_SOLARINS_obliquity = 0.0
                                               obliquity
                                                          [deg.]
                                                                       in
                                                                            the
                                                                                   case
                                                                                          that
                                               ATMOS_SOLARINS_set_ideal=.true.
ATMOS_SOLARINS_eccentricity = 0.0
                                               eccentricity
                                                                       the
                                                               in
                                                                                          that
                                                                                case
                                               ATMOS_SOLARINS_set_ideal=.true.
ATMOS_SOLARINS_fixedlatlon = .false.
                                               Whether values are fixed for latitude and longi-
                                               tude at radiation calculation
ATMOS_SOLARINS_lon = 135.221
                                               Longitude
                                                           [deg.]
                                                                        in
                                                                            the
                                                                                   case
                                                                                          that
                                               ATMOS_SOLARINS_fixedlatlon=.true.
ATMOS_SOLARINS_lat = 34.653
                                               Latitude
                                                          [deg.]
                                                                       in the case
                                                                                          that
                                               ATMOS_SOLARINS_fixedlatlon=.true.
ATMOS_SOLARINS_fixeddate = .false.
                                               Whether values are fixed for date and time at ra-
                                               diation calculation
                                               Date and time \left[\mathrm{Y},\mathrm{M},\mathrm{D},\mathrm{H},\mathrm{M},\mathrm{S}\right] in the case that
ATMOS_SOLARINS_fixeddate=.true.
```

The position of the earth on the orbital period is calculated based on the vernal equinox. However, the Gregorian calendar has leap years, and the vernal equinox days are not the same each year. Therefore, we set 7:35 on March 20, 2000, as the reference time to match the calendar with the vernal equinox passing point. We set the solar year to 365.2425 days. Since this value is larger than the average solar year of 365.24219, it causes a deviation of 3 hours in the revolution orbit in about 400 years, but it is almost negligible. When (ATMOS\_SOLARINS\_set\_ideal)

is .true., the solar insolation is calculated using obliquity(deg.) and eccentricity specified at (ATMOS\_SOLARINS\_obliquity),

(ATMOS\_SOLARINS\_eccentricity), respectively. These configurations are useful for the ideal simulations and the simulations of planets other than the Earth. When (ATMOS\_SOLARINS\_fixedlatlon) is .true., the solar insolation is calculated using same longitude and latitude specified at

(ATMOS\_SOLARINS\_lon, ATMOS\_SOLARINS\_lat) over the whole domain. The default values of them are (MAPPROJECTION\_basepoint\_lon, MAPPROJECTION\_basepoint\_lat), which are set in [PARAM\_MAPPROJECTION]. Refer to Section 4.2.4 for the explanation of [PARAM\_MAPPROJECTION]. When (ATMOS\_SOLARINS\_fixeddate) is .true., the solar insolation is calculated according to date and time (Y,M,D,H,M,S) specified at (ATMOS\_SOLARINS\_date). The date and time are not fixed if the negative values are specified. For example, when configuring (ATMOS\_SOLARINS\_date) to 2000,3,20,-1,-1,-1, the date is fixed to March 20, 2000 (the vernal equinox) and diurnal variations of the solar insolation are considered in the simulation. When (ATMOS\_SOLARINS\_set\_ve) is .true., the multiple configurations of ideal vernal equinox is automatically set. This option sets obliquity and eccentricity to zero, both longitude and latitude to zero deg., and the date and time to 12UTC, March 20, 2000. If the values are specified by using (ATMOS\_SOLARINS\_set\_ideal, ATMOS\_SOLARINS\_fixedlatlon, ATMOS\_SOLARINS\_fixeddate) as described above, those settings are given priority.

Depending on the experimental design, the top of the model is often too low, such as  $10 \sim 20$  km, compared to the height of the atmosphere. To remedy this situation, another top height used only for radiation calculation is set. The top height for radiation depends on the parameter file of the radiation scheme. For example, when MSTRNX is used, the default parameter table used for MSTRNX assumes that it is 100 km. For the calculation of radiation at levels higher than the top of the model, several layers are prepared. The additional layers are 10 by default; If the top of the model is 22 km, 10 additional layers with a grid spacing of 7.8 km are added for radiation calculation. These are configured in [PARAM\_ATMOS\_PHY\_RD\_MSTRN].

MSTRNX requires a parameter table for radiation calculation. By default, the wavelength between solar radiation and infrared radiation is divided into 29 bands/111 channels; nine types of cloud and aerosol particles with eight particle bins are prepared in the table. Three kinds of parameter files are prepared in the directory scale-rm/test/data/rad/.

scale-rm/test/data/rad/PARAG.29 ; absorption parameter for gas scale-rm/test/data/rad/PARAPC.29 ; absorption and scattering param. for particles scale-rm/test/data/rad/VARDATA.RM29 ; particle parameter for cloud and aerosol

These files are specified in [PARAM\_ATMOS\_PHY\_RD\_MSTRN] as follows:



| 8            | ZPARAM_ATMOS_PHY_RD_MSTRN                                 |                                                                                         |
|--------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|
| r            | ATMOS_PHY_RD_MSTRN_KADD = 10                              | Number of layers between<br>model top and TOA for radi-                                 |
|              | ATMOS_PHY_RD_MSTRN_TOA = 100.0                            | ation<br>Height of TOA for radiation<br>[km] (depending on parameter                    |
|              | ATMOS_PHY_RD_MSTRN_nband = 29                             | file used)<br>Number of bins for wave-<br>length (depending on param-                   |
|              | ATMOS_PHY_RD_MSTRN_nptype = 9                             | eter file used)<br>Number of aerosol species<br>(depending on parameter file            |
|              | ATMOS_PHY_RD_MSTRN_nradius = 8                            | used)<br>Number of particle bins for<br>aerosol (depending on param-<br>eter file used) |
|              | ATMOS_PHY_RD_MSTRN_GASPARA_IN_FILENAME = "PARAG.29"       | Input file for absorption pa-<br>rameter by gas                                         |
|              | ATMOS_PHY_RD_MSTRN_AEROPARA_IN_FILENAME = "PARAPC.29"     | Input file for absorption and<br>scattering parameter by cloud<br>and aerosol           |
|              | ATMOS_PHY_RD_MSTRN_HYGROPARA_IN_FILENAME = "VARDATA.RM29" | Input file for particle parame-<br>ter of cloud and aerosol                             |
|              | ATMOS_PHY_RD_MSTRN_ONLY_QCI = .false.                     | Whether only cloud water and<br>ice are considered (rain, snow,<br>graupel are ignored) |
| $\backslash$ | /                                                         |                                                                                         |

The parameter files were updated in version 5.2. It is recommended to use new parameter files in the latest version of SCALE-RM. The previous parameter files, provided in version 5.1 or earlier, are located in the directory scale-rm/test/data/rad/OpenCLASTR. The number of particle type and the number of particle bins are different from those in the new parameter files. So if you want to use these files, (ATMOS\_PHY\_RD\_MSTRN\_nptype, ATMOS\_PHY\_RD\_MSTRN\_nradius) should be specified in

[PARAM\_ATMOS\_PHY\_RD\_MSTRN] as follows.

ATMOS\_PHY\_RD\_MSTRN\_nptype = 11 ATMOS\_PHY\_RD\_MSTRN\_nradius = 6

It is necessary to provide vertical profiles of temperature, pressure, and gas concentration, such as carbon dioxide and ozone, in additional layers for radiation calculation. There are two methods for this. The profiles are input as climatologies or prepared by users in ASCII format.

In the case of providing climatologies, SCALE-RM provides the database form CIRA86<sup>\*1</sup> (Committee on Space Research; NASA National Space Science Data Center, 2006) for temperature and pressure, and MIPAS2001 (Remedios et al., 2007) for gas species. The climatology profiles are calculated from the databases according to date, time, latitude, and longitude. If the fixed date and location are specified in [PARAM\_ATMOS\_SOLARINS], the calculation of profile follows those settings. The input files are also provided in the directory scale-rm/test/data/rad/.

scale-rm/test/data/rad/cira.nc ; CIRA86 data (NetCDF format)
scale-rm/test/data/rad/MIPAS/day.atm ; MIPAS2011 data for mid-lat. (ASCII format)

 $<sup>^{*1)} \</sup>rm http://catalogue.ceda.ac.uk/uuid/4996e5b2f53ce0b1f2072adadaeda262$ 



```
scale-rm/test/data/rad/MIPAS/equ.atm ; for tropics (ASCII format)
scale-rm/test/data/rad/MIPAS/sum.atm ; for summer-side high-lat. (ASCII format)
scale-rm/test/data/rad/MIPAS/win.atm ; for winter-side high-lat. (ASCII format)
```

The file and directory names are specified in [PARAM\_ATMOS\_PHY\_RD\_PROFILE]. The example of configuration of putting five files above to the current directory is as follows:

```
&PARAM_ATMOS_PHY_RD_PROFILE
ATMOS_PHY_RD_PROFILE_use_climatology = .true.
ATMOS_PHY_RD_PROFILE_CIRA86_IN_FILENAME = "cira.nc"
ATMOS_PHY_RD_PROFILE_MIPAS2001_IN_BASENAME = "."
Whether climatologies of CIRA86
and MIPAS2001 are used
File name of CIRA86
Directory name which contains
MIPAS2001 files
```

Gases considered in radiation calculation are water vapor( $H_2O$ ), carbon dioxide( $CO_2$ ), ozone( $O_3$ ), Nauru's oxide( $N_2O$ ), carbon monoxide(CO), methane( $CH_4$ ), oxigen( $O_2$ ), and chlorofluorocarbons(CFCs). These concentrations are able to be set to zero in [PARAM\_ATMOS\_PHY\_RD\_PROFILE].

```
&PARAM_ATMOS_PHY_RD_PROFILE
                                            When false, H2O concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_H20 = .true.
ATMOS_PHY_RD_PROFILE_USE_CO2 = .true.
                                            When false, CO<sub>2</sub> concentration is zero.
                                            When false, O3 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_03 = .true.
ATMOS_PHY_RD_PROFILE_USE_N20 = .true.
                                            When false, N2O concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CO = .true.
                                            When false, CO concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CH4 = .true.
                                            When false, CH4 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_02 = .true.
                                            When false, O2 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CFC = .true.
                                            When false, CFC concentration is zero.
```

In case of using user-defined profiles, users must prepare height [m], pressure [Pa], temperature [K], water vapor [kg/kg], and ozone concentration [kg/kg] in ASCII format. The concentrations of gases other than water vapor and ozone are set to zero, and temporal variation is not considered. An example of user-defined files is provided in

scale-rm/test/data/rad/rad\_o3\_profs.txt

To use the user-defined profiles, it is required to set (ATMOS\_PHY\_RD\_PROFILE\_use\_climatology) = .false. in [PARAM\_ATMOS\_PHY\_RD\_PROFILE], and to specify the file and directory names in (ATMOS\_PHY\_RD\_PROFILE\_USER\_IN\_FILENAME).

| &PARAM_ATMOS_PHY_RD_PROFILE                    |                                            |
|------------------------------------------------|--------------------------------------------|
| ATMOS_PHY_RD_PROFILE_use_climatology = .false. | Whether climatologies of CIRA86 and MI-    |
|                                                | PAS2001 are used                           |
| ATMOS_PHY_RD_PROFILE_USER_IN_FILENAME = ""     | User-defined file in the case of not using |
|                                                | climatologies (ASCII format)               |
| $\langle \rangle$                              |                                            |

The number of layers and their heights in this user-defined file can be given independently of the default model configuration. During execution, the values in the model layers are interpolated



from the given profiles. Note that if the top height considered TOA in the radiation calculation is higher than in the input profile, an extrapolation is adopted there.

# 4.4.6 Surface flux scheme

The surface flux scheme calculates momentum, heat and moisture fluxes at the bottom atmospheric boundary. Type of the scheme is configured in (ATMOS\_PHY\_SF\_TYPE) in [PARAM\_ATMOS].

```
&PARAM_ATMOS
  ATMOS_PHY_SF_TYPE = "NONE", ; Select the surface flux scheme shown in Table 4.4.7
/
```

If ocean, land, and urban models are used, (ATMOS\_PHY\_SF\_TYPE) must be COUPLE or NONE; NONE is ultimately automatically replaced to COUPLE. Using these models, the surface fluxes are individually calculated in these models, and then, the merged grid value is calculated as area-weighted average of them.

|         | Table 4.4.7: List for the atmospheric bottom boundary types                         |
|---------|-------------------------------------------------------------------------------------|
| Schemes | Description of scheme                                                               |
| NONE    | Do not calculate surface flux, but NONE is replaced to COUPLE according to settings |
|         | of ocean, land, and urban models                                                    |
| OFF     | Do not calculate surface flux                                                       |
| CONST   | Use constant values in calculation of surface flux                                  |
| BULK    | Calculate the surface flux by a bulk model                                          |
| COUPLE  | Merge surface fluxes from ocean, land, and urban models                             |

The time step to call the surface flux scheme is configured in (PARAM\_DT\_ATMOS\_PHY\_SF) and (PARAM\_DT\_ATMOS\_PHY\_SF\_UNIT) in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of the time step.

#### Constant scheme

If (ATMOS\_PHY\_SF\_TYPE) is CONST, the surface flux is determined as configured in [PARAM\_ATMOS\_PHY\_SF\_CONST].

| &PARAM_ATMOS_PHY_SF_CONST             |                                                        |
|---------------------------------------|--------------------------------------------------------|
| ATMOS_PHY_SF_FLG_MOM_FLUX = 0         | ; 0: Bulk coefficient is constant                      |
|                                       | ; 1: Friction velocity is constant                     |
| $ATMOS_PHY_SF_U_minM = 0.0E0$         | ; Lower limit of absolute velocity [m/s]               |
| ATMOS_PHY_SF_Const_Cm = 0.0011E0      | ; Constant bulk coefficient for momentum               |
|                                       | ; (valid if ATMOS_PHY_SF_FLG_MOM_FLUX = 0)             |
| $ATMOS_PHY_SF_Cm_min = 1.0E-5$        | ; Lower limit of bulk coefficient for momentum         |
|                                       | ; (valid if ATMOS_PHY_SF_FLG_MOM_FLUX = 1)             |
| ATMOS_PHY_SF_Const_Ustar = 0.25E0     | ; Constant friction velocity [m/s]                     |
|                                       | ; (valid if ATMOS_PHY_SF_FLG_MOM_FLUX = 1)             |
| $ATMOS_PHY_SF_Const_SH = 15.E0$       | ; Constant sensible heat flux at the surface $[W/m^2]$ |
| ATMOS_PHY_SF_FLG_SH_DIURNAL = .false. | ; Whether diurnal variation is considered for sensible |
|                                       | heat flux [logical]                                    |
| $ATMOS_PHY_SF_Const_FREQ = 24.E0$     | ; Daily cycle if diurnal variation is enabled [hour]   |
| ATMOS_PHY_SF_Const_LH = 115.E0        | ; Constant latent heat flux at the surface $[W/m^2]$   |
|                                       | /                                                      |

If (ATMOS\_PHY\_SF\_FLAG\_MOM\_FLUX) is 0, a constant bulk coefficient is used to calculate the surface momentum flux; its value is specified by (ATMOS\_PHY\_SF\_Const\_Cm).



If (ATMOS\_PHY\_SF\_FLAG\_MOM\_FLUX) is 1, a constant friction velocity is used to calculate the bulk coefficient; its value is specified by (ATMOS\_PHY\_SF\_Const\_Ustar). In the constant friction velocity case, the lower limit of the coefficient is set by (ATMOS\_PHY\_SF\_Cm\_min). The lower limit of absolute velocity at the lowermost layer used in the calculation is set by (ATMOS\_PHY\_SF\_U\_minM) in both cases.

If (ATMOS\_PHY\_SF\_FLG\_SH\_DIURNAL) = .false., sensible heat flux is constant; its value is specified by (ATMOS\_PHY\_SF\_Const\_SH). If (ATMOS\_PHY\_SF\_FLG\_SH\_DIURNAL) = .true., the sensible heat flux has temporal sinusoidal variation whose amplitude and time period are (ATMOS\_PHY\_SF\_Const\_SH) and (ATMOS\_PHY\_SF\_Const\_FREQ), respectively, as

ATMOS\_PHY\_SF\_Const\_SH  $\times \sin(2\pi t/3600/\text{ATMOS_PHY}_SF_Const_FREQ)$ , where t is the integrated time [sec] from start of calculation.

Latent heat flux is constant and its value is specified by (ATMOS\_PHY\_SF\_Const\_LH).

#### Bulk scheme

If (ATMOS\_PHY\_SF\_TYPE) is BULK, the surface flux is calculated by the bulk model using the prescribed surface state, such as surface temperature, roughness length, and albedo. The values of the surface state are read from the initial data file. The surface temperature, roughness length and albedos for short- and long-wave radiation can be set respectively with (ATMOS\_PHY\_SF\_DEFAULT\_SFC\_TEMP), (ATMOS\_PHY\_SF\_DEFAULT\_SFC\_ZO), (ATMOS\_PHY\_SF\_DEFAULT\_SFC\_ALBEDO\_SW),

and (ATMOS\_PHY\_SF\_DEFAULT\_SFC\_ALBEDO\_LW) in [PARAM\_ATMOS\_PHY\_SF\_VARS] at generating the initial data with the scale-rm\_init.

For calculation of latent heat flux, evaporation efficiency can be given in a range of 0 to 1. This flexibility enables the ideal experiment not only for ocean surfaces but also for land. If this value is 0, the surface is assumed to be completely dry, resulting no latent heat flux. If the value is 1, it is assumed to be completely wet like ocean surface. The evaporation efficiency is specified in (ATMOS\_PHY\_SF\_BULK\_beta) in [PARAM\_ATMOS\_PHY\_SF\_BULK].

&PARAM\_ATMOS\_PHY\_SF\_BULK
ATMOS\_PHY\_SF\_BULK\_beta = 1.0, ; Evaporation efficiency (range of 0-1)
/

#### **Bulk coefficient**

If (ATMOS\_PHY\_SF\_TYPE) is BULK or COUPLE, the bulk coefficients are calculated based on the Monin-Obukhov similarity. The parameters for calculation of the coefficients are configured in [PARAM\_BULKFLUX].

| &PARAM_BULKFLUX                                |                                                                            |
|------------------------------------------------|----------------------------------------------------------------------------|
| BULKFLUX_TYPE = "B91W01",                      | ; Select the bulk coefficient scheme shown in Table $4.4.8$                |
| BULKFLUX_Uabs_min = 1.0D-2,                    | ; Minimum absolute velocity speed in the surface flux calculation [m/s]    |
| <pre>BULKFLUX_surfdiag_neutral = .true.,</pre> | ; Switch to assume neutral condition in calculation of surface diagnostics |
| $BULKFLUX_WSCF = 1.2D0$ ,                      | ; Empirical scaling factor for $w^*$ (Beljaars, 1994)                      |
| $BULKFLUX_Wstar_min = 1.0E-4,$                 | ; Minimum value of $w^*$ [m/s]                                             |
| BULKFLUX_NK2018 = .true.,                      | ; Switch to use scheme of Nishizawa and Kitamura (2018)                    |
|                                                |                                                                            |

The scheme to calculate the bulk coefficients is specified by (BULKFLUX\_TYPE). The supported schemes are listed in Table 4.4.8.

The coefficients strongly depend on the wind speed. Because the velocity in simulation does not contain sub-grid scale component, the surface flux may be underestimated especially under calm

| Schemes | Description of scheme                                     | Reference              |
|---------|-----------------------------------------------------------|------------------------|
| B91W01  | Bulk method by the universal function (Default)           | Beljaars and Holt-     |
|         |                                                           | slag $(1991)$ ; Wilson |
|         |                                                           | (2001); Nishizawa      |
|         |                                                           | and Kitamura (2018)    |
| U95     | Louis-type bulk method (improved version of Louis (1979)) | Uno et al. (1995)      |
|         |                                                           |                        |

Table 4.4.8: List of bulk coefficient scheme types

condition. Therefore, a lower limit can be introduced for the absolute velocity at the lowermost layer used in the calculation. The lower limit is specified by (BULKFLUX\_Uabs\_min).

The surface diagnostic variables, such as 10-m velocities and 2-m temperature and humidity, are calculated so that they are consistent with the bulk coefficients. It means that these variables significantly depend on the surface conditions and static stability. Thus, when grid cells having different surface conditions are adjacently distributed such as near coasts, the values of the diagnostics may have a large gap at the boundaries between these grid cells. In addition, when the static stability greatly changes around sunrise or sunset, the values of the diagnostics may change drastically in a short time. These large gaps can be reduced by assuming neutral static stability in the calculation of the surface diagnostic variables. To use the assumption of neutral stability, set (BULKFLUX\_surfdiag\_neutral) to .true..

For the B91W01 scheme, a couple of additional parameters are available. (BULKFLUX\_WSCF) is an empirical scaling factor for the free convection velocity scale  $w^*$  introduced by Beljaars (1994) ( $\beta$  in his paper). By default, it is determined depending on the horizontal grid spacing  $\Delta x$  as  $1.2 \times \min(\Delta x/1000, 1)$ . In simulations with the grid spacing larger than 1 km, the factor is 1.2. For smaller grid spacing, it decreases in proportional to the grid spacing, c.f.,  $\lim_{\Delta x \to 0} w^* = 0$ . Note that, the minimum of  $w^*$  is specified by (BULKFLUX\_Wstar\_min) and its default value is 1.0E-4. (BULKFLUX\_NK2018) is a switch to use the more appropriate formulation of the similarity for finite volume models proposed by Nishizawa and Kitamura (2018).

# 4.4.7 Ocean Model

The ocean process consists of two main parts, i.e., the update of the state of the near-surface ocean and the calculation of the flux at the interface of atmosphere and ocean. The timing of calling these scheme is configured in [PARAM\_TIME]. Refer to Section 4.2.5 for the detailed configuration of the calling timing.

The schemes of the ocean submodel is configured by the parameter (OCEAN\_DYN\_TYPE), (OCEAN\_SFC\_TYPE), (OCEAN\_ICE\_TYPE), (OCEAN\_ALB\_TYPE), and (OCEAN\_RGN\_TYPE) in [PARAM\_OCEAN] in the configuration files:

| &PARAM_OCEAN                   |                                                           |
|--------------------------------|-----------------------------------------------------------|
| OCEAN_DYN_TYPE = "SLAB",       | ; Select the ocean dynamics type shown in Table 4.4.9     |
| OCEAN_SFC_TYPE = "FIXED-TEMP", | ; Select the ocean surface type shown in Table $4.4.10$   |
| OCEAN_ICE_TYPE = "SIMPLE",     | ; Select the ocean ice physics type shown in Table 4.4.11 |
| OCEAN_ALB_TYPE = "NAKAJIMAOO", | ; Select the ocean albedo type shown in Table 4.4.12      |
| OCEAN_RGN_TYPE = "MOONO7",     | ; Select the ocean roughness type shown in Table $4.4.13$ |
| $\times$ /                     |                                                           |

#### Setting vertical grids for ocean model

The number of vertical layers for ocean model is specified by (OKMAX) in [PARAM\_OCEAN\_GRID\_CARTESC\_INDEX]. The vertical grid intervals are specified by (ODZ) in [PARAM\_OCEAN\_GRID\_CARTESC]. The unit is

| Table 4.4.5. List of subsurface ocean scheme types (belan_bin_fifte). |  |  |
|-----------------------------------------------------------------------|--|--|
| Description of scheme                                                 |  |  |
| Disable the ocean submodel                                            |  |  |
| Fixed to the initial condition                                        |  |  |
| Update by external data                                               |  |  |
| Slab ocean model                                                      |  |  |
|                                                                       |  |  |

Table 4.4.0. List of subsurface ocean scheme types (OCEAN DVN TYPE)

Table 4.4.10: List of ocean surface scheme types (OCEAN\_SFC\_TYPE). There is one option in current version.

| Schemes    | Description of scheme                                      |
|------------|------------------------------------------------------------|
| FIXED-TEMP | Calculate flux without diagnosing surface skin temperature |

[m].

```
&PARAM_OCEAN_GRID_CARTESC_INDEX
                                     ; number of vertical layers
OKMAX = 1,
&PARAM_OCEAN_GRID_CARTESC
 0DZ = 10.D0.
                                     ; grid interval along the vertical direction
```

You can specify an array in (ODZ) for the number of vertical layers specified by (OKMAX). The order of the array is from the sea surface to the deep ocean.

#### 4.4.7.1Fixed to initial condition

When (OCEAN\_DYN\_TYPE) is INIT, the ocean condition is fixed to the initial condition. In this case, the number of vertical layer must be 1. The layer depth can be arbitrary as long as it is positive value.

#### 4.4.7.2Subsurface ocean scheme

At a surface grid point whose ocean fraction exists (= land fraction is less than 1.0), the physical quantities must be calculated by the ocean submodel. The setting of land-ocean fraction is controlled by [PARAM\_LANDUSE]. When (OCEAN\_DYN\_TYPE) is set to NONE or OFF although the grid points with the ocean fraction exist, the following error message is displayed to the log file:

ERROR [CPL\_vars\_setup] Ocean fraction exists, but ocean component has not been called. Please check this inconsistency. STOP.

If (OCEAN\_DYN\_TYPE) is set to SLAB, the subsurface ocean is treated as a slab layer. The temperature of the slab layer changes over time by the heat flux from the surface. The depth of the slab layer, which controls the heat capacity of the slab ocean, can be specified as the depth of the first ocean layer. Note that the number of ocean layer must be 1.

In the slab ocean model, you can apply a relaxation (i.e., nudging) for sea surface temperature (SST) by using external data. The parameter of the nudging can be specified in [PARAM\_OCEAN\_DYN\_SLAB].

|         | Table 4.4.11: List of sea ice scheme types (UCEAN_ICE_ITPE). |
|---------|--------------------------------------------------------------|
| Schemes | Description of scheme                                        |
| NONE    | Disable the sea ice model                                    |
| INIT    | Fixed to the initial condition                               |
| SIMPLE  | Simple sea ice model                                         |
|         |                                                              |

(OGEAN TOP TWDP)

Table 4.4.12: List of ocean surface albedo scheme types (OCEAN\_ALB\_TYPE).

| Schemes    | Description of scheme                                 | Reference                |
|------------|-------------------------------------------------------|--------------------------|
| INIT       | Fixed to the initial condition                        |                          |
| CONST      | Use constant value                                    |                          |
| NAKAJIMAOO | Calculate albedo for short-wave by solar zenith angle | Nakajima et al. $(2000)$ |

| &PARAM_OCEAN_DYN_SLAB                                              |                                                        |
|--------------------------------------------------------------------|--------------------------------------------------------|
| OCEAN_DYN_SLAB_nudging = .false.,                                  | ; Use nudging for ocean vari-<br>ables?                |
| OCEAN_DYN_SLAB_nudging_tau = 0.0_DP,                               | ; Relaxation time for nudging                          |
| OCEAN_DYN_SLAB_nudging_tau_unit = "SEC",                           | ; Relaxation time unit                                 |
| OCEAN_DYN_SLAB_nudging_basename = "",                              | ; Base name of input data                              |
| <pre>OCEAN_DYN_SLAB_nudging_enable_periodic_year = .false.,</pre>  | ; Annually cyclic data?                                |
| <pre>OCEAN_DYN_SLAB_nudging_enable_periodic_month = .false.,</pre> | ; Monthly cyclic data?                                 |
| <pre>OCEAN_DYN_SLAB_nudging_enable_periodic_day = .false.,</pre>   | ; Daily cyclic data?                                   |
| OCEAN_DYN_SLAB_nudging_step_fixed = 0,                             | ; Option for using specific step<br>number of the data |
| OCEAN_DYN_SLAB_nudging_defval = UNDEF,                             | ; Default value of the variables                       |
| OCEAN_DYN_SLAB_nudging_check_coordinates = .true.,                 | ; Check coordinate of variables                        |
| OCEAN_DYN_SLAB_nudging_step_limit = 0,                             | ; Maximum limit of the time<br>steps of the data       |
| \ /                                                                |                                                        |

When (OCEAN\_DYN\_SLAB\_nudging\_tau) is 0, the value of sea surface temperature is totally replaced by the external file. When (OCEAN\_DYN\_SLAB\_nudging\_step\_fixed) is less than 1, the value of current time is calculated by temporal interpolation from the input data. When the specific step number is set for (OCEAN\_DYN\_SLAB\_nudging\_step\_fixed), the data of that step is always used without temporal interpolation. When the number larger than 0 is set to (OCEAN\_DYN\_SLAB\_nudging\_step\_limit), the data at the time step exceed this limit would not be read. The last read data is used for nudging. When (OCEAN\_DYN\_SLAB\_nudging\_step\_limit) is 0, no limit is set.

If (OCEAN\_DYN\_TYPE) is set to "OFFLINE", no dynamical nor physical process of subsurface ocean are calculated. The temporal changes of sea surface temperature are provided by the external file. This is the same as (OCEAN\_TYPE) = "FILE" in the old version of SCALE, and also same as the case of  $(OCEAN_DYN_SLAB_nudging_tau) = 0$  in the slab ocean scheme.

| Table 4.4.15. List of occan sufface foughness scheme types (bolknitten_fifth). |                                                     |                        |
|--------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|
| Schemes                                                                        | Description of scheme                               | Reference              |
| MOON07                                                                         | Based on empirical formula with time development    | Moon et al. (2007)     |
| INIT                                                                           | Fixed to the initial condition                      |                        |
| CONST                                                                          | Use constant value                                  |                        |
| MILLER92                                                                       | Based on empirical formula without time development | Miller et al. $(1992)$ |

Table 4.4.13: List of ocean surface roughness scheme types (OCEAN\_RGN\_TYPE).

```
&PARAM_OCEAN_DYN_OFFLINE
OCEAN_DYN_OFFLINE_basename = "",
                                                         ; Base name of input data
OCEAN_DYN_OFFLINE_enable_periodic_year = .false.,
                                                         ; Annually cyclic data?
OCEAN_DYN_OFFLINE_enable_periodic_month = .false.,
                                                        ; Monthly cyclic data?
OCEAN_DYN_OFFLINE_enable_periodic_day = .false.,
                                                         ; Daily cyclic data?
                                                         ; Option for using specific step number
OCEAN_DYN_OFFLINE_step_fixed = 0,
                                                         of the data
OCEAN_DYN_OFFLINE_defval = UNDEF,
                                                         ; Default value of the variables
OCEAN_DYN_OFFLINE_check_coordinates = .true.,
                                                         ; Check coordinate of variables
OCEAN_DYN_OFFLINE_step_limit = 0,
                                                         ; Maximum limit of the time steps of
                                                         the data
```

Each parameter for the external file in offline mode follows the parameter for the nudging settings in the slab ocean scheme.

#### 4.4.7.3 Ocean surface process

The ocean surface process contains the following subprocess:

- Calculation of open ocean (ice-free) surface
  - Calculation of the ocean surface albedo
  - Calculation of the ocean surface roughness length
  - Calculation of the heat/evaporation/emission flux between the atmosphere and the ocean
- Calculation of sea ice surface
  - Calculation of the ice surface albedo
  - Calculation of the ice surface roughness length
  - Calculation of the thermal conductance between the sea ice and the subsurface ocean
  - Calculation of the heat/evaporation/emission flux between the atmosphere and the ice
  - Calculation of the heat and water flux between the ice and the subsurface ocean

The albedo of the open ocean surface is configured by the scheme selected by (OCEAN\_ALB\_TYPE). If (OCEAN\_ALB\_TYPE) is set to "CONST", the albedo values over the open ocean are constant and set by (PARAM\_OCEAN\_PHY\_ALBEDO\_const). If (OCEAN\_ALB\_TYPE) is set to "NAKAJIMAOO", the albedo for the short-wave is calculated from the solar zenith angle, while the albedo parameters set by (PARAM\_OCEAN\_PHY\_ALBEDO\_const) are used for the long-wave (IR).

| / | &PARAM_OCEAN_PHY_ALBEDO_const      |                                                                         | ` |
|---|------------------------------------|-------------------------------------------------------------------------|---|
| / | OCEAN_PHY_ALBEDO_IR_dir = 0.05D0,  | ; Ocean surface albedo for the long-wave (IR), direct light             |   |
|   | OCEAN_PHY_ALBEDO_IR_dif = 0.05D0,  | ; Ocean surface albedo for the long-wave (IR), diffuse light            |   |
|   | OCEAN_PHY_ALBEDO_NIR_dir = 0.07D0, | ; Ocean surface albedo for the short-wave (near-IR), di-<br>rect light  |   |
|   | OCEAN_PHY_ALBEDO_NIR_dif = 0.06D0, | ; Ocean surface albedo for the short-wave (near-IR), dif-<br>fuse light |   |
|   | OCEAN_PHY_ALBEDO_VIS_dir = 0.07D0, | ; Ocean surface albedo for the short-wave (visible), direct light       |   |
|   | OCEAN_PHY_ALBEDO_VIS_dif = 0.06D0, | ; Ocean surface albedo for the short-wave (visible), diffuse light      |   |
|   | /                                  |                                                                         | , |

The albedos over the sea ice surface are constant regardless of (OCEAN\_ALB\_TYPE). The values are set by (PARAM\_OCEAN\_PHY\_ALBEDO\_seaice).

| &PARAM_OCEAN_PHY_ALBEDO_seaice            |                                                                   |
|-------------------------------------------|-------------------------------------------------------------------|
| OCEAN_PHY_ALBEDO_seaice_IR_dir = 0.05D0,  | ; Sea ice surface albedo for the long-wave (IR),                  |
|                                           | direct light                                                      |
| UCEAN_PHY_ALBEDU_seaice_IR_dif = 0.05D0,  | ; Sea ice surface albedo for the long-wave (IR),<br>diffuse light |
| OCEAN_PHY_ALBEDO_seaice_NIR_dir = 0.60D0, | ; Sea ice surface albedo for the short-wave (near-                |
|                                           | IR), direct light                                                 |
| OCEAN_PHY_ALBEDO_seaice_NIR_dif = 0.60D0, | ; Sea ice surface albedo for the short-wave (near-                |
|                                           | IR), diffuse light                                                |
| OCEAN_PHY_ALBEDO_seaice_VIS_dir = 0.80D0, | ; Sea ice surface albedo for the short-wave (visi-                |
|                                           | ble), direct light                                                |
| OCEAN_PHY_ALBEDO_seaice_VIS_dif = 0.80D0, | ; Sea ice surface albedo for the short-wave (visi-                |
|                                           | ble), diffuse light                                               |
| $\langle  $                               |                                                                   |

The roughness length of ocean surface is calculated by the scheme selected by (OCEAN\_RGN\_TYPE). If (OCEAN\_RGN\_TYPE) is set to "CONST", the parameters in (PARAM\_OCEAN\_PHY\_ROUGHNESS\_const) are used.

| &PARAM_OCEAN_PHY_ROUGHNESS_const  |                                                   |
|-----------------------------------|---------------------------------------------------|
| OCEAN_PHY_ROUGHNESS_ZOM = 1.0D-5, | ; Ocean surface roughness length for momentum [m] |
| OCEAN_PHY_ROUGHNESS_ZOH = 1.0D-5, | ; Ocean surface roughness length for heat [m]     |
| OCEAN_PHY_ROUGHNESS_ZOE = 1.0D-5, | ; Ocean surface roughness length for moisture [m] |
| /                                 |                                                   |

When (OCEAN\_RGN\_TYPE) is set to "MOONO7" or "MILLER92", the roughness length for momentum, heat, and water vapor are calculated in the selected scheme. You can specify some limiters by setting (PARAM\_OCEAN\_PHY\_ROUGHNESS).

| &PARAM_OCEAN_PHY_ROUGHNESS              |                                                              |
|-----------------------------------------|--------------------------------------------------------------|
| OCEAN_PHY_ROUGHNESS_visck = 1.5D-5,     | ; Kinematic viscosity [m2/s]                                 |
| OCEAN_PHY_ROUGHNESS_Ustar_min = 1.0D-3, | ; Minimum limit of friction velocity [m/s]                   |
| OCEAN_PHY_ROUGHNESS_ZOM_min = 1.0D-5,   | ; Minimum limit of surface roughness length for momentum [m] |
| OCEAN_PHY_ROUGHNESS_ZOH_min = 1.0D-5,   | ; Minimum limit of roughness length for heat [m]             |
| OCEAN_PHY_ROUGHNESS_ZOE_min = 1.0D-5,   | ; Minimum limit of roughness length for moisture             |
|                                         | [m]                                                          |
|                                         |                                                              |

The roughness lengths of the sea ice surface are constant regardress of (OCEAN\_RGN\_TYPE). The values are set by (PARAM\_OCEAN\_PHY\_ROUGHNESS\_seaice). The minimum limit of roughness lengths specified by (PARAM\_OCEAN\_PHY\_ROUGHNESS) are also applied to the value over the sea ice surface.

```
&PARAM_OCEAN_PHY_ROUGHNESS_seaice
OCEAN_PHY_ROUGHNESS_seaice_ZOM = 2.0D-2, ; Sea ice surface roughness length for momentum
[m]
OCEAN_PHY_ROUGHNESS_seaice_ZOH = 2.0D-3, ; Sea ice surface roughness length for heat [m]
OCEAN_PHY_ROUGHNESS_seaice_ZOE = 2.0D-3, ; Sea ice surface roughness length for moisture [m]
/
```

By using the albedo and the roughness length, the surface fluxes between atmosphere and ocean, and fluxes between atmosphere and ice are calculated by the scheme selected by (OCEAN\_SFC\_TYPE). The bulk scheme specified by (BULKFLUX\_TYPE) in [PARAM\_BULKFLUX] is used for this calculation. Refer to Section 4.4.6 for more detail of bulk scheme.

#### Ocean ice process

When (OCEAN\_ICE\_TYPE) is set to "SIMPLE", the ocean ice process comes to be considered. The thermal conductance between the sea ice and the subsurface ocean is calculated by using the parameter specified in [PARAM\_OCEAN\_PHY\_TC\_seaice].

```
&PARAM_OCEAN_PHY_TC_seaice
OCEAN_PHY_thermalcond_max = 10.D0, ; Maximum thermal conductivity per depth
[J/m2/s/K]
OCEAN_PHY_thermalcond_seaice = 2.D0, ; Thermal conductivity of sea ice [J/m/s/K]
/
```

The parameters of sea ice process is configured by [PARAM\_OCEAN\_PHY\_ICE].

```
&PARAM_OCEAN_PHY_ICE
OCEAN_PHY_ICE_density = 1000.D0, ; Density of sea ice [kg/m3]
OCEAN_PHY_ICE_mass_critical = 1600.D0, ; Ice amount for fraction = 1 [kg/m2]
OCEAN_PHY_ICE_mass_limit = 50000.D0, ; Maximum limit of ice amount [kg/m2]
OCEAN_PHY_ICE_fraction_limit = 1.D0, ; Maximum limit of ice fraction [1]
```

In SCALE , the mass amount of the sea ice is the prognostic variable, and the ice fraction is diagnosed by following equation:

$$\mbox{ICE\_mass} = \sqrt{rac{\mbox{ICE\_mass}}{\mbox{OCEAN\_PHY\_ICE\_mass\_critical}}}.$$

# 4.4.8 Land Model

Similar to the ocean model, the land model consists of two main parts, i.e., an update of the state of the land surface, and calculation of fluxes at the interface of atmosphere and land. The timing of the calling of these scheme is configured in [PARAM\_TIME] (Refer to Section 4.2.5 for the details).

#### Land Scheme

The land scheme that updates the state of land, e.g., land surface temperature, soil temperature, and soil moisture, is configured by (LAND\_DYN\_TYPE) in [PARAM\_LAND] in the files init.conf and run.conf:

```
&PARAM_LAND
LAND_DYN_TYPE = "NONE", ; Select the land type shown in Table 4.4.14
LAND_SFC_TYPE = "SKIN", ; (For BUCKET) Select the land surface type shown in Table 4.4.15
/
```

Table 4.4.14: List of land scheme types

| Schemes     | Description of scheme          |
|-------------|--------------------------------|
| NONE or OFF | Do not use land model          |
| BUCKET      | Heat diffusion/bucket model    |
| INIT        | Fixed to the initial condition |

If the land type is included in the land use setup by [PARAM\_LANDUSE], neither NONE nor OFF can be given to (LAND\_DYN\_TYPE). If this condition is not satisfied, the program immediately terminates without computation, outputting the following message to the LOG file:

ERROR [CPL\_vars\_setup] Land fraction exists, but land component has not been called. Please check this inconsistency. STOP.

If (LAND\_DYN\_TYPE) except "NONE" or "OFF" is specified, the input data of land use distribution and a parameter table including information such as roughness length and albedo for each land-use category are required. An example of the parameter table is provided in the file scale-rm/test/data/land/param.bucket.conf.

#### Setting vertical grids for land model

The number of vertical layers for land model is specified by (LKMAX) in [PARAM\_LAND\_GRID\_CARTESC\_INDEX]. The vertical grid intervals are specified by (LDZ) in [PARAM\_LAND\_GRID\_CARTESC]. The unit is [m].
```
&PARAM_LAND_GRID_CARTESC_INDEX
    LKMAX = 7,
        ; number of vertical layers
    /
    &PARAM_LAND_GRID_CARTESC
    LDZ = 0.05, 0.15, 0.30, 0.50, 1.00, 2.00, 4.00,
    ; grid interval along the vertical direction
    /
```

You can specify an array in (LDZ) for the number of vertical layers specified by (LKMAX). The order of the array is from the ground surface to the underground.

#### Fluxes between atmosphere and land surface

The surface fluxes between atmosphere and land surface is calculated in the scheme selected by (LAND\_SFC\_TYPE). The bulk scheme specified in (BULKFLUX\_TYPE) in [PARAM\_BULKFLUX] is used for this calculation. Refer to Section 4.4.6 for more detail of bulk scheme.

### 4.4.8.1 Fixed to initial condition

If (LAND\_DYN\_TYPE) is INIT, the land condition is fixed to the initial condition. In this case, the number of vertical layer ((LKMAX)) must be 1. The layer depth can be arbitrary as long as it is positive value.

### 4.4.8.2 BUCKET land scheme

#### land surface skin temperature

The definition of the land surface skin temperature is specified by (LAND\_SFC\_TYPE) in [PARAM\_LAND]. The default setting is SKIN.

|            | Table 4.4.15: List of land surface scheme types for BUCKET land scheme      |
|------------|-----------------------------------------------------------------------------|
| Schemes    | Description of scheme                                                       |
| SKIN       | Determine surface temperature at which energy fluxes balance                |
| FIXED-TEMF | Use the soil temperature at the uppermost land level as surface temperature |

When (LAND\_SFC\_TYPE) is SKIN, the surface temperature is determined so that the heat budget of the energy fluxes at the ground surface is balanced. In practice, the surface temperature is calculated iteratively to reduce residual from the heat balance based on Tomita (2009). This surface temperature is different from the soil temperature at the uppermost layer of a land model.

When (LAND\_SFC\_TYPE) is FIXED-TEMP, the surface temperature is assumed to be the same as the soil temperature at the uppermost layer of a land model; the soil temperature is determined by the land model physics. Heat energy fluxes are calculated by the given surface temperature. The residuals of heat balance are provided to the land model as ground heat flux.

### land nudging

If (LAND\_DYN\_TYPE) is BUCKET, you can apply relaxation (nudging) of land variables by using external data. The parameter of the nudging can be specified in run.conf.



```
&PARAM_LAND_DYN_BUCKET
LAND_DYN_BUCKET_nudging = .false.,
                                                               ; use nudging for land vari-
                                                               ables?
LAND_DYN_BUCKET_nudging_tau = 0.0_DP,
                                                               ; relaxation time for nudging
LAND_DYN_BUCKET_nudging_tau_unit = "SEC",
                                                               ; relaxation time unit
LAND_DYN_BUCKET_nudging_basename = "",
                                                               ; base name of input data
LAND_DYN_BUCKET_nudging_enable_periodic_year = .false.,
                                                               ; annually cyclic data?
                                                               ; monthly cyclic data?
LAND_DYN_BUCKET_nudging_enable_periodic_month = .false.,
                                                               ; dayly cyclic data?
LAND_DYN_BUCKET_nudging_enable_periodic_day = .false.,
LAND_DYN_BUCKET_nudging_step_fixed = 0,
                                                               ; Option for using specific step
                                                               number of the data
LAND_DYN_BUCKET_nudging_defval = UNDEF,
                                                               ; default value of the variables
LAND_DYN_BUCKET_nudging_check_coordinates = .true.,
                                                               ; check coordinate of variables
LAND_DYN_BUCKET_nudging_step_limit = 0,
                                                               ; maximum limit of the time
                                                               steps of the data
```

When (LAND\_DYN\_BUCKET\_nudging\_tau) is 0, the value of land variables is totally replaced by the external file. This configuration is the same as (LAND\_TYPE) = "FILE" in the old version. When (LAND\_DYN\_BUCKET\_nudging\_step\_fixed) is less than 1, the certain time of the input data is used and temporal interpolation is applied to calculate the value of current time. When the specific step number is set for (LAND\_DYN\_BUCKET\_nudging\_step\_fixed), the data of that step is always used without interpolation. When the number larger than 0 is set to (LAND\_DYN\_BUCKET\_nudging\_step\_limit), The data at the time step exceed this limit would not be read. When (LAND\_DYN\_BUCKET\_nudging\_step\_limit) is 0, no limit is set.

## 4.4.9 Urban model

The urban scheme calculates the energy and water fluxes between the atmosphere and urban surface/canopy. To calculate them, it also updates the urban state, e.g., urban surface temperature, moisture, and so on. The timing of updating (calling) the urban scheme is configured at (TIME\_DT\_URBAN) and (TIME\_DT\_URBAN\_UNIT) in [PARAM\_TIME] (Refer to Section 4.2.5 for the details).

The urban scheme used is specified in (URBAN\_DYN\_TYPE) in [PARAM\_URBAN] in init.conf and run.conf, as follows:

```
&PARAM_URBAN
URBAN_DYN_TYPE = "NONE", ; Select a scheme from Table 4.4.16
```

| Table 4.4.16: | List of | urban | scheme | types |
|---------------|---------|-------|--------|-------|
|---------------|---------|-------|--------|-------|

| Schemes     | Description of scheme                      | reference            |
|-------------|--------------------------------------------|----------------------|
| NONE or OFF | Do not use an urban scheme                 |                      |
| LAND        | Urban areas are calculated by a land model |                      |
| KUSAKA01    | Single-layer canopy model                  | Kusaka et al. (2001) |

If urban land-use is included in the calculation domain, neither NONE nor OFF can be chosen as (URBAN\_TYPE). When they are selected under that situation, the program immediately stops without calculation, outputting the following message to LOG file:

ERROR [CPL\_vars\_setup] Urban fraction exists, but urban component has not been called. Please check this inconsistency. STOP.

If LAND type is selected as (URBAN\_DYN\_TYPE), the land model specified in [PARAM\_LAND] is used to calculate the surface fluxes and soil variables for urban areas. Since the land model implemented is only the slab model in the current version, Choosing LAND type means applying the slab model to the urban areas. In this case, parameters for an urban area should be provided in the land parameter table described in Section 4.4.8.

KUSAKA01 scheme is a single-layer urban canopy model. Since the scheme considers the energy exchange between the top of urban canopy and atmosphere, the building height, i.e., (ZR) in [PARAM\_URBAN\_DATA], must be located at least the two meters lower than the face level of the 1st atmospheric layer.

### 4.4.9.1 KUSAKA01 urban scheme

#### Settings of layers at facets of urban structures: roof, wall, and road

KUSAKA01 considers two-dimentional symmetrical street canyons as urban geometry. The boundaries between facets of urban structures and atmosphere consist of roof and wall surfaces of a building and road surface. The temperature of these surfaces are calculated by heat diffusion. The number of layers used to calculate the heat diffusion is specified by (UKMAX) in [PARAM\_URBAN\_GRID\_CARTESC\_INDEX]. The thickness of each layer is specified by (UDZ) in [PARAM\_URBAN\_GRID\_CARTESC]. The unit is [m].

You can specify an array in (UDZ) for the number of layers specified by (UKMAX). The order of the array is from the facet to inside of urban structures. The settings are applied to the surfaces of roof, wall, and road.

### Urban parameters

There are many parameters characterizing urban morphology in the KUSAKA01 scheme. Regarding the available urban parameters, please refer to the namelist of [PARAM\_URBAN\_DATA]; you can find it from the link in the "NAMELIST Parameters" of Section 5.3.2. The sample file for the [PARAM\_URBAN\_DATA] is provided at scale/scale-rm/test/data/urban/param.kusaka01.dat. The configuration for urban parameters is specified in [PARAM\_URBAN\_DYN\_KUSAKA01].

| &PARAM_URBAN_DYN_KUSAKA01                                   |                                          |
|-------------------------------------------------------------|------------------------------------------|
| $DTS_MAX = 0.1$ ,                                           | ; Limit of temperature change per 1 step |
|                                                             | = DTS_MAX * DT [K/step]                  |
| BOUND = 1,                                                  | ; Boundary condition at the innermost    |
|                                                             | level of building, roof, and load        |
|                                                             | 1: Zero-flux, 2: Temperature const.      |
| URBAN_DYN_KUSAKAO1_PARAM_IN_FILENAME = "",                  | ; File name of urban parameter table     |
| <pre>URBAN_DYN_KUSAKA01_GRIDDED_ZOM_IN_FILENAME = "",</pre> | ; File name of gridded Z0m data          |
| <pre>URBAN_DYN_KUSAKA01_GRIDDED_AH_IN_FILENAME = "",</pre>  | ; File name of gridded AH data           |
| <pre>URBAN_DYN_KUSAKA01_GRIDDED_AHL_IN_FILENAME = "",</pre> | ; File name of gridded AHL data          |
|                                                             | /                                        |

The values of urban parameters used in a calculation are determined through the following three steps.



- 1) The default values given in the SCALE source code are applied to all grid cells in the calculation domain.
- 2) If any file is given to (URBAN\_DYN\_KUSAKA01\_PARAM\_IN\_FILENAME) of [PARAM\_URBAN\_DYN\_KUSAKA01], the value of urban parameter(s) specified in [PARAM\_URBAN\_DATA] in the file is read. Then, the default value(s) is replaced with the given value(s). The replaced data is also applied to all grid cells in the calculation domain.
- 3) For the roughness length for momentum (Z0m) and anthropogenic sensible heat (AH) and latent heat (AHL), if the gridded data file is given, the gridded data is read from the file. Then, the value specified by 1) or 2) is replaced with the gridded data. That is, it is possible to use different values for each grid for Z0m, AH, and AHL. The gridded data file for Z0m, AH, and AHL is specified by (URBAN\_DYN\_KUSAKA01\_GRIDDED\_Z0M\_IN\_FILENAME), (URBAN\_DYN\_KUSAKA01\_GRIDDED\_AH\_IN\_FILENAME), and (URBAN\_DYN\_KUSAKA01\_GRIDDED\_AHL\_IN\_FILENAME), respectively.

Users need to prepare beforehand the gridded data for (URBAN\_DYN\_KUSAKA01\_GRIDDED\_(ZOM|AH|AHL)\_IN\_FILENAME) with the SCALE-netCDF format according to the experimental settings. These SCALE-netCDF data can be converted from the simple binary format data using scale\_init.

#### How to prepare gridded urban data with SCALE-netCDF

scale\_init is used to prepare the gridded urban data; the detailed explanations are given in Section 4.1.3. Here, a practical usage is demonstrated with examples of configuration file and namelist file.

To create the SCALE-netCDF file according to the experimental settings from a certain binary format data, add [PARAM\_CONVERT] and [PARAM\_CNVUSER] to init.conf. The following shows an example of init.conf in the case of preparing AH gridded data.

```
&PARAM_CONVERT
CONVERT_USER = .true.,
&PARAM_CNVUSER
CNVUSER_FILE_TYPE = "GrADS",
CNVUSER_NSTEPS = 24,
                                                   ; Set 1 for Z0M and 24 for AH and AHL
CNVUSER_GrADS_FILENAME = "namelist.grads.ah",
CNVUSER_GrADS_VARNAME = "AH",
                                                   ; (name) of (GrADS_ITEM) in namelist file
CNVUSER_GrADS_LONNAME = "lon"
                                                   ; (name) of (GrADS_ITEM) in namelist file
CNVUSER_GrADS_LATNAME = "lat",
                                                   ; (name) of (GrADS_ITEM) in namelist file
CNVUSER_OUT_BASENAME = "urb_ah.d01",
CNVUSER_OUT_VARNAME = "URBAN_AH",
                                                   ; URBAN_AH, URBAN_AHL, or URBAN_ZOM
CNVUSER_OUT_VARDESC = "Anthropogenic sensible heat flux",
CNVUSER_OUT_VARUNIT = "W/m2",
                                                   ; Unit
CNVUSER_OUT_DTYPE = "REAL8"
CNVUSER_OUT_DT = 3600D0,
```

The following shows an example of namelist file, corresponding to "ctl" file of GrADS.



```
#
# Dimension
#
&GrADS_DIMS
nx = 361,
ny = 181,
nz = 1,
/
#
# Variables
#
&GrADS_ITEM name='lon', dtype='linear', swpoint=0.0d0, dd=1.0d0 /
&GrADS_ITEM name='lat', dtype='linear', swpoint=-90.0d0, dd=1.0d0 /
&GrADS_ITEM name='AH', dtype='map', fname='urb_ah', startrec=1, totalrec=1,
bintype='real4', yrev=.false., missval=-999.0E+0 /
```

Although the initial time and the time interval in the output file are specified by (TIME\_STARTDATE) in [PARAM\_TIME] and (CNVUSER\_OUT\_DT), respectively, as described in Sec. 4.1.3, the urban scheme ignores these settings when reading the data. That is, regardless of the time coordinate in the SCALE-netCDF file, the gridded AH and AHL data are assumed to contain the data for 24 hours in the order from 1 to 24 (local time: LT) with the interval of one hour. The local time here is defined by  $UTC + (MAPPROJECTION_basepoint_lon)/15.0$  using the longitude of the reference point. Note that the unit of the time axis of the AH and AHL data array may change in the next version or later. The ZOM data is read only the first data because ZOM is assumed to be unchanged during the simulation (namely, (CNVUSER\_NSTEPS)=1). The other settings are as described in Sec. 4.1.3.



## Chapter 4.5

# Common settings

## 4.5.1 Log File

### 4.5.1.1 Log File Output

SCALE-RM can output log files when you execute scale-rm, scale-rm\_init, and scale-rm\_pp. On a default setting, log messages from the process of number zero is written into "LOG.pe000000" for scale-rm\_init", and pp\_LOG.pe000000" for scale-rm\_pp. Users can modify the settings of log file outputs by editing configuration files as follows:

| /         | &PARAM_IO                                 |                                                                 | 1 |
|-----------|-------------------------------------------|-----------------------------------------------------------------|---|
|           | IO_LOG_BASENAME = 'LOG',                  | ; Output name of log file                                       |   |
|           | <pre>IO_LOG_ALLNODE = .false.,</pre>      | ; Output log files for all processes?                           |   |
|           | <pre>IO_LOG_SUPPRESS = .false.,</pre>     | ; If .true., log output is suppressed                           |   |
|           | <pre>IO_LOG_NML_SUPPRESS = .false.,</pre> | ; If .true., namelist parameter output is suppressed            |   |
|           | IO_NML_FILENAME = '',                     | ; If specified, namelist parameter is output to specified file. |   |
|           |                                           | Otherwise to the log file.                                      |   |
|           | $IO\_STEP\_TO\_STDOUT = -1,$              | ; If positive, the time step information is output to standard  |   |
|           |                                           | output.                                                         |   |
| $\langle$ | 1                                         |                                                                 |   |
|           |                                           |                                                                 |   |

The name of the log file is controlled by (IO\_LOG\_BASENAME) in [PARAM\_IO]. In the case of above default setting, the name of log file for the master process is "LOG.pe000000". (IO\_LOG\_ALLNODE) controls whether to output log files for all processes or not. When (IO\_LOG\_ALLNODE) is .true., log files for all processes will be created, otherwise the log file is output only from master process, namely rank 0.

If (IO\_LOG\_SUPPRESS) is set to .true., no log files are created and the almost all log messages are not output. Only the information about elapsed time is sent to the standard output (STDOUT), even if (IO\_LOG\_SUPPRESS) is set to .true..

The NAMELIST parameters are output unless (IO\_LOG\_NML\_SUPPRESS) is set to .true.. The parameters are output to the log file as default. They can be output different file by setting (IO\_NML\_FILENAME). Note that the file specified by (IO\_NML\_FILENAME) can be used as input configuration file for later runs.

The time step information is output to the log file. Details of the information is explained in the next section. If  $(IO\_STEP\_TO\_STDOUT)$  is set as > 0, the time step information is output to the STDOUT, too. All the time step information is output to the log file. For the STDOUT, the step interval of output is specified by the number of  $(IO\_STEP\_TO\_STDOUT)$ .



## 4.5.1.2 Execution Time Information in Log File

You can find the lines with following format in the log file when you execute scale-rm:

+++++ TIME: 0000/01/01 00:06:36 + 0.600 STEP: 1984/ 432000 WCLOCK: 2000.2

This line presents messages about status of computation as follows:

- Now, carrying out 6m36.6s of time integration from the initial time of "0000/01/01 00:00:00 + 0.000".
- This is 1984th step in whole time steps of 432000.
- 2000.2s was taken in a wall clock time (cpu time).

Furthermore, the required time for this computation can be estimated from these information. In this case, 121 hours (  $= 2000.2 \times 432000 \div 1984$  ) is the estimated elapsed time.

Messages in the log file are output in following format.

```
type [subroutine name] message
messages
...
```

type : message type that can take one of the following.

- INFO: General information about job execution
- WARN: Considerable event about job execution
- ERROR: Fatal error that involves stop of execution

subroutine name : the subroutine name writing the message.

message : the main body of the message.

The sample of error message is as follows.

## 4.5.2 Setting the monitor file

A monitor file and output variables are configured at [PARAM\_MONITOR] and [MONITOR\_ITEM] in run.conf. The default format of the monitor file is configured at [PARAM\_MONITOR].

&PARAM\_MONITOR MONITOR\_OUT\_BASENAME = "monitor", ; Base name of the output file MONITOR\_USEDEVIATION = .true., ; Use deviation from first step? MONITOR\_GLOBAL\_SUM = .true., ; Use global summation? MONITOR\_STEP\_INTERVAL = 1, ; Step interval of monitor output

```
&MONITOR_ITEM
NAME = "ENGT", Variable name. List of variables is shown in Table 4.5.1, 4.5.2, 4.5.3, and 4.5.4
```

Monitor component outputs domain total of physical quantity such as dry air mass, water vapor, total energy, surface precipitation flux, and so on. These output is useful to check mass and energy budget. The output value is global domain total if (MONITOR\_GLOBAL\_SUM) is .true., while it is total in the individual MPI process. The output value is the difference from the initial value for the snapshot-type quantity, if (MONITOR\_USEDEVIATION) is .true. For the tendency-type quantity, the output value is temporally accumulated value.

The monitor file is ASCII format, and the name of the file is set by (MONITOR\_OUT\_BASENAME). It is (MONITOR\_OUT\_BASENAME).peall if (MONITOR\_GLOBAL\_SUM) is .true.,

nothewise it is (MONITOR\_OUT\_BASENAME).peXXXXXX, where XXXXXXX is the process number.

The time interval of monitor output is specified in the (MONITOR\_STEP\_INTERVAL) as the multiple of time step  $(\Delta t)$ .

For example, let the below setting for [MONITOR\_ITEM] be added with (MONITOR\_STEP\_INTERVAL) = 10 and (MONITOR\_USEDEVATION) = .true.,

&MONITOR\_ITEM NAME="DENS" / &MONITOR\_ITEM NAME="QTOT" / &MONITOR\_ITEM NAME="EVAP" / &MONITOR\_ITEM NAME="PREC" /

The monitor file is output as follows;

| DENS QTOT EVAP PREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STEP= 1 (MAIN) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STEP = 11 (MAIN) - 2.27510244E + 11 6.67446186E + 11 9.39963392E + 10 2.98914905E + 11 0.67446186E + 11 0.6744618E + 11 0.6748E + 11 0.6784E                                                                                                                                           |
| STEP = 21 (MAIN) - 3.04179976E + 11 1.16811060E + 12 1.64602175E + 11 7.56753096E + 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STEP= 31 (MAIN) -7.55688670E+11 1.42784177E+12 2.25452889E+11 1.42932656E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STEP= 41 (MAIN) -9.45082752E+11 1.56057082E+12 2.82959478E+11 2.19673659E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $STEP = 51 (MAIN) - 1.02869018E + 12 \ 1.66179511E + 12 \ 3.45854371E + 11 \ 2.98295445E + 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STEP = 61 (MAIN) - 1.69997222E + 12 1.74413176E + 12 4.20139948E + 11 3.78414734E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STEP= 71 (MAIN) -1.72816474E+12 1.81512719E+12 5.04055360E+11 4.59740827E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $STEP = 81 (MAIN) - 1.58692434E + 12 \ 1.88174470E + 12 \ 5.93665632E + 11 \ 5.41341475E + 12 \ 5.41341475E$                                                                                                                                        |
| STEP = 91 (MAIN) - 1.71362764E + 12 1.94867974E + 12 6.86327009E + 11 6.22069061E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\label{eq:step} \text{STEP} = 101 \ (\text{MAIN}) \ -2.04231630 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.03479603 \text{E} + 12 \ 1.99886166 \text{E} + 12 \ 7.80859828 \text{E} + 11 \ 7.80859828 \text{E} + 11 \ 7.80859828 \text{E} + 12 \ 7.808598848 \text{E} + 12 \ 7.808598848 \text{E} + 12 \ 7.808598488 \text{E} + 12 \ 7.8085984888 \text{E} + 12 \ 7.8085984888888888888888888888888888888888$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Table 4.5.1.                 | Variables in the atmospheric model available for in       |                  | 10<br>T  |
|------------------------------|-----------------------------------------------------------|------------------|----------|
| Values                       | Description                                               | Unit             | Type     |
| DENS                         | Air mass                                                  | kg               | snapshot |
| MOMZ                         | Momentum in z-direction                                   | kg m/s           | snapshot |
| MOMX                         | Momentum in x-direction                                   | kg m/s           | snapshot |
| MOMY                         | Momentum in y-direction                                   | $\rm kg \ m/s$   | snapshot |
| RHOT                         | Potential temperature                                     | kg K             | snapshot |
| TRACER*                      | Tracers in prognostic variable                            | unit $\times$ kg | snapshot |
| QDRY                         | Dry air mass                                              | kg               | snapshot |
| QTOT                         | Water mass                                                | kg               | snapshot |
| EVAP                         | Evaporation at the surface                                | kg               | tendency |
| PREC                         | Precipitation                                             | kg               | tendency |
| ENGT                         | Total energy (ENGP + ENGK + ENGI)                         | J                | snapshot |
| ENGP                         | Potential energy $(\rho * g * z)$                         | J                | snapshot |
| ENGK                         | Kinetic energy $(\rho * (W^2 + U^2 + V^2)/2)$             | J                | snapshot |
| ENGI                         | Internal energy $(\rho * C_v * T)$                        | J                | snapshot |
| ENGFLXT                      | Total energy flux convergence                             | J                | tendency |
|                              | (SH + LH + SFC_RD - TOM_RD)                               |                  | Ť        |
| ENGSFC_SH                    | Surface sensible heat flux                                | J                | tendency |
| ENGSFC_LH                    | Surface latent heat flux                                  | J                | tendency |
| ENGSFC_EVAP                  | Internal energy of surface evapolation                    | J                | tendency |
| ENGSFC_PREC                  | Internal energy of precipitation                          | J                | tendency |
| ENGSFC RD                    | Surface net radiation flux                                | J                | tendency |
|                              | (SFC LW up+SFC SW up-SFC LW dn-SFC SW dn)                 | -                |          |
| ENGTOM RD                    | Top-of-model net radiation flux                           | J                | tendency |
| 2                            | (TOM LW UN+TOM SW Talaation Hand<br>(TOM LW dn-TOM SW dn) | 0                | condency |
| ENGSEC LW up                 | Surface longwave upward flux                              | Л                | tendency |
| ENGSEC LW dn                 | Surface longwave downward flux                            | J                | tendency |
| ENGSEC SW up                 | Surface shortwave upward flux                             | Ţ                | tendency |
| ENGSEC SW dn                 | Surface shortwave downward flux                           | Ţ                | tendency |
| FNGTOM IW up                 | Top-of-model longwaye upward flux                         | Ţ                | tendency |
| ENGTOM_LW_dp                 | Top-of-model longwave downward flux                       | J                | tendency |
| ENGTON_EW_un                 | Top-of-model shortwave upward flux                        | J                | tendency |
| ENGTON_SW_dp                 | Top-of-model shortwave downward flux                      | J                | tendency |
| MASSTND DAMP                 | Mass tendency by nudging                                  | b<br>ka          | tendency |
| MASSIND_DAM<br>MASSELY WEST  | Mass function by nucleary                                 | ka               | tendency |
| MASSFLA_WLSI<br>MASSFLY FAST | Mass flux at western boundary                             | ka               | tendency |
| MAGGELY GOUTH                | Mass flux at castorn boundary                             | kg               | tondoncy |
| MAGGELY MODTU                | Mass flux at southern boundary                            | kg               | tendency |
| OTOTTND DAMD                 | Water mass tendency by pudging                            | kg               | tendency |
|                              | Water mass flux at western boundary                       | kg               | tendency |
| QIUIFLA_WEBI                 | Water mass flux at western boundary                       | kg               | tendency |
| QIUIFLA_EASI                 | Water mass flux at eastern boundary                       | kg               | tendency |
| QIUIFLA_SUUIH                | Water mass nux at southern boundary                       | kg<br>1          | tendency |
| QIUIFLA_NUKIH                | Water mass nux at northern boundary                       | kg<br>1          | tendency |
| QIUIIND_NF                   | water mass tendency by negative fixer                     | kg<br>1          | tendency |
| ENGLIND_NF                   | We terr and energy tendency by negative fixer             | kg<br>lan        | tendency |
| QIUIFLX_IB_WESI              | Water mass flux at western boundary by turbu-             | кg               | tendency |
|                              | lence                                                     | 1                | . 1      |
| QTUTFLX_TB_EAST              | Water mass flux at eastern boundary by turbu-             | kg               | tendency |
|                              | lence                                                     | 1                | , 1      |
| QTUTFLX_TB_SOUTH             | Water mass flux at southern boundary by turbu-            | kg               | tendency |
|                              | lence                                                     | 1                |          |
| QTUTFLX_TB_NORTH             | Water mass flux at northern boundary by turbu-            | kg               | tendency |
|                              | lence                                                     |                  |          |

Table 4.5.1: Variables in the atmospheric model available for monitor output

| Values          | Description                                         | Unit              | Type     |
|-----------------|-----------------------------------------------------|-------------------|----------|
| OCN_TEMP        | Sea water temperature                               | ${ m K} { m m}^3$ | snapshot |
| OCN_ICE_TEMP    | Sea ice temperature                                 | ${ m K}~{ m m}^3$ | snapshot |
| OCN_ICE_MASS    | Sea ice mas                                         | $_{\rm kg}$       | snapshot |
| OCN_MASFLX_TOP  | Surface mass flux (top of open ocean and sea ice)   | $_{\rm kg}$       | snapshot |
| OCN_MASFLX_MID  | Sea surface mass flux (top of open ocean and bottom | $_{\rm kg}$       | snapshot |
|                 | of sea ice)                                         |                   |          |
| OCN_MAS_SUPL    | Mass supply to conserve sea water                   | $_{\rm kg}$       | tendency |
| OCN_MASCNV      | Total mass convergence                              | $_{\rm kg}$       | tendency |
| OCN_WTR_MASCNV  | Sea water mass convergence                          | $_{\rm kg}$       | tendency |
| OCN_ICE_MASCNV  | Sea ice mass convergence                            | kg                | tendency |
| OCN_WTR_ENGI    | Sea water internal energy                           | J                 | snapshot |
| OCN_ICE_ENGI    | Sea ice internal energy                             | J                 | snapshot |
| OCN_GHFLX_TOP   | Surface ground heat flux                            | J                 | tendency |
| OCN_GHFLX_MID   | Sea surface ground heat flux                        | J                 | tendency |
| OCN_ENGIFLX_TOP | Surface internal energy flux                        | J                 | tendency |
| OCN_ENGIFLX_MID | Sea surface internal energy flux                    | J                 | tendency |
| OCN_ENGI_SUPL   | Internal energy supply                              | J                 | tendency |
| OCN_ENGICNV     | Total internal energy convergence                   | J                 | tendency |
| OCN_WTR_ENGICNV | Sea water internal energy convergence               | J                 | tendency |
| OCN_ICE_ENGICNV | Sea ice internal energy convergence                 | J                 | tendency |

Table 4.5.2: Variables in the ocean model available for monitor output

Table 4.5.3: Variables in the land model available for monitor output

| Values        | Description                     | Unit              | Type     |
|---------------|---------------------------------|-------------------|----------|
| LND_TEMP      | Land temperature                | ${ m K}~{ m m}^3$ | snapshot |
| LND_WATER     | Land water                      | kg                | snapshot |
| LND_ICE       | Land ice                        | kg                | snapshot |
| LND_MASSFC    | Surface water mss flux          | kg                | tendency |
| LND_ROFF      | Runoff water                    | kg                | tendency |
| LND_MASFLX    | Total mass change               | kg                | tendency |
| LND_ENGI      | Total internal energy           | J                 | snapshot |
| LND_WTR_ENGI  | Water internal energy           | J                 | snapshot |
| LND_ICE_ENGI  | Ice internal energy             | J                 | snapshot |
| LND_ENGSFC_GH | Surface ground heat flux        | J                 | tendency |
| LND_ENGSFC_EI | Surface internal energy flux    | J                 | tendency |
| LND_ROFF_EI   | Internal energy of runoff water | J                 | tendency |
| LND_ENGFLX    | Total internal energy change    | J                 | tendency |



Table 4.5.4: Variables in the urban model available for monitor output

| Values    | Description              | Unit                      | Type     |
|-----------|--------------------------|---------------------------|----------|
| URB_TRL   | Roof temperature         | ${ m K}~{ m m}^3$         | snapshot |
| URB_TBL   | Wall temperature         | ${ m K}~{ m m}^3$         | snapshot |
| URB_TGL   | Road temperature         | ${ m K}~{ m m}^3$         | snapshot |
| URB_TR    | Roof surface temperature | ${\rm K}~{\rm m}^2$       | snapshot |
| URB_TB    | Wall surface temperature | ${\rm K}~{\rm m}^2$       | snapshot |
| URB_TG    | Road surface temperature | ${\rm K}~{\rm m}^2$       | snapshot |
| URB_TC    | Canopy temperature       | ${\rm K}~{\rm m}^2$       | snapshot |
| URB_UC    | Canopy wind speede       | $\mathrm{m}^3/\mathrm{s}$ | snapshot |
| URB_QC    | Canopy humidity          | kg/m                      | snapshot |
| URB_RAINR | Roof water               | kg                        | snapshot |
| URB_RAINB | Wall water               | kg                        | snapshot |
| URB_RAING | Road water               | kg                        | snapshot |
| URB_ROFF  | Runoff water             | kg                        | tendency |



## 4.5.3 Setting Physical Constants

The some physical constants are able to modify in [PARAM\_CONST] in the configuration file.

```
&PARAM_CONST
CONST_RADIUS = 6.37122D+6,
                                      ; Radius of the planet [m]
CONST OHM = 7.2920D-5,
                                      ; Angular velocity of the planet [1/s]
CONST_GRAV = 9.80665DO,
                                      ; Standard acceleration of gravity [m/s2]
CONST_Rdry = 287.04DO,
                                      ; Specific gas constant (dry air) [J/kg/K]
CONST_CPdry = 1004.64DO,
                                      ; Specific heat (dry air, constant pressure) [J/kg/K]
CONST_LAPS = 6.5D-3,
                                      ; Lapse rate of ISA [K/m]
CONST_Pstd = 101325.DO,
                                      ; Standard pressure [Pa]
CONST_PREOO = 100000.DO,
                                      ; Pressure reference [Pa]
CONST_Tstd = 288.15D0,
                                      ; Standard temperature (15C) [K]
CONST_THERMODYN_TYPE = 'EXACT',
                                      ; Internal energy type
CONST_SmallPlanetFactor = 1.D0,
                                     ; Factor for small planet [1]
```

When (CONST\_THERMODYN\_TYPE) is 'EXACT', temperature dependencies of the latent heat are considered. When (CONST\_THERMODYN\_TYPE) is 'SIMPLE', specific heat of water categories are set to that of dry air, and temperature dependencies of the latent heat are ignored. The (CONST\_RADIUS) is multiplied by the (CONST\_SmallPlanetFactor). At the same time, (CONST\_OHM) is multiplied by the inverse of the (CONST\_SmallPlanetFactor).

## 4.5.4 Setting Calendar

The calendar type can be specified in **[PARAM\_CALENDAR]** in the configuration file. Gregorian calendar is used in default.

```
&PARAM_CALENDAR
CALENDAR_360DAYS = .false. ; Whether 12x30 days calendar is used?
CALENDAR_365DAYS = .false. ; Whether leap year is considered?
```

The setting of the calendar affects calculation of solar zenith angle. It is calculated so that length of one year and the full circle of the ecliptic match. Note that the external data in the different calendar should not be read.

When (CALENDAR\_360DAYS) is .true., the calendar that one year is 12 months and one month is 30 days, is set. When (CALENDAR\_365DAYS) is .true., the Gregorian calendar is used without leap year.

## 4.5.5 Setting Random Number Generator

A parameter of the random number generator is set in [PARAM\_RANDOM] in the configuration file.

```
&PARAM_RANDOM
    RANDOM_FIX = .false. ; Random seed is fixed?
/
```



The intrinsic function of random number generator is used in the scale library. Note that the generated number is pseudorandom. The seed of the random number is determined by current datetime, cpu time, and the process id. When (RANDOM\_FIX) is .true., the seed is fixed by specific number. This option is useful to reproduce the simulation results, which use the random perturbation for the initial field.

## 4.5.6 Setting Performance Profiler

Parameters of the performance profiler are set in [PARAM\_PROF] in the configuration file.

```
&PARAM_PROF
PROF_rap_level = 2 ; Rap output level
PROF_mpi_barrier = .false. ; Add barrier command of MPI in every rap?
/
```

To measure the elapse time, utility functions (PROF\_rapstart,PROF\_rapend) are inserted in the source code. These measurement sections are also used for detailed performance profiling. The results of the rap time are displayed at the end of the log file. If (IO\_LOG\_ALLNODE) in [PARAM\_IO] is .true., the result of each process is reported to each log file individually. If (IO\_LOG\_SUPPRESS) in [PARAM\_IO] is .true., the result is sent to the standard output. Each measurement section has the output level. The section, which has the output level larger than the (PROF\_rap\_level) are not measured.

When (PROF\_mpi\_barrier) is .true., barrier command of MPI is called before and after getting current time. This option is useful to separate the computation time and communication time. The computation time often shows large imbalance among the processes.

## 4.5.7 Setting Statistics Monitor

Parameters of the statistics monitor are set in [PARAM\_STATISTICS] in the configuration file.

```
&PARAM_STATISTICS
STATISTICS_checktotal = .false.
STATISTICS_use_globalcomm = .false.
(Calculate total with global communication?)
/
```

When (STATISTICS\_checktotal) is .true., domain total of some variables are calculated and reported to the log file, for debugging. When (STATISTICS\_use\_globalcomm) is .true., global domain total is calculated by using global communication. This option can slow the simulation time. When the option is .false., the total is calculated in the spatial region allocated for each process.



## Chapter 4.6

# Post-processing

## 4.6.1 SCALE NetCDF Operator (SNO)

### NOTICE

SNO is a post-processing tool for the SCALE-netCDF file generated by the SCALE version 5.3 or later. SNO is not available for the older version's SCALE-netCDF files because of the less information in the global attributes and the attributes of the axis data.

Unless (FILE\_AGGREGATE) = .true. in [PARAM\_FILE] with the Parallel netCDF (PnetCDF) (Sec. 5.1.1.5), the output file of SCALE-RM, i.e., SCALE-netCDF file, is decomposed into the multiple files according to the horizontal domain decomposition with the multiple MPI processes; each process outputs a file. Although this is an efficient way from the viewpoint of the file I/O throughput during the simulation, it may not be useful in the following points. 1) When the number of MPI processes is large, it is not easy to handle such a lot of files. 2) Even if we use the same experimental settings across multiple experiments except for the number of MPI processes, we cannot share the init/boundary/restart/history files between the experiments. 3) Many analytical and visualization tools do not support such the spatially decomposed files.

SNO has the following features to reduce the annoyance of handling these decomposed files. The format in the parentheses indicates the supported format which SNO output.

- Combine the decomposed multiple files into a single file (SCALE-netCDF).
- Convert a single file or multiple files into multiple files with different number of decomposition (SCALE-netCDF ).
- Regrid data from the model-level to the different model-level coordinate (SCALE-netCDF ).
- Regrid data from the model-level to the actual height-level coordinate (SCALE-netCDF).
- Regrid data from the model-level to the pressure-level coordinate (SCALE-netCDF).
- Regrid data from the model grid to the geodesic (latitude-longitude) grid coordinate (NetCDF, but NOT SCALE-netCDF !).
- Average history data over multiple steps (SCALE-netCDF ).

### 4.6.1.1 Basic usage

The settings for SNO are specified in [PARAM\_SNO].

```
&PARAM_SNO
basename_in = "",
                              ; Path and basename of the input file(s)
basename_out = "",
                              ; Basename of the output file
vars = "",
                              ; Name of variables to be processed
debug = .false.,
                              ; Output verbose log for debugging?
                              ; Decomposition number of files in x-direction
nprocs_x_out = 1,
                                If output_grads = true, it must be set to 1.
                              ; Decomposition number of files in y-direction
nprocs_y_out = 1,
                                If output_grads = true, it must be set to 1.
                              ; (SCALE-netCDF ) Whether output to a single netCDF file when
output_single = .false.,
                              using multiple MPI processes?
dirpath_out = "",
                              ; (GrADS ) Directory path of a output file
output_grads = .false.,
                              ; (GrADS ) Output with grads format?
```

(basename\_in) is always required. The information of the decomposed files, such as the total number of files and the 2-D topology, is read from the first file (\*.pe000000.nc).

If (vars) is not specified, all of variables in the input file are processed.

The default value of (nprocs\_x\_out) and (nprocs\_y\_out) is 1; it means that multiple files are combined to a single file. If (output\_single) = .true., the input data is combined in a single file regardless of the settings of (nprocs\_x\_out) and (nprocs\_y\_out).

The number of MPI processes to execute SNO must be the same with nprocs\_x\_out × nprocs\_y\_out, and (nprocs\_x\_out) and (nprocs\_y\_out) must be a divisor of the decomposition number of input files in x- and y-directions, respectively.

When the output format is SCALE-netCDF, (basename\_out) is required.

If (output\_grads) is set to .true., data is output in a single file with binary format, which is readable by GrADS. If (dirpath\_out) is empty, the directory path for output is set to the current directory. When the output format is GrADS, (nprocs\_x\_out) and (nprocs\_y\_out) must be 1. In addition to [PARAM\_SNO], SNO depends on the following namelist parameters:

- [PARAM\_IO]: Log file (Sec. 4.5.1)
- [PARAM\_PROF]: Performance Profiler (Sec. 4.5.6)
- [PARAM\_CONST]: Physical Constants (Sec. 4.5.3)
- [PARAM\_CALENDAR]: Calendar (Sec. 4.5.4)

### 4.6.1.2 Examples of configuration: conversion of data format and decomposition numbers

Convert multiple SCALE-netCDF files to a single NetCDF file (single MPI process)

```
&PARAM_SNO
  basename_in = 'input/history_d02',
  basename_out = 'output/history_d02_new',
/
```

Generally, a single netCDF file is readable by GrADS without any external metadata file. However, GrADS interface is limited and cannot understand the SCALE-netCDF format, which contains the associated coordinates and the map projections. Then, a control file is necessary for

This example converts history files named history\_d02.pe######.nc in the directory ./input, where ####### represents the MPI process number. Any options about the number of output file and variables are not specified in this example. Thus, all the variables in the input files are combined and output to a single file. The converted file is output to ./output directory with the new name history\_d02\_new.pe######.nc.



GrADS to read SCALE-netCDF file. The following is an example of the output control file.

```
SET ^history_d02_new.pe000000.nc
TITLE SCALE-RM data output
DTYPE netcdf
UNDEF -0.99999E+31
XDEF 88 LINEAR 134.12 0.027
YDEF 80 LINEAR 33.76 0.027
ZDEF 35 LEVELS
80.841 248.821 429.882 625.045 835.409 1062.158 1306.565 1570.008 1853.969
2160.047 2489.963 2845.574 3228.882 3642.044 4087.384 4567.409 5084.820 5642.530
 6243.676 6891.642 7590.075 8342.904 9154.367 10029.028 10971.815 11988.030 13083.390
14264.060 15536.685 16908.430 18387.010 19980.750 21698.615 23550.275 25546.155
TDEF 25 LINEAR 00:00Z01MAY2010 1HR
PDEF 80 80 LCC 34.65 135.22 40 40 30.00 40.00 135.22 2500.00 2500.00
VARS 3
U=>U 35 t,z,y,x velocity u
PREC=>PREC 0 t,y,x surface precipitation flux
OCEAN_SFC_TEMP=>OCEAN_SFC_TEMP 0 t,y,x ocean surface skin temperature
ENDVARS
```

When the simple map projections is used such as mercator method, GrADS can read the single netCDF file using "sdfopen" command without preparing a control file.

# Convert multiple SCALE-netCDF files to a single NetCDF file (multiple MPI processes)

```
&PARAM_SNO
   basename_in = 'input/history_d02',
   basename_out = 'output/history_d02',
   nprocs_x_out = 4,
   nprocs_y_out = 6,
   output_single = .true.,
/
```

This example outputs a single file containing all variables as well as the above example. On the other hand, in this example, the number of MPI processes must be set to  $24 (= 4 \times 6)$ .

## Convert multiple SCALE-netCDF files to multiple SCALE-netCDF files with different number of docomposition

```
&PARAM_SNO
  basename_in = 'input/history_d02',
  basename_out = 'output/history_d02',
  nprocs_x_out = 4,
  nprocs_y_out = 6,
```

To output decomposed files, there is a restriction that each file must have the same number of grids (excluding the halo grid). To satisfy this restriction, (nprocs\_x\_out) must be a divisor of the total grid number (IMAXG) of the entire domain in X direction (see Sec. 4.2.3). (nprocs\_y\_out) also has the same restriction as (nprocs\_x\_out).



Let's assume that the number of input files is 4 ([x,y]=[2,2]) and each file has 30 grid cells both in x- and y-directions except for halo. That is, the number of total grid cells of the entire domain is 60 × 60. Since the number of output file is 24 ([x,y]=[4,6]), individual output files have 15 and 10 grid cells in x- and y-directions, respectively.

You can get information of the grid and decomposition in the input file by checking the global attribute in SCALE-netCDF file. For example, you can obtain the header information by using "ncdump" command as follows:

\$ ncdump -h history\_d02.pe000000.nc

You will find the global attributes at the end of dumped information.

```
// global attributes:
.....
:scale_cartesC_prc_rank_x = 0 ;
:scale_cartesC_prc_rank_y = 0 ;
:scale_cartesC_prc_num_x = 2 ;
:scale_cartesC_prc_num_y = 2 ;
.....
:scale_atmos_grid_cartesC_index_imaxg = 60 ;
:scale_atmos_grid_cartesC_index_jmaxg = 60 ;
.....
```

scale\_cartesC\_prc\_num\_x and scale\_cartesC\_prc\_num\_y are the sizes of x- and y-directions in the 2-D file topology, respectively. scale\_cartesC\_prc\_rank\_x and scale\_cartesC\_prc\_rank\_y are the x- and y-positions of this file in the 2-D map, respectively. The rank number starts from 0. scale\_atmos\_grid\_cartesC\_index\_imaxg and scale\_atmos\_grid\_cartesC\_index\_jmaxg are the total number of grid cells in x- and y-directions, respectively. These numbers do not contain halo grid. For other attribute information, refer to the table 5.1.1 in Sec. 5.1.1.1.

#### Convert multiple SCALE-netCDF files to GrADS format file

```
&PARAM_SNO
basename_in = 'input/history_d02',
dirpath_out = 'output',
output_grads = .true.,
vars = "U", "PREC", "LAND_TEMP",
/
```

If (output\_grads) is .true., all of the decomposed data is combined spatially and output into a single file of GrADS binary format. The conversion is applied to the variables specified by (vars). Since the GrADS format file cannot contain the variables with the different vertical layers, SNO outputs individual variables to a different file. The individual file is named as the variable name. The control files are also generated. The converted file is output to ./output directory. Note that (basename\_out) is ignored in this conversion. Instead of (basename\_out), you can use the output path, i.e., (dirpath\_out).

### 4.6.1.3 Examples of configuration: plugin functions

You can apply the operators, such as time averaging or horizontal/vertical remapping, before outputting the combined/decomposed files.



### Temporally averaging

The settings for time averaging are specified by [PARAM\_SNOPLGIN\_TIMEAVE].

```
&PARAM_SNO
  basename_in = 'input/history_d02',
  basename_out = 'output/history_d02',
  nprocs_x_out = 2,
  nprocs_y_out = 2,
/
  &PARAM_SNOPLGIN_TIMEAVE
  SNOPLGIN_timeave_type = 'NUMBER',
  SNOPLGIN_timeave_interval = 4,
/
```

When (SNOPLGIN\_timeave\_type) is set to 'NUMBER', the data is averaged every equal time interval. The time interval is specified by (SNOPLGIN\_timeave\_interval). In this example, the variables is averaged every 4 output-steps. The data is decomposed into  $2 \times 2$ , and then is output to 4 files.

The other example is as follows:

Both the file aggregation and the time averaging are applied in this example.

When (SNOPLGIN\_timeave\_type) is set to 'DAILY', 'MONTHLY', or 'ANNUAL', SNO try to daily, monthly or annual average of the variables, respectively. The date and time of the data are read from the file. If you use different calendar from the default in the simulation, the same setting of [PARAM\_CALENDAR] should be added to the configuration file of SNO (Please see Sec. 4.5.4).

### Regrid data to the lat-lon coordinate

The settings for regrid of data on the lat-lon coordinate are specified by [PARAM\_SNOPLGIN\_HGRIDOPE].

```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',
/
&PARAM_SNOPLGIN_HGRIDOPE
SNOPLGIN_hgridope_type = 'LATLON',
SNOPLGIN_hgridope_lat_start = 30.0,
SNOPLGIN_hgridope_lat_end = 40.0,
SNOPLGIN_hgridope_lat = 0.5,
SNOPLGIN_hgridope_lon_start = 130.0,
SNOPLGIN_hgridope_lon_end = 140.0,
SNOPLGIN_hgridope_dlon = 0.5,
/
```



When (SNOPLGIN\_hgridope\_type) is set to 'LATLON', horizontal remapping to the latitudelongitude grid system is applied. This plugin operator can be available only when the output file is single. The other options in [PARAM\_SNOPLGIN\_HGRIDOPE] are used to set the domain boundary and grid interval of the output data. The size of longitude grid point nlon is calculated as follows:

```
\texttt{nlon} = \frac{\texttt{SNOPLGIN\_hgridope\_lon\_end} - \texttt{SNOPLGIN\_hgridope\_lon\_start}}{\texttt{SNOPLGIN\_hgridope\_dlon}} + 1.
```

The result of this calculation is rounded to an integer. Thus, the easternmost grid point may be different from (SNOPLGIN\_hgridope\_lon\_end). The number of latitude grid points is calculated in the same manner as that of the longitude grid points.

You can set the lat-lon domain larger than the original domain size used in the simulation. In remapping process, extrapolation is not allowed. Therefore, a missing value is set at the grid, which has no interpolated value.

### Regrid data to different model-level coordinate

The settings for regrid of data on other vertical coordinate are specified by [PARAM\_SNOPLGIN\_VGRIDOPE]. This plugin operator is available even when the output file is multiple.

When (SNOPLGIN\_vgridope\_type) in [PARAM\_SNOPLGIN\_VGRIDOPE] is set to 'model', vertical remapping to the different model-coordinate system is applied. (SNOPLGIN\_vgridope\_lev\_num) is the number of vertical layers, and (SNOPLGIN\_vgridope\_lev\_data) specifies the vertical levels at which you want to convert data. The unit of level is [m].

#### Regrid data to actual height-level coordinate

When (SNOPLGIN\_vgridope\_type) in [PARAM\_SNOPLGIN\_VGRIDOPE] is set to 'z', vertical remapping to the actual height-coordinate system is applied. (SNOPLGIN\_vgridope\_lev\_num)



is the number of vertical layers, and (SNOPLGIN\_vgridope\_lev\_data) specifies the vertical levels at which you want to convert data. The unit of level is [m].

### Regrid data to pressure-level coordinate

```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',
/
&PARAM_SNOPLGIN_VGRIDOPE
SNOPLGIN_vgridope_type = 'pressure',
SNOPLGIN_vgridope_lev_num = 3,
SNOPLGIN_vgridope_lev_data = 850.e+2, 500.e+2, 200.e+2,
/
```

When (SNOPLGIN\_vgridope\_type) in [PARAM\_SNOPLGIN\_VGRIDOPE] is set to 'pressure', vertical remapping to the pressure-coordinate system is applied. (SNOPLGIN\_vgridope\_lev\_num) is the number of vertical layers, and (SNOPLGIN\_vgridope\_lev\_data) specifies the vertical levels at which you want to convert data. The unit of level is [Pa]. Note that pressure data (PRES) must be included in the input file.



# Part 5

# Detailed explanation for advanced use

## **C** SCOLE

## Chapter 5.1

# File IO of SCALE

## 5.1.1 What is SCALE-netCDF File?

In this section, SCALE-netCDF file, which SCALE directly reads from and writes in, is explained. SCALE employs netCDF (network Common Data Format) as data file format. NetCDF is a software developed by Unidata (http://www.unidata.ucar.edu/), and it enables us to generate files with self-describing and machine-independent data format; for example, the former has a merit to describe variables along with their axis variables in a file and the latter has a merit to treat data without worry which endian is used. Based on the above virtue, SCALE has particular convention (SCALE-netCDF convention). It is mostly following the CF conventions (http://cfconventions.org).

### 5.1.1.1 Global Attributes

SCALE-netCDF file contains information about data contained in the file, such as those with regards to spatial decomposition as "Global Attributes" (Table 5.1.1).

### 5.1.1.2 Data in the Halo Region

Whether the file contains the data in the halo region depends on the type of file and its configuration. Note that the halo region that we define here means the halo in the whole calculation region, not the halo in each of local regions.

For the initial (or restart) and boundary data files, the halo data is contained if the lateral boundary conditions are not periodic ( $(PRC_PERIODIC_X)$ ,  $(PRC_PERIODIC_Y)$  = .false. in [PARAM\_PRC\_CARTESC]) or the single file I/O (Section 5.1.1.5) is used ( $(FILE_AGGREGATE)$ =.true. in [PARAM\_FILE]), otherwise it is not.

On the other hand, for the history data file, the halo data is contained only when the lateral boundary conditions are not periodic and (FILE\_HISTORY\_CARTESC\_BOUNDARY)=.true. in [PARAM\_FILE\_HISTORY\_CARTESC], otherwise it is not. Refer Section 4.2.6 for detail.

### 5.1.1.3 Axis Variables

SCALE-netCDF file contains axis data. All the axis variables have "long\_name" and "units" attributes, which describe description and unit of the variable, respectively. In addition, x, y, xh, and yh variables have attributes for the total number of grids in the whole domain ("size\_global"), the start index in the total grid of data in the file ("start\_global"), the number of the halo grids at the begin and end in the whole data ("halo\_global"), and the number of the halo grids of data in the file ("halo\_local").

Table 5.1.2 shows list of the axis data. The coordinate variables have their own dimension; their variable names are the same as their dimension names. The variables with lower-case name are mainly used in the file, while those with the upper-case name describe axes in simulation. Figure

| Name                                      | Description                  | Remarks                       |
|-------------------------------------------|------------------------------|-------------------------------|
| title                                     | Brief description of data    | Value of                      |
|                                           | -                            | (FILE_History_TITLE)          |
|                                           |                              | in [PARAM_FILE_HISTORY]       |
| source                                    | Name of the source software  | Value of                      |
|                                           |                              | (FILE_History_SOURCE) in      |
|                                           |                              | [PARAM FILE HISTORY] for      |
|                                           |                              | history files and (H SOURCE)  |
|                                           |                              | in [PARAM IO] for other files |
| institution                               | Data author                  | Value of                      |
|                                           |                              | (FILE History INSTITUTION)    |
|                                           |                              | in [PARAM FILE HISTORY]       |
|                                           |                              | for history files and         |
|                                           |                              | (H INSTITUTE) in              |
|                                           |                              | [PARAM IO] for other          |
|                                           |                              | files                         |
| rankid                                    | Bank id of MPI process       | PRC murank in the model       |
| Conventions                               | CE convention version        | "CE 1.6" for version 5.3      |
| grid name                                 | Crid type                    | "aprtos C" for SCALE BM       |
| gaple cortes C pre renk [vv]              | Mapping index of the 2D do   | Equal to                      |
| scale_cartesC_prc_rank_[xy]               | mapping index of the 2D de-  | Equal to                      |
|                                           | composition                  | PRC_2DIalik (PRC_myralik, 1)  |
|                                           |                              | variable in the model $(1=1)$ |
| l                                         | Noushan af the OD decourse   | (DPC  WW  X) (DPC  WW  X)     |
| scale_cartesC_prc_num_[xy]                | Number of the 2D decompo-    | (PRC_NUM_X), (PRC_NUM_Y)      |
|                                           | sition                       | in the model                  |
| scale_cartesC_prc_periodic_[zxy]          | whether the boundary con-    | .false. and .true.            |
|                                           | dition is periodic           | They correspond to            |
|                                           |                              | (PRC_PERIUDIC_X),             |
|                                           |                              | (PRC_PERIODIC_Y) in           |
|                                           |                              | the model                     |
| scale_atmos_grid_cartesC\                 | Number of the grids in the   | (IMAXG), (JMAXG) in the       |
| _index_[ij]maxg                           | global domain                | model                         |
| $scale_atmos_grid_cartesC $               | Number of the vertical layer | (KMAX) in the model           |
| _index_kmax                               | for the atmospheric model    |                               |
| $scale_ocean\_grid\_cartesC $             | Number of the vertical layer | (OKMAX) in the model          |
| _index_kmax                               | for the ocean model          |                               |
| $scale\_land\_grid\_cartesC \$            | Number of the vertical layer | (LKMAX) in the model          |
| _index_kmax                               | for the land model           |                               |
| $scale_urban_grid_cartesC \setminus$      | Number of the vertical layer | (UKMAX) in the model          |
| _index_kmax                               | for the urban model          |                               |
| $scale_atmos\_grid\_cartesC \setminus$    | Number of halo grids         | (KHALO), (IHALO), (JHALO)     |
| _index_[kij]halo                          |                              | in the model                  |
| Calendar                                  | Calendar type                | (PARAM_CALENDAR) in the       |
|                                           |                              | model                         |
| time_units                                | Unit of time                 |                               |
| time_start                                | Start time                   |                               |
| Refer Section 4.2.6 for (History)         | _TITLE, History_SOURCE, His  | story_INSTITUTION),           |
| Section 4.2.3 for (PRC_NUM_X, Pl          | RC_NUM_Y, PRC_PERIODIC_X, F  | PRC_PERIODIC_Y) and           |
| (m, m, m |                              |                               |

## Table 5.1.1: Global attributes in SCALE-netCDF file

(KMAX, IMAXG, JMAXG), and Section 4.5.4 for (PARAM\_CALENDAR).



5.1.1 and 5.1.2 show the horizontal and vertical locations of coordinate variables, respectively. Refer to them with Table 5.1.2 at the same time.

The area and volume data of the grids are also in the file as "cell\_area\*\*" and "cell\_volume\*\*", respectively. The "cell\_measures" attribute of each variables specifies the corresponding area or volume data.

The map projection data is contained as a non-dimensional variable whose name is specified by "grid\_mapping" attribute of the variables.

The information of relationship with the staggered grids is contained as an attribute and a nondimensional variable, based on SGRID conventions (https://github.com/sgrid/sgrid). The non-dimensional variable's name is specified by the "grid" attribute of each variable.

In the file, there are also the surface elevation data and land mask data as "topo" and "lsmask", respectively.

| Coordinate variables                |                                                                                |  |
|-------------------------------------|--------------------------------------------------------------------------------|--|
| name                                | description                                                                    |  |
| Horizontal axis & time axis: Common |                                                                                |  |
| х                                   | full level position in x-direction of the data in the file                     |  |
| x_bnds                              | full level cell boundary in x-direction of the data in the file                |  |
| xh                                  | half level position in x-direction of the data in the file                     |  |
| $xh_bnds$                           | half level cell boundary in x-direction of the data in the file                |  |
| У                                   | full level position in y-direction of the data in the file                     |  |
| y_bnds                              | full level cell boundary in y-direction of the data in the file                |  |
| yh                                  | half level position in y-direction of the data in the file                     |  |
| $yh_bnds$                           | half level cell boundary in y-direction of the data in the file                |  |
| time                                | time information                                                               |  |
| time_bnds                           | time boundary information                                                      |  |
| CX                                  | full level grid position in x-direction for the local region (inc. halo grids) |  |
| $\mathbf{FX}$                       | half level grid position in x-direction for the local region (inc. halo grids) |  |
| CDX                                 | full level grid spacing in x-direction (inc. halo grids)                       |  |
| FDX                                 | half level grid spacing in x-direction (inc. halo grids)                       |  |
| CY                                  | full level grid position in y-direction for the local region (inc. halo grids) |  |
| $\mathbf{FY}$                       | half level grid position in y-direction for the local region (inc. halo grids) |  |
| CDY                                 | full level grid spacing in y-direction (inc. halo grids)                       |  |
| FDY                                 | half level grid spacing in y-direction (inc. halo grids)                       |  |
| CXG                                 | full level grid position in x-direction for the whole region (inc. halo grids) |  |
| FXG                                 | half level grid position in x-direction for the whole region (inc. halo grids) |  |
| CYG                                 | full level grid position in y-direction for the whole region (inc. halo grids) |  |
| FYG                                 | half level grid position in y-direction for the whole region (inc. halo grids) |  |
|                                     | Vertical axis : Atmosphere                                                     |  |
| Z                                   | full level position in z-direction in the file                                 |  |
| z_bnds                              | full level cell boundary in z-direction in the file                            |  |
| $^{\mathrm{zh}}$                    | half level position in z-direction in the file                                 |  |
| zh_bnds                             | half level cell boundary in z-direction in the file                            |  |
| CZ                                  | full level grid position in z-direction (inc. halo grids)                      |  |
| $\mathrm{FZ}$                       | half level grid position in z-direction (inc. halo grids)                      |  |
| CDZ                                 | full level grid spacing in z-direction (inc. halo grids)                       |  |
| FDZ                                 | half level grid spacing in z-direction (inc. halo grids)                       |  |
|                                     | Vertical axis : Ocean                                                          |  |
| OZ                                  | full level position in z-direction of the ocean data in the file               |  |
| oz_bnds                             | full level cell boundary in z-direction of the ocean data in the file          |  |
| ozh                                 | half level position in z-direction of the ocean data in the file               |  |
| $ozh_bnds$                          | half level cell boundary in z-direction of the ocean data in the file          |  |
| OCZ                                 | full level grid position in z-direction of the ocean model                     |  |

Table 5.1.2: Axis data in SCALE-netCDF .

| Cont.        |                                                                                     |
|--------------|-------------------------------------------------------------------------------------|
| OFZ          | half level grid position in z-direction of the ocean model                          |
| OCDZ         | full level grid spacing in z-direction of the ocean model                           |
|              | Vertical axis : Land                                                                |
| lz           | full level position in z-direction of the land data in the file                     |
| lz_bnds      | full level cell boundary in z-direction of the land data in the file                |
| lzh          | half level position in z-direction of the land data in the file                     |
| $lzh_bnds$   | half level cell boundary in z-direction of the land data in the file                |
| LCZ          | full level grid position in z-direction of the land model                           |
| m LFZ        | half level grid position in z-direction of the land model                           |
| LCDZ         | full level grid spacing in z-direction of the land model                            |
|              | Vertical axis : Urban canopy                                                        |
| uz           | full level position in z-direction in the file                                      |
| uz_bnds      | full level cell boundary in z-direction in the file                                 |
| uzh          | half level position in z-direction in the file                                      |
| uzh_bnds     | half level cell boundary in z-direction in the file                                 |
| UCZ          | full level grid position in z-direction                                             |
| UFZ          | half level grid position in z-direction                                             |
| UCDZ         | full level grid spacing in z-direction                                              |
| Other axis v | ariables (1D)                                                                       |
| name         | description                                                                         |
| CBFZ         | buffer factor at CZ                                                                 |
| FBFZ         | buffer factor at FZ                                                                 |
| CBFX         | buffer factor at CX for the local region                                            |
| FBFX         | buffer factor at FX for the local region                                            |
| CBFY         | buffer factor at CY for the local region                                            |
| FBFY         | buffer factor at FY for the local region                                            |
| CBFXG        | buffer factor at CXG for the whole region                                           |
| FBFXG        | buffer factor at FXG for the whole region                                           |
| CBFYG        | buffer factor at CYG for the whole region                                           |
| FBFYG        | buffer factor at FYG for the whole region                                           |
| Other axis v | ariables (2D)                                                                       |
| name         | description                                                                         |
| lon          | longitude at (y, x)                                                                 |
| lon_uy       | longitude at (y, xh)                                                                |
| lon_xv       | longitude at $(yh, x)$                                                              |
| lon_uv       | longitude at (yh, xh)                                                               |
| lat          | latitude at $(y, x)$                                                                |
| $lat_uy$     | latitude at (y, xh)                                                                 |
| $lat_xv$     | latitude at $(yh, x)$                                                               |
| $lat_uv$     | latitude at (yh, xh)                                                                |
| Other axis v | ariables (3D)                                                                       |
| name         | description                                                                         |
| height       | height at $(z, y, x)$ in history file or at $(y, x, z)$ in restart/initial file     |
| $height_xyw$ | height at $(zh, y, x)$ in history file or at $(y, x, zh)$ in restart/initial file   |
| $height_xvz$ | height at $(z, yh, x)$ in history file or at $(yh, x, z)$ in restart/initial file   |
| $height_uyz$ | height at $(z, yh, xh)$ in history file or at $(hy, x, z)$ in restart/initial file  |
| $height_xvw$ | height at $(zh, yh, x)$ in history file or at $(yh, x, zh)$ in restart/initial file |
| $height_uyw$ | height at (zh, y, xh) in history file or at (y, xh, zh) in restart/initial file     |
| $height_uvz$ | height at $(z, yh, xh)$ in history file or at $(yh, xh, z)$ in restart/initial file |
| $height_uvw$ | height at (zh, yh, xh) in history file or at (yh, xh, zh) in restart/initial file   |

| Table 5.1.3: Functionality of each netCDF versions. |               |             |               |               |                 |  |  |
|-----------------------------------------------------|---------------|-------------|---------------|---------------|-----------------|--|--|
|                                                     | multiple      |             | Read          | Read          | Read            |  |  |
|                                                     | time interval | Compression | netCDF 3 file | netCDF 4 file | single file     |  |  |
| netCDF 3                                            | NG            | NG          | OK            | NG            | $\mathrm{NG}^*$ |  |  |
| netCDF $4$                                          | OK            | OK          | OK            | OK            | $\mathrm{NG}^*$ |  |  |
| pnetCDF                                             | NG            | NG          | $NG^*$        | NG            | OK              |  |  |
| (1)                                                 |               |             |               |               |                 |  |  |

(\*) it is OK if the number of total processes is 1.

#### 5.1.1.4**Data Variables**

Data variables have attributes of the undefined value "\_FillValue" and the missing value "missing\_value" as well as "long\_name" and "untis". Data structure in the initial (restart) data and boundary data files is identical to the array in the model, that is the z-x-y order. On the other hand, it in the history data file is the x-y-z order. This is true for 3D axis variables. See also Table 5.1.2.

#### Single File I/O 5.1.1.5

As default, all the data files are output by each process, namely file I/O is separated. If you compile SCALE-RM with pnetCDF by specifying an environmental variable as SCALE\_ENABLE\_PNETCDF=T, the data from all processes can be combined into a single file (see Section 2.2.1). To do this, (FILE\_AGGREGATE) in [PARAM\_FILE] should be set to .true.. Instead, you can switch on/off of the single I/O for individual file types: history, init/restart, topography, and land use files. For the history file, set (FILE\_HISTORY\_AGGREGATE) =. true. in [PARAM\_FILE\_HISTORY]. For the init/restart file, set (RESTART\_(IN|OUT)\_AGGREGATE)=.true. in [PARAM\_RESTART], or ((MODELNAME)\_RESTART\_(IN|OUT)\_AGGREGATE)=.true. in [PARAM\_(MODELNAME)\_VARS] where (MODELNAME) is "ATMOS", "OCEAN", "LAND", or "URBAN". For the topography and land use files, set (TOPOGRAPHY\_(IN|OUT)\_AGGREGATE) =. true. in [PARAM\_TOPOGRAPHY], and (LANDUSE\_(IN|OUT)\_AGGREGATE)=.true. in [PARAM\_LANDUSE], respectively.

#### **Restrictions with NetCDF 3** 5.1.1.6

If SCALE is compiled with netCDF version 3, the following restrictions exist.

- Variables with different time intervals cannot stored in the same file.
- Compression of data cannot be used.
- File of netCDF 4 format cannot be read.

If you want to output variables with different time intervals, set (BASENAME) in [HISTORY\_ITEM] to output them to different files.

Note that the restrictions of the multiple time interval and compression are placed when the single file I/O is used, because pnetCDF is based on netCDF 3 file format.





### Horizontal grid positions for all the components

Figure 5.1.1: Horizontal coordinate in SCALE-netCDF file



## Vertical grid positions for each component and physical meanings



Figure 5.1.2: Vertical coordinate in SCALE-netCDF file



## Chapter 5.2

# How to use user defined program

## 5.2.1 Module for user defined settings

SCALE-RM prepares many options, which users can specify as namelist parameters, to meet users' demand for their calculations. However, when there is no option you desire, you can modify model variables directly as you want by programming using the module for users, namely mod\_user. This section describes what is mod\_user module and how to use it.

### 5.2.1.1 What is mod\_user module?

The default mod\_user module is provided in scale-5.5.4/scale/scale-rm/src/user/mod\_user.F90. Prepare your own mod\_user.F90 and then compile it instead of the default one.

The module must contain the following subroutines:

```
subroutine USER_tracer_setup
subroutine USER_setup
subroutine USER_mkinit
subroutine USER_update
subroutine USER_calc_tendency
```

This is the sequence of execution of the scale-rm.

```
Initial setup
  IO setup
  MPI setup
  Grid settings
  Setup of administrator for dynamics and physics schemes
  Tracer setup
  USER tracer setup
  Setup topography, land
  Setup of vars and drivers for dynamics and physics schemes
  USER setup
Main routine
  Time advance
  Ocean/Land/Urban/Atmos update
  User update
  Output restart
  Calculation of tendency in Atmos/Ocean/Land/Urban
  Calculation of tendency
  History output
```

The timings for calling individual subroutines of the mod\_user are indicated by blue color. The USER\_mkinit is called in the init program scale-rm\_init.



Since the subroutines in mod\_user are basically called after handling each process, you can replace any settings and variables as you need. You can also add several tracers, such as passive tracers, in USER\_tracer\_setup. There are several examples of mod\_user.F90 in the test cases (scale-5.5.4/scale-rm/test/case).

## 5.2.1.2 Compile

To compile SCALE-RM with your  ${\tt mod\_user.F90},$  you can use the Makefile in the test cases as follows.

\$ cd scale-5.5.4/scale-rm/test/case

\$ mkdir -p your\_dir/exp\_name

\$ cd your\_dir/exp\_name

\$ cp ../../advection/500m/Makefile .

Copy your  ${\tt mod\_user.F90}$  to this directory.

\$ make



## Chapter 5.3

# How to use scale library

## 5.3.1 User Program Using SCALE

SCALE is a collection of subroutines. The subroutines can be used in an arbitrary program. The library file is created as "scalelib.a" under scale-5.5.4/lib/ after compiling. The following is a template when you use SCALE in your program.

```
program template
use scalelib
implicit none
call SCALE_init
! user instructions
call SCALE_finalize
stop
end program template
```

The following is a pseudo program calculating convective available potential energy (CAPE) from atmospheric quantities read from a file. You needs to use necessary modules and prepare required input variables before main part. Note that this is only a part of the program.

```
use scale_const, only: &
Rdry => CONST_Rdry, Rvap => CONST_Rvap, CPdry => CONST_CPdry
use scale_atmos_hydrometeor, only: &
CPvap => CP_VAPOR, CL => CP_WATER
use scale_file, only: &
FILE_open, FILE_read, FILE_close
use scale_atmos_adiabat, only: &
ATMOS_ADIABAT_setup, ATMOS_ADIABAT_cape
real(8) :: z(kmax,imax,jmax), zh(0:kmax,imax,jmax)
real(8) :: temp(kmax,imax,jmax), pres(kmax,imax,jmax), dens(kmax,imax,jmax)
real(8) :: qv(kmax,imax,jmax), qc(kmax,imax,jmax), qdry(kmax,imax,jmax)
real(8) :: rtot(kmax,imax,jmax), cptot(kmax,imax,jmax)
real(8) :: cape(imax,jmax), cin(imax,jmax)
real(8) :: lcl(imax,jmax), lfc(imax,jmax), lnb(imax,jmax)
call FILE_open( basename, fid ) ! open file
call FILE_read( fid, 'height', z(:,:,:) ) ! read full-level height data
call FILE_read( fid, 'height_xyw', zh(:,:,:) ) ! read half-level height data
call FILE_read( fid, 'T', temp(:,:,:) ) ! read temperature data
: ! read PRES, DENS, QV, QC
call FILE_close( fid )
! calculate some variables required to calculate CAPE
qdry(:,:,:) = 1.0D0 - qv(:,:,:) - qc(:,:,:) ! mass ratio of dry air
rtot(:,:,:) = qdry(:,:,:) * Rdry + qv(:,:,:) * Rvap ! gas constant
cptot(:,:,:) = qdry(:,:,:) * CPdry + qv(:,:,:) * CPvap + ql(:,:,:) * CL ! heat capacity
call ATMOS_ADIABAT_setup
call ATMOS_ADIABAT_cape( kmax, 1, kmax, imax, 1, imax, jmax, 1, jmax, & ! array size
                        k0, & ! vertical index from which a parcel is started
                        dens(:,:,:), temp(:,:,:), pres(:,:,:), & ! input
                        qv(:,:,:), qc(:,:,:), qdry(:,:,:), & ! input
                        rtot(:,:,:), cptot(:,:,:), & ! input
                        z(:,:,:), zh(:,:,:), & ! input
                        cape(:,:), cin(:,:), lcl(:,:), lfc(:,:), lnb(:,:) ) ! output
```

In the reference manual (see Section 5.3.2), you can find list of the subroutine which is available and details of the subroutines. There are sample programs for analysis of SCALE-RM history file at the scale-5.5.4/scalelib/test/analysis directory.

### 5.3.1.1 Compile

Before compiling your program using SCALE , you need to compile SCALE .

\$ cd scale-5.5.4/scalelib/src

\$ make

To compile your program, you need to link libscale.a located at scale-5.5.4/lib. You also have to tell the path of the module files to the compiler. The module path is scale-5.5.4/include. The option to specify the module path depends on compiler. You can find the option in the sysdep file as MODDIROPT variable (refer Section 2.2.1).

```
$ ${FC} your-program ${MODDIROPT} scale-top-dir/include \\
```

'nc-config --cflags' -Lscale-top-dir/lib -lscale 'nc-config --libs' You can also use the Makefile in the samples to compile your program as follows.

```
$ cd scale-5.5.4/scalelib/test/analysis
```

```
$ mkdir your_dir
```



```
$ cd your_dir
$ cp ../horizontal_mean/Makefile .
Copy your program file to this directory.
Edit Makefile (BINNAME = your_program_name).
$ make
```

## 5.3.2 Reference manual

Reference manual for the SCALE subroutines is available on https://scale.riken.jp/archives/5.5.4/index.html. This reference manual is generated by doxgen (http://www.doxygen.org/).

The reference has the following information:

- Subroutines
- NAMELIST parameters
- History (output) variables

### 5.3.2.1 Subroutines

The subroutine information contains the description, arguments, and call graph. The source code of the subroutine can be also seen. Users can find subroutines through "Module List" or "File List", which are linked at the top page or the top menu. The module list has brief description of each module.

The prefix of module name is "scale\_" for SCALE and "mod\_" for SCALE-RM , respectively. The file name is the module name with suffix of ".F90". The name of the subroutines consists of a module name except the prefix and the name explaining function.

For example, the subroutine of ATMOS\_ADIABAT\_cape is contained

in the module of scale\_atmos\_adiabat in the file of scale\_atmos\_adiabat.F90.

```
scale_atmos_adiabat.F90
module scale_atmos_adiabat
...
contains
!------
subroutine atmos_adiabat_cape( &
        Kstr, &
        DENS, &
        ...
```



## 5.3.2.2 NAMELIST Parameters

You can see the NAMELIST parameter list throught the link at the top page of the reference manual, or the directly at <a href="https://scale.riken.jp/archives/5.5.4/d5/d8a/namelist.html">https://scale.riken.jp/archives/5.5.4/d5/d8a/namelist.html</a>. The list has the parameter name, NAMELIST group name, and module name where the variable is defined. The parameters are sorted by the variable name. The detail information of parameters can be see by clicking the NAMELIST group name or module name.

|                                                                                                                                  |                                     |                             | O enable allocation                                                                                                                                                  | (The                                                                                                           | -                                                                                        |                                                                                                                                                                                       | h |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                  |                                     |                             | iii scale.riken.jp                                                                                                                                                   | 0 <b>10</b>                                                                                                    | 6                                                                                        |                                                                                                                                                                                       | T |
| iii iGoogle Google                                                                                                               | マップ Google Scholar Goog             | gle 翻訳 Wikipedia            | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                | 理研 Y 研究関係 Y JMSJ Y                                                                                             | / お役立ち / リー                                                                              | ディングリスト 🎔 FVM                                                                                                                                                                         |   |
| SCALE-RM                                                                                                                         |                                     |                             |                                                                                                                                                                      |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
| Main Page Related Pages                                                                                                          | Modules - Data T                    | Types List 👻                | Files •                                                                                                                                                              |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
| NAMELIST Paramete                                                                                                                | rs                                  |                             |                                                                                                                                                                      |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
| SCALELIB                                                                                                                         |                                     |                             |                                                                                                                                                                      |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
|                                                                                                                                  |                                     |                             |                                                                                                                                                                      |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
|                                                                                                                                  |                                     |                             |                                                                                                                                                                      |                                                                                                                |                                                                                          |                                                                                                                                                                                       |   |
| Click the corresponding "NAMELI                                                                                                  | ST Group" or "module n              | ame" to see de              | tail information of eac                                                                                                                                              | ch variable                                                                                                    |                                                                                          |                                                                                                                                                                                       |   |
| Click the corresponding "NAMELI<br>Variab                                                                                        | ST Group" or "module n              | ame" to see de              | tail information of eac                                                                                                                                              | h variable<br>IST Group                                                                                        |                                                                                          | module name                                                                                                                                                                           |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG                                                                              | IST Group" or "module n             | name" to see de             | tail information of eac<br>NAMEL<br>NAM_ATMOS_PHY                                                                                                                    | ch variable<br>.IST Group<br>_AE_KAJINO13_TRAC                                                                 | ER scale_at                                                                              | module name<br>imos_phy_ae_kajino13                                                                                                                                                   |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL                                                                   | IST Group" or "module n<br>Ie name  | name" to see de             | tail information of eac<br>NAMEL<br>RAM_ATMOS_PHY<br>RAM_URBAN_DATA                                                                                                  | ch variable<br>.IST Group<br>_AE_KAJINO13_TRAC<br>A                                                            | ER scale_at                                                                              | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01                                                                                                                              |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL                                                         | IST Group" or "module n<br>le name  | name" to see de<br>PA<br>PA | tail information of each<br>NAMEL<br>RAM_ATMOS_PHY<br>RAM_URBAN_DATA                                                                                                 | ch variable<br>LIST Group<br>_AE_KAJINO13_TRAC<br>A<br>A                                                       | ER scale_at<br>scale_u<br>scale_u                                                        | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01                                                                                                         |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL<br>AKSB                                                 | IST Group" or "module n<br>le name  | name" to see de             | tail information of eac<br>NAMEL<br>RAM_ATMOS_PHY<br>RAM_URBAN_DATA<br>RAM_URBAN_DATA                                                                                | ch variable<br>LIST Group<br>_AE_KAJINO13_TRAC<br>A<br>A                                                       | ER scale_u<br>scale_u<br>scale_u<br>scale_u                                              | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01                                                                                    |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL<br>AKSB<br>AKSG                                         | IST Group" or "module n             | name" to see de             | tail information of eac<br>NAMEL<br>IRAM_ATMOS_PHY<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,                                       | ch variable<br>LIST Group<br>_AE_KAJINO13_TRAC<br>A<br>A<br>A<br>A                                             | ER scale_al<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u                       | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01                                                               |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL<br>AKSB<br>AKSG<br>AKSR                                 | IST Group" or "module n<br>lle name | name" to see de             | tail information of eac<br>NAMEL<br>IRAM_ATMOS_PHY<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,                                       | ch variable<br>LIST Group<br>_AE_KAJINO13_TRAC<br>A<br>A<br>A<br>A<br>A<br>A                                   | ER scale_al<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u            | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01                                          |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL<br>AKSB<br>AKSB<br>AKSG<br>AKSR<br>ALBB                 | IST Group" or "module n             | name" to see de             | tail information of eac<br>NAMEL<br>IRAM_ATMOS_PHY<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,<br>IRAM_URBAN_DAT,                    | ch variable<br>LIST Group<br>AE_KAJINO13_TRAC<br>A<br>A<br>A<br>A<br>A<br>A<br>A                               | ER scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u  | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01                                          |   |
| Click the corresponding "NAMELI<br>Variab<br>AE_CTG<br>AHL_TBL<br>AH_TBL<br>AKSB<br>AKSB<br>AKSG<br>ALBB<br>ALBB<br>ALBEDO_CONST | IST Group" or "module n             | name" to see de             | tail information of eac<br>NAMEL<br>IRAM_ATMOS_PHY<br>IRAM_URBAN_DAT.<br>IRAM_URBAN_DAT.<br>IRAM_URBAN_DAT.<br>IRAM_URBAN_DAT.<br>IRAM_URBAN_DAT.<br>IRAM_URBAN_DAT. | ch variable<br>LIST Group<br>AE_KAJINO13_TRAC<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | ER scale_al<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u<br>scale_u | module name<br>imos_phy_ae_kajino13<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>rban_dyn_kusaka01<br>nd_phy_snow_ky90 |   |

Figure 5.3.1: The image of the NAMELIST parameters list on the SCALE web page



## 5.3.2.3 History (output) Variables

You can see the history (output) variable list through the link at the top page of the reference manual, or the directly at https://scale.riken.jp/archives/5.5.4/dc/dd1/history.html. The list has the variable name, brief description, and module name where the variable is registered for the history data. The variables are sorted by the module name. The detail information of variables can be see by clicking the module name.

| ● ● ● ■ □ ~ < >                                                                                                                                        | <b>(C)</b>                                                                                                                                                          |                                                                                                                                                                                                                   | ⊜ sc                                                                                                     | ale.riken.jp                                  |                                                                | ାହ (                                             | 5                                         |                                              |         | <br>ᠿ | + |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------|---------|-------|---|--|
| iGoogle Googl                                                                                                                                          | e マップ Google Schol                                                                                                                                                  | lar Google 翻訳 Wikipedi                                                                                                                                                                                            | ia =~~                                                                                                   | JAMSTEC $\checkmark$                          | 理研 🖌 研究制                                                       | 「係~ JMSJ~                                        | お役立ち 🗸                                    | リーディングリス                                     | ⊦ ¥ FVM |       |   |  |
| SCALE-RM                                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                          |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| Main Page Related Pages                                                                                                                                | Modules -                                                                                                                                                           | Data Types List 🔹                                                                                                                                                                                                 | Files •                                                                                                  |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| History Variables                                                                                                                                      |                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                          |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| SCALELIB                                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                          |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| UVALLU                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                          |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
|                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                          |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| Click the corresponding "module                                                                                                                        | name" to see det                                                                                                                                                    | tail information of eac                                                                                                                                                                                           | h variable.                                                                                              |                                               |                                                                |                                                  |                                           |                                              |         |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i                                                                                     | name" to see det<br>t is enabled only v                                                                                                                             | tail information of eac                                                                                                                                                                                           | h variable.<br>ompiled with                                                                              | h "-DXXXX)                                    | <" compile o                                                   | ption.                                           |                                           |                                              |         |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name                                                                    | name" to see det<br>t is enabled only v                                                                                                                             | tail information of eac<br>when the SCALE is co<br><b>Descriptic</b>                                                                                                                                              | th variable.<br>ompiled with                                                                             | h "-DXXXX                                     | K" compile o                                                   | ption.                                           | me                                        | odule name                                   | •       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name                                                                    | name" to see det<br>t is enabled only v<br>tendency of {                                                                                                            | tail information of eac<br>when the SCALE is or<br><b>Descriptic</b><br>(TRACER_NAME) du                                                                                                                          | th variable.<br>ompiled with<br>on<br>ue to dampin                                                       | h "-DXXXX)<br>ng;                             | K" compile o                                                   | ption.                                           | mo                                        | odule name                                   | •       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name<br>{TRACER_NAME}_t_damp                                            | name" to see det<br>t is enabled only w<br>tendency of {<br>{TRACER N                                                                                               | tail information of eac<br>when the SCALE is of<br>Descriptio<br>(TRACER_NAME) du<br>(AME) depends on th                                                                                                          | ch variable.<br>ompiled with<br>on<br>ue to dampin<br>ue physics s                                       | h "-DXXXX)<br>ng;<br>chemes,                  | Compile of scale_a                                             | ption.<br>tmos_dyn_t                             | mo<br>step_larg                           | odule name<br>e_fvm_heve                     | 9       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name<br>(TRACER_NAME)_t_damp                                            | name" to see det<br>t is enabled only v<br>tendency of {<br>{ <i>TRACER</i> _N<br>e.g., QV, QC                                                                      | tail information of eac<br>when the SCALE is or<br><b>Descriptio</b><br>( <i>TRACER_NAME</i> ) du<br>( <i>TRACER_NAME</i> ) du<br>( <i>AME</i> ) depends on th<br>, OR.                                           | ch variable.<br>ompiled with<br>on<br>ue to dampine<br>physics s                                         | h "-DXXXX)<br>ng;<br>chemes,                  | K" compile o                                                   | ption.<br>tmos_dyn_t                             | mo<br>step_larg                           | odule name<br>e_fvm_heve                     | 9       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name<br>(TRACER_NAME)_t_damp                                            | name" to see det<br>t is enabled only v<br>tendency of {<br><i>TRACER</i> N<br>e.g., QV, QC<br>tendency of {                                                        | tail information of eac<br>when the SCALE is or<br><b>Descriptio</b><br>( <i>TRACER_NAME</i> ) du<br>( <i>TRACER_NAME</i> ) du<br>( <i>TRACER_NAME</i> ) du<br>( <i>TRACER_NAME</i> ) du                          | th variable.<br>ompiled with<br>on<br>ue to dampin<br>e physics s<br>ue to physic<br>ue to physic        | ng;<br>chemes,<br>s;<br>chemes                | K" compile o<br>scale_a                                        | ption.<br>tmos_dyn_t                             | mo<br>step_larg                           | odule name<br>e_fvm_heve                     | 3       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name<br>(TRACER_NAME)_t_damp<br>(TRACER_NAME)_t_phys                    | name" to see det<br>t is enabled only v<br>tendency of {<br><i>(TRACER_N</i><br>e.g., QV, QC<br>tendency of {<br><i>(TRACER_N</i><br>e.g., QV, QC                   | tail information of eac<br>when the SCALE is or<br><b>Descriptio</b><br>( <i>TRACER_NAME</i> ) du<br>( <i>AME</i> ) depends on th<br>, OR.<br>( <i>TRACER_NAME</i> ) du<br>( <i>IAME</i> ) depends on th<br>, OR. | ch variable.<br>ompiled with<br>on<br>ue to dampine<br>physics s<br>ue to physic<br>e physics s          | h "-DXXXX)<br>ng;<br>chemes,<br>s;<br>chemes, | K" compile o<br>scale_a<br>scale_a                             | ption.<br>tmos_dyn_t<br>tmos_dyn_t               | mo<br>step_larg<br>step_larg              | odule name<br>e_fvm_heve<br>e_fvm_heve       | •       |       |   |  |
| Click the corresponding "module<br>Note: "(w/ XXXXX)" means that i<br>Variable name<br>(TRACER_NAME)_t_damp<br>(TRACER_NAME)_t_phys<br>(ctg_name)_mass | name" to see det<br>t is enabled only v<br>tendency of {<br>{ <i>TRACER_N</i><br>e.g., QV, QC<br>tendency of {<br>{ <i>TRACER_N</i><br>e.g., QV, QC<br>Total mass m | tail information of eac<br>when the SCALE is or<br><b>Descriptio</b><br>( <i>TRACER_NAME</i> ) du<br>( <i>AME</i> ) depends on th<br>, QR.<br>( <i>TRACER_NAME</i> ) du<br>( <i>IAME</i> ) depends on th<br>, QR. | th variable.<br>ompiled with<br>on<br>ue to dampin<br>ue to dampin<br>e physics s<br>ue to physic<br>s s | ng;<br>chemes,<br>s;<br>chemes,               | <pre>&lt;" compile o     scale_a     scale_a     scale_a</pre> | ption.<br>tmos_dyn_t<br>tmos_dyn_t<br>tmos_phy_a | mo<br>step_larg<br>step_larg<br>ae_kajino | odule name<br>e_fvm_heve<br>e_fvm_heve<br>13 | •       |       |   |  |

Figure 5.3.2: The image of the history variables list on the SCALE web page



## Chapter 5.4

# How to Conduct Bulk Job

## 5.4.1 What's Bulk Job

SCALE-RM has a functionality for bulk jobs that allows simultaneous multiple execution of independent runs. This function is useful for the parameter-sweep experiment, the ensemble experiment in different initial conditions, the time-slice climate simulation, and so on.

The bulk job function can be used not only for model simulation (scale-rm), but also for the generation of topographical data, land-use data, and initial/boundary data. Note that the generation of topographical/land-use data by this function is limited to the case without a topography copy function (See 4.2.8.1).

In the following explanation, an independent execution in the bulk job is called a "sub-job". Three two-domain nesting experiments are taken up as an example. This set of experiments consists of three sub-jobs with different integration periods and calculation domain. (NUM\_DOMAIN, PRC\_DOMAINS, CONF\_FILES) in [PARAM\_LAUNCHER] in the file launch.conf (refer to Section 4.2.8.3) must be the same in all configurations. The other settings, such as integration time, the scheme used, and the number of grids per MPI process, do not need to be the same among the sub-jobs.

## 5.4.2 Settings for Bulk Job

Since the bulk job function is an extension of the division and redistribution of MPI processes used in online nesting, file launch.conf is required to launch the job. Even in case online nesting and bulk job functions are used together, only one file launch.conf is required. Below is an example of such a case.

| &PARAM_LAUNCHER                          |
|------------------------------------------|
| NUM_BULKJOB = 3,                         |
| NUM_ITERATION_BULK = 1,                  |
| BULKJOB_START_DIRNUM = 0,                |
| ADD_BULKJOB_PATH = .false.,              |
| $NUM_DOMAIN = 2,$                        |
| $PRC_DOMAINS = 9, 36,$                   |
| CONF_FILES = run.d01.conf, run.d02.conf, |
| LOG_SPLIT = .false.,                     |
| COLOR_REORDER = .true.,                  |
| FAILURE_PRC_MANAGE = .false.,            |
| NUM_FAIL_TOLERANCE = 1,                  |
| FREQ_FAIL_CHECK = 5,                     |
|                                          |

| number of sub-jobs                       |
|------------------------------------------|
| number of iterations to execute sub-jobs |
| start number of the job directory        |
| add job directory to file names          |
| number of nesting domains                |
| number of total process in each domain   |
| name of configulation files              |
| log-output for mpi splitting?            |
| coloring reorder for mpi splitting?      |
| use failure process management?          |
| tolerance number of failure processes    |
| FPM polling frequency per DT             |

The number of sub-jobs is specified by (NUM\_BULKJOB). For single-domain experiments (no nesting), specify (NUM\_DOMAIN) = 1.


Figure 5.4.1: Structure of directories at the execution of SCALE-RM with bulk job. Numbers such as "0000" are the directory names and called the job directory. All necessary configuration files to execute sub jobs must be prepared in each job directory.

The job directory name is a four-degit number, which by default corresponds to a job ID starting with 0. You can change the starting number by specifing (BULKJOB\_START\_DIRNUM).

By default, the file names in the sub-job configuration files, such as init.conf and run.conf, must contain the job directory (e.g., 0000/history.nc). If (ADD\_BULJJOB\_PATH) is specified as .true., the job directory name will be added to all file names in the configuration files except the absolute path.

If your computer does not have enough resources to run all the sub-jobs at once, you can divide the sub-jobs into multiple groups. The number of sub-jobs to be executed at one time will be (NUM\_BULKJOB) / (NUM\_ITERATION\_BULK).

The other configurations are described in Section 4.2.8.3.

## 5.4.3 Failure Process Management

In the SCALE-RM bulk job system, a failure process management (FPM) tool is available. FPM watches the job groups with a polling interval. If some jobs are unfortunately aborted, all other jobs are not aborted until the number of failure jobs reaches to the limit number. (FAILURE\_PRC\_MANAGE) is a switch for use FPM tool. (NUM\_FAIL\_TOLERANCE) and (FREQ\_FAIL\_CHECK) are setting parameters for limit number of failure jobs and interval of checking failure job, respectively. Note, this version of FPM tool is available only for single domain calculation, not available of full system for online-nesting calculation. If you want to use FPM tool even in online-nesting calculation, (NUM\_FAIL\_TOLERANCE) must be equal to the number of all jobs.

## 5.4.4 Preparation for Bulk Job

Prior to the execution of bulk jobs, prepare as many directories as the number of sub-jobs, which are called "sub-directories." As in Fig. 5.4.1, these correspond to 0000/ 0001/ 0002/. The directory name is assigned as a four-digit number starting from zero. In each directory, all the necessary files (configuration files, input files, and output directories) must be prepared. Note that the path to directories or files specified in the configuration files must be correctly set up as explained below. An excerpt of run.d01.conf for job 0000 are as follows:



```
&PARAM_IO
IO_LOG_BASENAME = "0000/LOG_d01",
1
&PARAM_RESTART
RESTART_OUTPUT = .true.,
RESTART_OUT_BASENAME = "0000/restart_d01",
RESTART_IN_BASENAME = "../init/0000/init_d01_00013046400.000",
1
&PARAM_GRAPHY
TOPOGRAPHY_IN_BASENAME = "../pp/0000/topo_d01",
1
&PARAM_LANDUSE
LANDUSE_IN_BASENAME = "../pp/0000/landuse_d01",
/
&PARAM_ATMOS_BOUNDARY
 ~ ... ~
ATMOS_BOUNDARY_IN_BASENAME = "../init/0000/boundary_d01",
  ... ~
&PARAM_FILE_HISTORY
FILE_HISTORY_DEFAULT_BASENAME = "0000/history_d01",
 ~ ... ~
```

As shown in Fig. 5.4.1, job directories exist in the same hierarchy as the directory of the executable binary. That is, a configuration file exists under each job directory, whereas the input files and the output directories must be described as relative paths from the location of the executable binary. The output directory in the 0000 experiment is 0000/ and the name of output files are as 0000/\*\*\*. Note that when the file name is common to all experiments without adding the name of job directory, the output is written to the same file, and the data disappear as a result.

# 5.4.5 Execution of Bulk Job

At the execution of bulk jobs, the total number of MPI processes is specified as

\$ mpirun -n 135 ./scale-rm launch.conf

In this example, the number of processes per sub-job is 45 (= 9 + 36) and the total number of processes used for three sub-jobs is 135. The message providing information regarding the division of MPI processes is written to the LOG files after the SCALE logo. The following example is the log output for process 0 of Domain 1:



```
+++++ start making Cartesian topology
*** UNIVERSAL_COMM_WORLD : 0
                                         ; different by execution environment
*** total process [UNIVERSAL] : 135
*** my process ID [UNIVERSAL] : 36
*** master rank? [UNIVERSAL] : F
*** GLOBAL_COMM_WORLD : 3
                                         ; different by execution environment
*** total process [GLOBAL] : 45
*** my process ID [GLOBAL] : 36
*** master rank? [GLOBAL] : F
                                         ; different by execution environment
*** LOCAL_COMM_WORLD : 4
*** total process [LOCAL] : 9
*** my process ID [LOCAL] : 0
*** master rank? [LOCAL] : T
*** ABORT_COMM_WORLD : 0
*** master rank ID [each world] : 0
```

The items belonging to [LOCAL], [GLOBAL], and [UNIVERSAL] are the descriptions, respectively, of the process group in the domain, the nesting group, and the job group. The UNIVERSAL group includes the GLOBAL group and the GLOBAL group includes the LOCAL group. total process represents the total number of processes in each group and my process ID is the ID of the process in the group.

It can be confirmed in this case that 1) since total process [UNIVERSAL] is 135, all these processes are completed executed; 2) since total process [GLOBAL] is 45, these 45 processes are used in a sub-job; 3) since the log file for Domain 1 is shown in this example, it is correct to describe total process [LOCAL] as 9. If you see the log message for Domain 2, it is 39. my process ID [UNIVERSAL] is the process number corresponding to the LOG and history files. Since this notation is the same as in the abnormal completion of execution, you can immediately recognize the processes in which errors occur during executing a considerable number of sub-jobs.



# Bibliography

- A. C. M. Beljaars. The parameterization of surface fluxes in large-scale models under free convection. Quarterly Journal of the Royal Meteorological Society, 121:255–270, 1994. doi: 10.1002/qj.49712152203.
- A. C. M. Beljaars and A. A. M. Holtslag. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30:327–341, 1991.
- A. R. Brown, S. H. Derbyshire, and P. J. Mason. Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. *Quarterly Journal of the Royal Mete*orological Society, 120:1485–1512, 1994.
- Committee on Space Research; NASA National Space Science Data Center. COSPAR International Reference Atmosphere (cira-86): Global climatology of atmospheric parameters, 2006.
- J. W. Deardorff. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorology, 18:495–527, 1980.
- A. M. Golovin. The solution of the coagulation equation for cloud droplets in a rising air current. *Izv. Geophys. Ser*, 5:482–487, 1963.
- J. S. Kain. The kain-fritsch convective parameterization: An update. J. Appl. Meteor., 43:170–181, 2004.
- J. S. Kain and J. M. Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization. *Journal of the Atmospheric Sciences*, 47:2784–2802, 1990.
- E. Kessler. On the distribution and continuity of water substance in atmospheric circulation. Meteorological Monograph, 10:1–84, 1969.
- Barry Koren. A robust upwind discretization method for advection, diffusion and source terms. Centrum voor Wiskunde en Informatica Amsterdam, 1993.
- H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. *Boundary-Layer Meteorol.*, 101:329–358, 2001.
- D. K. Lilly. On the numerical simulation of buoyant convection. Tellus, 14:148-171, 1962.
- A. Long. Solutions to the droplet collection equation for polynomial kernels. Journal of the Atmospheric Sciences, 31:1041–1052, 1974.
- J.-F. Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol., 17:187–202, 1979. doi: 10.1007/BF00117978.
- G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. *Rev. Geophys. Space Phys.*, 20:851—875, 1982.



- M. J. Miller, A. C. M. Beljaars, and T. N. Palmer. The sensitivity of the ecmwf model to the parameterization of evaporation from the tropical oceans. *Journal of Climate*, 5(5):418–434, 1992.
- I.-J. Moon, I. Ginis, T. Hara, and B. Thomas. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. *Mon. Weather Rev.*, 135:2869–2878, 2007. doi: 10.1175/MWR3432.1.
- T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura. Modeling of the radiative process in an atmospheric general circulation model. *Applied Optics*, 39:4869–4878, 2000. doi: 10.1364/AO.39.004869.
- M. Nakanishi and H. Niino. An improved mellor-yamada level-3 model with condensation physics: Its design and verification. *Bound-Lay. Meteorol.*, 112:1–31, 2004.
- M. Nakanishi and H. Niino. Development of an imprived turbulence closure model for the atmospheric boundary layer. *Journal of the Meteorological Society of Japan*, 87:895–912, 2009. doi: 10.2151/jmsj.87.895.
- M. Narita and S. Ohmori. Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the kain-fritsch convective parameterization and cloud microphysics. 12th Conference on Mesoscale Processes, 6-9 August 2007, Waterville Valley conference & event center:available from https://ams.confex.com/ams/12meso/techprogram/paper\_126017.htm, 2007.
- S. Nishizawa and Y. Kitamura. A surface flux scheme based on the Monin-Obukhov similarity for finite volume models. J. Adv. Model. Earth Syst., 10:3159–3175, 2018. doi: 10.1029/2018MS001534.
- S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. *Geosci. Model Dev.*, 8(10): 3393–3419, 2015. doi: 10.5194/gmd-8-3393-2015.
- Y. Ogura and H.-R. Cho. Diagnostic determination of cumulus cloud populations from observed large-scale variables. *Journal of the atmospheric sciences*, 30(15):1276–1286, 1973.
- Katsuyuki V Ooyama. A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. *Journal of the atmospheric sciences*, 58(15):2073–2102, 2001.
- J-L Redelsperger, PRA Brown, F Guichard, C How, M Kawasima, S Lang, Th Montmerle, K Nakamura, K Saito, C Seman, et al. A gcss model intercomparison for a tropical squall line observed during toga-coare. i: Cloud-resolving models. *Quarterly Journal of the Royal Meteorological Society*, 126(564):823–863, 2000.
- J. J. Remedios, R. J. Leigh, A. M. Waterfall, D. P. Moore, H. Sembhi, I. Parkes, J. Greenhough, M. P. Chipperfield, and D. Hauglustaine. Mipas reference atmospheres and comparisons to v4.61/v4.62 mipas level 2 geophysical data sets. *Atmos. Chem. Phys. Discuss.*, 7:9973–10017, 2007. doi: doi:10.5194/acpd-7-9973-2007.
- Y. Sato, S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa, and H. Tomita. Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation? *Progress in Earth and Planetary Science*, 2(1):1–16, 2015. doi: 10.1186/s40645-015-0053-6.

Team SCALE. The detail formulation of SCALE-RM. RIKEN/R-CCS, 2015.

- A. Scotti, C. Meneveau, and D. K. Lilly. Generalized smagorinsky model for anisotropic grids. *Physics of Fluids A*, 5:2306–2308, 1993.
- T. Seiki and T. Nakajima. Aerosol effects of the condensation process on a convective cloud simulation. *Journal of the Atmospheric Sciences*, 71:833–853, 2014.



- M. Sekiguchi and T. Nakajima. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. of Quantitative Spectroscopy and Radiative Transfer, 109:2779—2793, 2008.
- J. Smagorinsky. General circulation experiments with the primitive equations. *Mon. Weather Rev.*, 91:99—-164, 1963.
- K. Suzuki, T. Nakajima, T. Y. Nakajima, and A. P. Khain. A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. *Journal of the Atmospheric Sciences*, 67(4):1126–1141, 2010.
- H. Tomita. New microphysical schemes with five and six categories by diagnostic generation of cloud ice. Journal of the Meteorological Society of Japan, 86:121–142, 2008.
- H. Tomita. Analysis of spurious surface temperature at the atmosphere-land interface and a new method to solve the surface energy balance equation. J. Hydrometeorology, 10:833–844, 2009. doi: 10.1175/2008JHM1080.1.
- I Uno, X-M Cai, DG Steyn, and S Emori. A simple extension of the louis method for rough surface layer modelling. *Boundary-Layer Meteorology*, 76(4):395–409, 1995.
- Louis J Wicker and William C Skamarock. Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review, 130(8):2088–2097, 2002.
- D. K. Wilson. An alternative function for the wind and temperature gradients in unstable surface layers. Bound-Lay. Meteorol., 99:151—-158, 2001.
- S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31:335–362, 1979. doi: 10.1016/0021-9991(79)90051-2.



# Part 6 Appendix



# Appendix A

# Frequently asked questions

In this chapter, frequently asked questions are shown as specific exercises, and answers to them are provided.

# Questions

1. How is the number of MPI processes changed while maintaining the computational domain?

Change the MPI process number from 4-MPI parallel to 6-MPI parallel for the tutorial case of the real atmospheric experiment in Chap. 3.2. (Reference: Section 4.2.3.3 and 4.2.3.1).

2. How is the computational domain altered while maintaining the number of MPI processes?

Extend the computational domain to four-thirds of its original size along the x direction and shrink it to two-thirds along the y direction for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference: Section 4.2.3.1).

3. How is horizontal grid interval changed while maintaining the computational domain?

Change the horizontal grid interval from the default value to 5 km for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference: Section 4.2.3.1, 4.2.3.2, 4.2.3.5, 4.2.5, 4.2.6).

4. How is the location of computational domain altered?

Change the domain center from the default value to a longitude of  $135^{\circ}45.4'$  and a latitude of  $35^{\circ}41.3'$  while maintaining the domain size for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference: Section 4.2.4).

#### 5. How is the integration time changed?

Change the integration period from 6 hours to 12 hours for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference: Section 4.2.5).

#### 6. How are output variables added and their output interval changed?

Change the output interval from the default to 30 min, and add the downward and upward shortwave radiations at the surface as output variables for the tutorial case of the real atmospheric experiment in Chap. 3.2. (Reference: Section 4.2.6, Section 5.3.2).

7. How does the model restart?

Using the tutorial of the real atmospheric experiment in Chap. 3.2, execute 3-hour integration. Then execute another 3 hours of integration using the restart files created in the first integration. (Reference: Section 4.2.7 and 4.1.2).



### Answer

1. How is the number of MPI processes changed while maintaining the computational domain?

(PRC\_NUM\_X, PRC\_NUM\_Y) in [PARAM\_PRC] are changed. If the below conditions are satisfied, your answer is correct:

Number of MPIs parallel = PRC\_NUM\_X  $\times$  PRC\_NUM\_Y = 6 IMAXG mod PRC\_NUM\_X = 0 JMAXG mod PRC\_NUM\_Y = 0

2. How is the computational domain altered while maintaining the number of MPI processes?

If the number of grid points increases n times, the domain size also increases n times. Thus, only (IMAXG, JMAXG) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX] are changed. The red parts indicate the answer below:

```
&PARAM_ATMOS_GRID_CARTESC_INDEX
KMAX = 36,
IMAXG = 120,
JMAXG = 60,
(IMAXG = 90 in the original settings)
/
```

3. How is horizontal grid interval changed while maintaining the computational domain?

When the number of MPI processes is not changed, (DX, DY) in [PARAM\_ATMOS\_GRID\_CARTESC] and (IMAXG, JMAXG) in [PARAM\_ATMOS\_GRID\_CARTESC\_INDEX] should be changed.

```
&PARAM_PRC_CARTESC
PRC_NUM_X = 2,
PRC_NUM_Y = 2,
&PARAM_ATMOS_GRID_CARTESC_INDEX
KMAX = 36,
IMAXG = 360,
JMAXG = 360,
/
&PARAM_ATMOS_GRID_CARTESC
DX = 5000.D0,
DY = 5000.D0,
/

(DX = 20000.D0 in the original settings)
(DY = 20000.D0 in the original settings)
```

In the case that the number of MPI processes is changed, if the below conditions are satisfied in the setting of [PARAM\_ATMOS\_GRID\_CARTESC], your answer is correct:

$$\begin{split} \texttt{IMAXG} \ \texttt{mod} \ \texttt{PRC}\_\texttt{NUM}\_\texttt{X} = 0 \\ \texttt{JMAXG} \ \texttt{mod} \ \texttt{PRC}\_\texttt{NUM}\_\texttt{Y} = 0 \end{split}$$

Moreover, it is necessary to suitably change the time interval for the dynamics, i.e., (TIME\_DT\_ATMOS\_DYN) and (TIME\_DT) (refer to Section 4.2.5), and also the output intervals (refer to Section 4.2.6). The width of the buffer region should be set between 20 and 40 times of the grid spacing. Below is an example of the answer, indicating the case where the buffer region was set to 20 times the grid spacing.



```
&PARAM_PRC_CARTESC
BUFFER_DX = 100000.D0, (BUFFER_DX = 400000.D0, in the original settings)
BUFFER_DY = 100000.D0, (BUFFER_DY = 400000.D0, in the original settings)
/
```

#### 4. How is the location of the computational domain changed?

The coordinates of the center of the computational domain are changed as follows. Note that the unit is degrees. For example, 139 degrees 45.4 min = 139 + 45.4/60 degrees.

```
&PARAM_MAPPROJECTION
MAPPROJECTION_basepoint_lon = 139.7567D0, (135.220404D0, in the original setting)
MPRPROJECTION_basepoint_lat = 35.6883D0, (34.653396D0, in the original setting)
MAPPROJECTION_type = 'LC',
MAPPROJECTION_LC_lat1 = 30.00D0,
MAPPROJECTION_LC_lat2 = 40.00D0,
```

5. How is the integration time changed?

```
&PARAM_TIME
TIME_STARTDATE = 2007, 7, 14, 18, 0, 0,
TIME_STARTMS = 0.D0,
TIME_DURATION = 12.0D0,
TIME_DURATION_UNIT = "HOUR",
( 6.0D0, in the original settings)
```

Furthermore, it is necessary to prepare a boundary condition of more than 12 hours by scale-rm\_init. Referring to Section 4.1.2, (NUMBER\_OF\_FILES) must be set greater than 3.

6. How are output variables added and their output interval changed?

The output interval is set to (FILE\_HISTORY\_DEFAULT\_TINTERVAL) in [PARAM\_FILE\_HISTORY] as below. The output variables are specified at (NAME) in [HISTORY\_ITEM]. The list of the history variables is in the reference manual. See Section 5.3.2 for the reference manual. In order to horizontally/vertically remap a variable whose output interval is set at (TINTERVAL) in [HISTORY\_ITEM] by SNO, the value of (TINTERVAL) must be equal to that of (FILE\_HISTORY\_DEFAULT\_TINTERVAL).

#### 7. How does the model restart?

The first integration for 3 hours is configured in run.conf as below. Once the 3 hours for integration have elapsed, the restart file is created.



```
&PARAM_TIME
 TIME_STARTDATE = 2007, 7, 14, 18, 0, 0,
 TIME_STARTMS = 0.DO,
 TIME_DURATION = 3.0D0,
                              necessary for more than 3 hours
TIME_DURATION_UNIT = "HOUR",
 ....(omission)....
 TIME_DT_ATMOS_RESTART = 10800.D0,
 TIME_DT_ATMOS_RESTART_UNIT = "SEC",
 TIME_DT_OCEAN_RESTART = 10800.D0,
 TIME_DT_OCEAN_RESTART_UNIT = "SEC",
 TIME_DT_LAND_RESTART = 10800.D0,
 TIME_DT_LAND_RESTART_UNIT = "SEC",
 TIME_DT_URBAN_RESTART = 10800.D0,
 TIME_DT_URBAN_RESTART_UNIT = "SEC",
1
&PARAM_RESTART
RESTART_OUTPUT = .true.,
 RESTART_IN_BASENAME = "../init/init_d01_20070714-180000.000",
RESTART_OUT_BASENAME = "restart_d01",
1
&PARAM_ATMOS_BOUNDARY
 ATMOS_BOUNDARY_TYPE = "REAL",
 ATMOS_BOUNDARY_IN_BASENAME = "../init/output/boundary_d01",
&PARAM_ATMOS_REFSTAT
 ATMOS_REFSTATE_TYPE = "INIT",
 ATMOS_REFSTART_UPDATE_DT = 10800.D0,
/
```

When (TIME\_DURATION) is set to 3 hours and (RESTART\_OUTPUT) is .true., the restart file is created at the end of the integration. Therefore, (TIME\_DT\_ATMOS\_RESTART), (TIME\_DT\_OCEAN\_RESTART), (TIME\_DT\_LAND\_RESTART), and (TIME\_DT\_URBAN\_RESTART) are not necessary. When (TIME\_DURATION) is set to more than 3 hours, it is necessary to specify (TIME\_DT\_ATMOS\_RESTART), (TIME\_DT\_OCEAN\_RESTART), (TIME\_DT\_LAND\_RESTART), and (TIME\_DT\_URBAN\_RESTART). The values for (TIME\_DT\_ATMOS\_RESTART), (TIME\_DT\_OCEAN\_RESTART), (TIME\_DT\_LAND\_RESTART), and (TIME\_DT\_URBAN\_RESTART) must be a divisor of 3 hours (10800 s) and a multiple of (TIME\_DT). In order to make the reference state (See Section 4.3.1.7) in the restart calculation identical to that in the first calculation, the update interval of the reference state is specified to be a divisor of 3 hours.

The configuration for the restart calculation from 3 to 6 hours in integration time is as follows:

```
&PARAM_TIME
TIME_STARTDATE = 2007, 7, 14, 21, 0, 0,
TIME_STARTMS = 0.DO,
TIME_DURATION = 3.0D0,
                                                                set for longer than 3 hours
TIME_DURATION_UNIT = "HOUR",
/
&PARAM_RESTART
RESTART_OUTPUT = .true.,
                                                                (not always necessary)
RESTART_IN_BASENAME = "restart_d01_20070714-210000.000",
                                                                (necessary)
RESTART_OUT_BASENAME = "restart2_d01",
                                                                (not always necessary)
/
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_TYPE = "REAL",
ATMOS_BOUNDARY_IN_BASENAME = "../init/output/boundary_d01",
/
&PARAM_ATMOS_REFSTAT
ATMOS_REFSTATE_TYPE = "INIT",
 ATMOS_REFSTART_UPDATE_DT = 10800.D0,
1
```

### SCALE USERS GUIDE

# Author & Editor

Team SCALE User's guide working group

If you have any questions or concerns, please contact developer team (scale@ml.riken.jp).

 $\label{eq:copyright} \textcircled{O} Team \ SCALE, RIKEN \ R-CCS, \ 2016, \ 2017, \ 2018, \ 2019, \ 2020, \ 2021, \ 2022. \ All \ rights reserved.$