

Contents

1	Overview	4
1.	1Introduction 1.1.1 What is SCALE?	5 5 7
1.	2Notations used in this document	9
2	Install	10
2.	1Preparation 2.1.1 System environment	11 11
2.	2Compile of SCALE 2.2.1 Download and environmental settings	14 14 15
2.	3Compile of post-processing tool (net2g) 2.3.1 Compilation of netcdf2grads (net2g)	17 17
3	Tutorial for SCALE-RM	18
3.	1Operation check and basic usage 3.1.1 Introduction	19 19 19 21 22
3.	2Real atomsphere experiment 3.2.1 Overview 3.2.2 Preparations for input data (boundary data) 3.2.3 Preparation for experiment set 3.2.4 Creating topographical data: pp 3.2.5 Creating the initial and boundary data: init 3.2.6 Execution of simulation: run 3.2.7 Quick look at simulation result: net2g	25 25 26 28 29 30 32 36
4	Various settings	39
4.	1Pre-processing 4.1.1 How to prepare initial and boundary data	40

	45
4.2.1 Supporting tool for preparation of configuration files	45
4.2.2 Configure File Converter from Previous Version	46
4.2.3 Setting the target domain	47
4.2.3.1 Setting the number of MPI processes	47
4.2.3.2 Setting the number of horizontal and vertical grids	48
4.2.3.3 Setting grid intervals along the horizontal and vertical directions	48
4.2.3.4 Setting sponge layer	49
4.2.3.5 Setting Buffer Region and Boundary Nudging Method	50
4.2.4 Setting the map projection	56
4.2.5 Setting the topography	57
4.2.6 Preparation of user-defined topography	59
4.2.7 Setting integration period and time step	60
4.2.7.1 Time Step for Dynamical Processes	60
4.2.7.2 Check of CFL Condition	61
4.2.7.3 Time Step for Physical Processes	61
4.2.7.4 Finalization by wall-clock timer	62
4.2.8 Setting the history file and output variable	62
4.2.9 How to restart run	64
4.2.1(How to conduct nesting experiment	67
4.2.10.1Treatment of topography in child domain	67
4.2.10.20ffline Nesting Experiment	70
4.2.10.3Online Nesting Experiment	74
4.3Setting the dynamical core	7 8
4.3.1 Dynamical Core for Cartesian C-grid	78
4.3.1.1 Setting Integration Numerical Method	78
4.3.1.2 Setting Temporal and Spatial Difference Schemes	78
4.3.1.3 Numerical Diffusions	79
4.3.1.4 Positive Definit	80
4.3.1.5 Halos	80
	80
4.3.1.6 Setting for Coriolis Force	81
4.5.1.7 Lateral Boundary Condition for Corions	01
4.4Setting the physical process	82
4.4.1 Cloud Micro-Physics	82
4.4.2 Cumulus Parameterization	83
4.4.3 Sub-Grid Scale Turbulence Scheme	84
4.4.4 Planetary Boundary Layer Scheme	85
4.4.5 Radiation scheme	86
4.4.6 Surface Flux at the Bottom of Atmospheric Boundary	91
4.4.7 Ocean Model	92
4.4.7.1 Subsurface ocean scheme	94
4.4.7.2 Ocean surface process	95
4.4.8 Land Model	97
4.4.8.1 Land Dynamics and Surface Scheme	97
4.4.9 Urban model	99
4.4.9.1 Flux in Atmosphere and Urban Area	99
4.4.5.1 Flux in Atmosphere and Orban Area	93
4.5Common settings	01
	01
	101
	102
	102
	104

	4.5.4 Setting Calendar	104
	4.5.5 Setting Random Number Generator	105
	4.5.6 Setting Performance Profiler	105
	4.5.7 Setting Statistics Monitor	105
4.0	6Post-processing	107
	4.6.1 netcdf2grads (net2g)	107
	4.6.2 SCALE NetCDF Operator (SNO)	110
	4.6.2.1 Samples of configuration: basic usage	
	4.6.2.2 Samples of configuration: plugin functions	114
5	Detailed explanation for advanced use	116
5. :	1File IO of SCALE	117
	5.1.1 What is SCALE-netCDF File?	. 117
	5.1.1.1 Global Attributes	. 117
	5.1.1.2 Data in the Halo Region	117
	5.1.1.3 Axis Variables	117
	5.1.1.4 Data Variables	121
	5.1.1.5 Single File I/O	121
	5.1.1.6 Restrictions with NetCDF 3	121
5.2	2How to use user defined program	124
	5.2.1 Module for user defined settings	
	5.2.1.1 What is mod_user module?	
	5.2.1.2 Compile	125
5.:	3How to use scale library	12 6
	5.3.1 User Program Using SCALE	
	5.3.1.1 Compile	
	5.3.2 Reference manual	
	5.3.2.1 Subroutines	
	5.3.2.2 NAMELIST Parameters	
	5.3.2.3 History Variables	128
5.4	4How to Conduct Bulk Job	130
	5.4.1 What's Bulk Job	
	5.4.2 Settings for Bulk Job	
	5.4.3 Failure Process Management	
	5.4.4 Preparation for Bulk Job	
	5.4.5 Execution of Bulk Job	132
6	Appendix	137
A	Frequently asked questions	138

Part 1 Overview

Chapter 1.1

Introduction

This user's manual is intended for first-time users of the regional climate/weather forecasting model SCALE-RM . The manual is based on the meteorology/climate library SCALE version 5.3.6. The current version of SCALE contains a regional model SCALE-RM and a global model SCALE-GM . This version of the user's manual explains how to use SCALE-RM in detail. A description of SCALE-GM is planned for the next release.

The structure of this document is as follows: Part 1 provides an overview of SCALE , Part 2 describes how to install SCALE-RM along with the system requirements. Using simple examples, Chapters 3.1 and 3.2 explain the basic use of SCALE-RM using examples of an ideal experiment and an real atmospheric experiment, respectively. Since these chapters are constructed as a series of tutorials, it is recommended that beginning users of SCALE-RM read these chapters meticulously. Parts 4 and 5 describe how to change the model configuration and explain data format and available functions and tools. Since each section is closed itself basically, these chapter can be utilized as a dictionary.

If you have any questions or comments, please contact us through the users mailing list $\langle scale-users@ml.riken.jp \rangle$.

1.1.1 What is SCALE?

Scalable Computing for Advanced Library and Environment, called SCALE, is a software library that helps conduct research on climate and weather forecasting on any computer with ease. This library covers all processes related to such research: pre-processing, simulation, post-processing, and analysis. It has the following advantages:

- SCALE is provided as an open-source software under the "BSD-2 license.". It is free for use, modification, and redistribution, regardless of whether the user is a business or other enterprise.
- SCALE contains a regional model called the SCALE-RM (SCALE-Regional Model).
- SCALE prepares various schemes in a component, as outlined in the next section. They can be appropriately chosen according to the desired experiments of users.
- SCALE provides a framework for physical processes that can be called not only by SCALE-RM , but also by other numerical models.

For the details of the license, the interested reader can refer to the file scale-5.3.6/LICENSE under the main directory. This explanation of its use is also provided on the SCALE webpage (http://scale.aics.riken.jp/).

In this section, the concept of SCALE and its relations to actual models are explained. It can be skipped, as it is not related directly to its practical use.

Relations between SCALE library and models

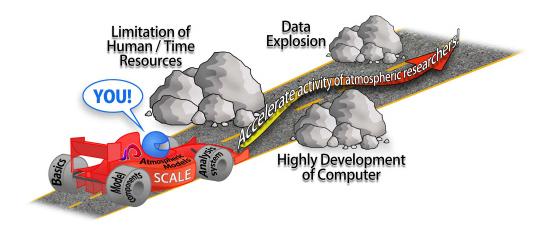


Figure 1.1.1: Aims of SCALE

SCALE was developed in RIKEN with several outside contributors, and its improvement and extension continue. Figure 1.1.1 shows the schematic concept of SCALE . As shown in this figure, SCALE aims to resolve various problems. The development of SCALE is considered in the context of its wide use by devices ranging from small PC clusters to next-generation supercomputers. For this purpose, scientists in meteorology/climate science and computer science are cooperating.

SCALE-RM is a numerical model that fully uses SCALE . This model is contained in the SCALE package, as shown in Fig. 1.1.2. SCALE manages the parallel processes, file I/O, and inner-communication. SCALE also provides the solver for atmospheric flow (dynamical core) and physical processes such as micro-physics and radiation processes. On the other hand, SCALE-RM is constructed by combining functions provided by SCALE . SCALE-RM itself reads the input data of atmospheric status as prognostic variable, and conducts time-integration. Users can select a scheme in every component according to simulations they want.

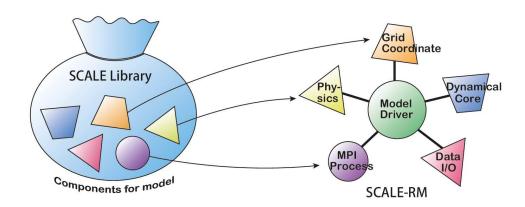


Figure 1.1.2: Relationship between the library SCALE and the model SCALE-RM

1.1.2 Structure of SCALE-RM

All schemes in all components of SCALE are available in SCALE-RM . The components are categorized into three parts: framework, dynamical core, and physical processes. Components with various schemes already implemented in the current version of SCALE-RM are listed below *1).

Framework

- The three-dimensional (3D) Cartesian grid system based on actual distance
- $\bullet\,$ 2D domain decomposition by Message Passing Interface (MPI) communication
- Several map projections commonly used
- Domain nesting system (one-way, i.e., data transfer from parent domain to child domain.)
 - On-line nesting: concurrent execution of multiple domains).
 - Offline nesting: execution of computation in an inner domain after that in an outer domain.
- Collective execution system of multiple cases, i.e., bulk job system
- netCDF file I/O based on CF (Climate and Forecast) convention*2)
 - Selection of netCDF 3 and netCDF 4 formats
- Generation of initial data for an ideal experiment
- Generation of topographical and land-use data, converted from external data
- Generation of initial and boundary data from external data
 - Supporting inputs from the WRF-ARW*3) and GrADS *4) formats.

Dynamical core

- Governing equations: 3D fully compressible non-hydrostatic equations
- Spatial descretization: finite volume method
 - 2nd-, 4th-, and 6th-order central differences
 - 3rd- and 5th-order upwind differences
- Time integration: selection from the "fully explicit method" or the "horizontally explicit and vertically implicit methods"
 - Heun-type 3rd-order Runge-Kutta scheme
 - Wicker and Skamarock (2002)'s 3-step Runge-Kutta scheme
 - 4th-order Runge-Kutta scheme
- Guarantee of non-negative value:
 - Flux corrected transport method (Zalesak, 1979)
 - Koren (1993)'s filter: available only with the use of the 3rd-order upwind scheme
- Numerical filter: 4th-order hyper-viscosity and diffusion
- Topography: expressed using terrain-following coordinates

^{*1)} Refer to Team SCALE (2015), Sato et al. (2015), and Nishizawa et al. (2015) for the details of the model structure and the descretization method.

^{*2)}http://cfconventions.org/

^{*3)}http://www.wrf-model.org/

^{*4)}http://cola.gmu.edu/grads/

Physical processes

- Turbulence process: selectable from among the following
 - Smagorinsky (1963) & Lilly (1962)-type sub-grid scale turbulent model with the corrections by Brown et al. (1994) and Scotti et al. (1993)
 - Deardorff (1980) sub-grid scale turbulent model
 - MYNN level 2.5 boundary scheme (Mellor and Yamada (1982); Nakanishi and Niino (2004))
- Cloud microphysics: selectable from among the following
 - 3-class 1 moment bulk scheme (Kessler, 1969)
 - 6-class 1 moment bulk scheme (Tomita, 2008)
 - 6-class 2 moment bulk scheme (Seiki and Nakajima, 2014)
 - spectral bin scheme (Suzuki et al., 2010)
- Radiation process: a k-distribution-based broadband radiation transfer model (Sekiguchi and Nakajima (2008))
- Surface models
 - Land model: heat diffusion/bucket model
 - Ocean model: selectable from among the following
 - * fixed to initial condition
 - * input from external data
 - * slab model
 - Urban model: a single-layer canopy model (Kusaka et al., 2001)
 - Heat transfer coefficient at land and in ocean: selectable from among the following
 - * The bulk method using the universal function (Beljaars and Holtslag, 1991; Wilson, 2001)
 - * Louis-type bulk method (Uno et al., 1995)

Chapter 1.2

Notations used in this document

This document assumes an execution in the shell "bash" on some Unix system. If your environment is different, replace the commands by the relevant commands suitable for your environment. Unless there is a particular remark, this documentation obeys the following notation:

The command-line symbol for execution is expressed by \$ or #. The difference between the two notations is in the permission levels of program execution, as shown below:

```
# <- command by root permission
$ <- command by user permission</pre>
```

A description enclosed in a rectangle expresses a message generated by the command line, as shown below.

```
---- command-line message
----- command-line message
----- command-line message
```

On the other hand, a description enclosed in a polygon with rounded corners means that the description is in an editable file.

```
---- description in a file
----- description in a file
----- description in a file
```

In this documentation, the FORTRAN namelist and its items are denoted by [namelist] and (item_of_namelist), respectively.

Part 2

Install

Chapter 2.1

Preparation

This chapter explains how to compile SCALE / SCALE-RM and the minimum computational requirements for their execution.

2.1.1 System environment

Recommended Hardwares

Although the necessary hardware depends on an experiment to be performed, the following are the specifications for conducting the tutorial as in Chapters 3.1 and 3.2.

- **CPU**: The system need to have more than or equal to two physical cores for the ideal experiment in the tutorial, and more than or equal to four for the real atmospheric experiment.
- Memory: The system needs 512 MB and 2 GB memory for the ideal experiment and the real atmospheric experiment, respectively. Note that this applies to the case involving the use of double-precision floating points.
- HDD: The system needs to have 3 GB of free disk space in the real atmospheric experiment.

Required Softwares

• OS : Linux OS, Mac OS

• Compiler : C, Fortran

Since the source code of SCALE is written in FORTRAN 2003 standard syntax, the compiler must support it. For example, GNU gfortran version 4.3 or previous versions cannot be used for SCALE compilation because they do not follow the FORTRAN 2003 standard. Refer to Table 2.1.1 for compilers already confirmed as supported.

Table 2.1.1: Compiler already checked

Name of compiler	
GNU (gcc/gfortran)	Version 4.3 or earlier are not supported. The series with version 4.4.x
	sometimes issues a warning.
Intel (icc/ifort)	Version of 2013 or later are recommended.
PGI (gcc/pgfortran)	Version 17.1 is comfirmed.

Table 2.1.2: Compiler list

Name of MPI library	
openMPI	Version 1.7.2 or later is supported.
Intel MPI	Version released in 2013 or later is supported.
SGI MPT	Version 2.09 or later is supported.

Required libraries

The required external libraries are described below:

- netCDF Library (http://www.unidata.ucar.edu/software/netcdf/)
- MPI Library (e.g., openMPI http://www.open-mpi.org/)
- LAPACK (http://www.netlib.org/lapack/) (only required for SCALE-GM)

The MPI library should support the MPI 1.0/2.0 protocol. Refer to Table 2.1.2 for MPI libraries already confirmed as supported.

netCDF 4 is recommended, but netCDF 3 is also available. Note that with netCDF 3 there are some restrictions (See Section 5.1.1). You can also use distributed binary packages for Linux and Mac. These netCDF library have been already installed on the K Computer. Refer to the description "R-CCS software" in the K portal site or the URL

https://www-sys-aics.riken.jp/releasedsoftware/ksoftware/pnetcdf/

for details. The library paths are described there in "Makedef.K."

The tutorials in Chapters 3.1 and 3.2 assume that the above library environment has been prepared.

Drawing tools

In this subsection, drawing tools that can draw the initial conditions, boundary data, and the simulation results with SCALE-RM are introduced.

The GPhys and GrADS are used for a quick view and the drawing model output in the tutorial in Chapters 3.1 and 3.2, respectively. Other tools are also available, if they can be read in netCDF file format, which is the output of SCALE-RM .

- GPhys / Ruby-DCL by GFD DENNOU Club
 - URL: http://ruby.gfd-dennou.org/products/gphys/
 - Note: SCALE outputs the split files in netCDF format according to domain decomposition by the MPI process. "gpview" and/or "gpvect" in GPhys can directly draw the split file without post-processing.
 - How to install: On the GFD DENNOU Club webpage, the installation is explained for major OSs

http://ruby.gfd-dennou.org/tutorial/install/

- Grid Analysis and Display System (GrADS) by COLA
 - URL: http://cola.gmu.edu/grads/
 - Note: This is among the most popular drawing tools, but the split files with netCDF generated by SCALE are not directly readable. The post-processing tool netcdf2grads_h is needed to combine the output of SCALE in one file that is readable from GrADS. Refer to netcdf2grads_h for installation instructions in Section 2.3.1, and to Chapters 3 and 4 and Section 4.6.1 for details pertaining to its use.
 - How to install: Refer to http://cola.gmu.edu/grads/downloads.

- Neview: netCDF visual browser developed by David W. Pierce
 - URL: http://meteora.ucsd.edu/~pierce/ncview_home_page.html
 - Note: Neview is a quick viewer for the netCDF file format. Although it cannot combine split files in SCALE , it is useful in drawing the result file by file.
 - How to install: Refer to http://meteora.ucsd.edu/~pierce/ncview_home_page.html

Useful tools (not always necessary)

- Data conversion tool: wgrib, wgrib2, NCL In the tutorial for the real atmospheric experiment, wgrib is used.
- Evaluation tool of computational performance: The PAPI library*1) is available.

^{*1)}http://icl.utk.edu/papi/

Chapter 2.2

Compile of SCALE

2.2.1 Download and environmental settings

The environment used in the explanation below is as follows:

- CPU: Intel Core i5 2410M 2 core /4 thread
- Memory: DDR3-1333 4GB
- \bullet OS: CentOS 6.6 x86-64, CentOS 7.1 x86-64, openSUSE 13.2 x86-64
- GNU C/C++, FORTRAN compiler

Obtaining the source code

The source code for the latest release can be downloaded from http://scale.aics.riken.jp/ja/download/index.html.

The directory scale-5.3.6/ can be seen when the tarball file of the source code is extracted.

```
$ tar -zxvf scale-5.3.6.tar.gz
$ ls ./
    scale-5.3.6/
```

Setting Makedef file and environment variables

SCALE is compiled using a Makedef file specified in the environment variable "SCALE_SYS." Several variations of the Makedef file corresponding to computer environment are prepared in the directory scale-5.3.6/sysdep/. Choose a Makedef file according to your environment. Table 2.2.1 shows environments that Makedef files have supported. If there is no file for your environment, create a Makedif file by modifying any existing one. For example, if you use Linux x86-64 OS, a GNU compiler, and openMPI, "Makedef.Linux64-gnu-ompi" is apropriate. An environment variable must also be specified as follows:

```
$ export SCALE_SYS="Linux64-gnu-ompi"
```

If the environment is always the same, it is convenient to explicitly describe the environmental variable in the environmental configuration file, such as .bashrc.

SCALE requires netCDF. In the most cases, the pathes of netCDF may be automatically found by using "nc-config" command. If the pathes cannot be found automatically, you should set the following pathes. You must set the environmental variables for netCDF as follows:

Table 2.2.1:	Examples of	environments	and their	corresponding	Makedef files.

OS/Computer	Compiler	MPI	Makedef file
	gcc/gfortran	openMPI	Makedef.Linux64-gnu-ompi
Linux OS x86-64	icc/ifort	intelMPI	Makedef.Linux64-intel-impi
	icc/ifort	SGI-MPT	Makedef.Linux64-intel-mpt
Mac OS	gcc/gfortran	openMPI	Makedef.MacOSX-gnu-ompi
K Computer	fccpx/frtpx	mpiccpx/mpifrtpx	Makedef.K
Fujitsu PRIME-HPC FX100	fccpx/frtpx	mpiccpx/mpifrtpx	Makedef.FX100

2.2.2 Compile

Compile of SCALE-RM

Move to the SCALE-RM source directory and compile it by executing the following command:

```
$ cd scale-5.3.6/scale-rm/src
$ make -j 4
```

The number of -j option shows a number of parallel compile processes; it is four-parallel in this example. To reduce elapsed time of compile, it is better to use this option to execute parallel compilation. Specify this number according to your environment. When a compilation is successful, the following three executable files are generated under the scale-5.3.6/bin directory.

```
scale-rm scale-rm_init scale-rm_pp
```

Compile of SCALE-GM

Move to the SCALE-GM source directory and compile it by executing the following command:

```
$ cd scale-5.3.6/scale-gm/src
$ make -j 4
```

The number of $\neg j$ option shows a number of parallel compile processes; it is four-parallel in this example. To reduce elapsed time of compile, it is better to use this option to execute parallel compilation. Specify this number according to your environment; we recommend the use of two \sim eight processes. When a compilation is successful, the following three executable files are generated under the scale-5.3.6/bin directory.

When a compilation is successful, the following executable files are created in the scale-5.3.6/bin directory. "fio" is original format based on binary with header information.

```
scale-gm
              (executable binary of \scalegm)
              (cat commant tool for fio format)
gm_fio_cat
              (dump tool for fio format file)
gm_fio_dump
gm_fio_ico2ll (convert tool from icosahedral grid data with fio format to LatLon grid data)
gm_fio_sel
              (sel command tool for fio format)
              (generation tool of icosahedral horizontal grid using spring grid)
gm_mkhgrid
gm_mkllmap
              (generation tool of LatLon horizontal grid)
              (tool for creating management file of MPI process)
gm_mkmnginfo
gm_mkrawgrid
              (generation tool of icosahedral horizontal grid)
              (generation tool of vertical grid)
gm_mkvlayer
```

Points to note

If you want to compile them again, remove the created binary files by the following command:

```
$ make clean
```


Note that, the library already compiled is not deleted by this command. When you recompile the files by changing the compilation environment and options, use the following command to remove all files created by compilation:

\$ make allclean

In SCALE, a compilation and an archive are conducted in directory scale-5.3.6/scalelib/. Object files are placed in a hidden directory called ".lib" under this directory when you carry out a compilation.

When you want to compile it in debug mode, compile it using "make -j 4 SCALE_DEBUG=T". (All the environment variables applied at compile time are listed in Table 2.2.2.) If you want to change the compilation options in detail, edit Makedef.***.

Table 2.2.2: List of environment variables applied at compile time

Environment variable	Description
SCALE_SYS	Selection of system (required)
SCALE_DISABLE_MPI	Do not use MPI (only for utils)
	/
SCALE_DEBUG	Use compile option for debug
SCALE_QUICKDEBUG	Use compile option for quick debug (detect floating point
	error while maintaining speed-up option)
SCALE_USE_SINGLEFP	Use single precision floating-point number (for all sources)
SCALE_USE_FIXEDINDEX	Fix grid index size at the compile time
SCALE_ENABLE_OPENMP	Enable to use OpenMP
SCALE_ENABLE_OPENACC	Enable to use OpenACC
SCALE_USE_AGRESSIVEOPT	Conduct strong optimization (only for K computer and FX,
	this can be a side effect)
SCALE_DISABLE_INTELVEC	Suppress option for vectorization (only with Intel compiler)
SCALE_NETCDF_INCLUDE	Include path of NetCDF library
SCALE_NETCDF_LIBS	Directory path of NetCDF library and specifying libraries
SCALE_ENABLE_PNETCDF	Use Parallel NetCDF
SCALE_COMPAT_NETCDF3	Limit to NetCDF3-compatible features
SCALE_ENABLE_MATHLIB	Use numerical calculation library
SCALE_MATHLIB_LIBS	Directory path of numerical library and specifying libraries
SCALE_ENABLE_PAPI	Use Performance Application Programming Interface
	(PAPI)
SCALE_PAPI_INCLUDE	Include path of PAPI library
SCALE_PAPI_LIBS	Directory path of PAPI library and specifying libraries
SCALE_DISABLE_LOCALBIN	Disable making local binary files in directory for test cases
SCALE_IGNORE_SRCDEP	Ignore dependency check at the compile time
SCALE_ENABLE_SDM	Use Super Droplet Method (SDM) model

Chapter 2.3

Compile of post-processing tool (net2g)

2.3.1 Compilation of netcdf2grads (net2g)

"net2g" is post-processing tool for SCALE-RM . The output file of SCALE-RM is divided and stored in every computational node. SCALE provides a post-processing tool "net2g" to combine these output files (history.*****.nc) and convert them into a data format direct readable in GrADS . Since it is used in the tutorial Chapters 3.1 and 3.2, the method for the compilation of "net2g" is explained here.

Specify the environmental variable for the Makedef file according to your environment, such as in the compilation of the main body of SCALE . Then, move to directory "net2g" and execute a command. The parallel executable file using the MPI library is generated by the following command:

```
$ cd scale-5.3.6/scale-rm/util/netcdf2grads_h
$ make -j 2
```

If there is no MPI library, give a compile command to generate the serial executable binary.

```
$ make -j 2 SCALE_DISABLE_MPI=T
```

If executable file "net2g" is generated, the compilation is successful. When the executable binary is deleted, execute the following command:

\$ make clean

${ m Part} \ 3$ Tutorial for SCALE-RM

Chapter 3.1

Operation check and basic usage

3.1.1 Introduction

In this chapter, the basic operations of SCALE-RM for numerical experiments are explained. For this purpose, an ideal experiment case is prepared. It is strongly recommend that the user perform this tutorial because it includes a check for whether the compilation of SCALE in Part 2 has been completed. This chapter assumes that the following file has been already generated:

```
scale-5.3.6/bin/scale-rm
scale-5.3.6/bin/scale-rm_init
scale-5.3.6/scale-rm/util/netcdf2grads_h/net2g
```

Furthermore, GrADS is used as a drawing tool. "gpview" can also be used for the confirmation of the result. Refer to Section 2.1.1 for their installation procedures.

The tutorial is described in order of preparation: creating the initial data, conducting the simulation, post-processing the output, and drawing the results.

3.1.2 How to execute model

Experimental setup

For this tutorial for an ideal experiment, a case of cumulus cloud convection is used. In this experiment, a cumulus appears and develops in a quasi-2D model by providing a typical atmospheric vertical profile and an initial disturbance in the lower troposphere. Table 3.1.1 shows the experimental settings.

Preparations

This ideal experiment is conducted in the directory of scale-rm/test/tutorial/ideal. Move to this directory and create a static link to the executable binary in scale-5.3.6/bin as follows:

```
$ cd scale-rm/test/tutorial/ideal
$ ln -s ../../../bin/scale-rm ./
$ ln -s ../../../bin/scale-rm_init ./
```

where "scale-rm" is the executable binary of the simulation and "scale-rm_init" is a tool for creating the initial and the boundary conditions.

Creating initial conditions

To create the initial conditions, the configuration file for scale-rm_init is required. The configuration file init_R20kmDX500m.conf has been prepared according to Table 3.1.1. Reading the

Table 3.1.1: Experimental settings of ideal experiment

	Configuration	Note
Number of MPI processes	2: eastward direction, 1:	2 MPI parallel
	northward direction	
Horizontal grid spacing	500 m: eastward direction, 500	The quasi 2 dimensional ex-
	m :northward direction	periment in the eastward and
		vertical directions.
Number of horizontal grids	40: eastward direction, 2:	
	northward direction ^a	
Number of vertical layers	97 layers with model top of 20	Stretched grid with finer reso-
	km	lution in the lower layers.
Lateral boundary condition	Periodic condition	both eastward and northward
Time step	5 s	10 s in microphysics scheme
Integration time	3,600 s	The time step is 720.
Time interval of data output	300 s	
Physical scheme	Only the microphysics scheme	6-class single-moment bulk
		model (Tomita, 2008)
Initial vertical profile	GCSS Case1 squall line (Re-	The wind profile based on
	delsperger et al., 2000)	Ooyama (2001) is given as the
		vertical shear.
Initial disturbance	Warm bubble	Horizontal radius of 4 km and
		vertical radius of 3km with
		maximum intensity of 3K.

^aIn the current version, the pure 2D experimental framework is not prepared. In this case, the initial conditions with the same values are set northward. Thus, the setting corresponds to a 2D experiment. Further, the number of grids northward should be same as the number of halos. Refer to Section 4.3.1.2 for the required numbers of halos.

configuration file, scale-rm_init calculates the stratified atmospheric structure and the initial disturbance.

The general form of the executable command in SCALE-RM is given as follows:

```
$ mpirun -n [the number of processes] \\
[executable binary name] [the configuration file]
```

The number of processes using MPI parallel processing is given at [the number of processes]. The name of the executable binary is given to [executable binary name], such as scale-rm, scale-rm_init, and so on. The configuration file, where the experimental settings are described, is given to [the configuration file]. In the case that the configuration file init_R20kmDX500m.conf is used to conduct scale-rm_init using two-MPI parallel, give the command to execute scale-rm_init as follows:

```
$ mpirun -n 2 ./scale-rm_init init_R20kmDX500m.conf
```

If it is successfully completed, the following message is output in the command line:

```
*** Start Launch System for SCALE-RM

*** Execute preprocess? : T

*** Execute model? : F

*** a single comunicator

*** a single comunicator

*** End Launch System for SCALE-RM
```

Through the above, the following three files are generated under the given directory:


```
init_LOG.pe000000
init_00000101-000000.000.pe000000.nc
init_00000101-000000.000.pe000001.nc
```

The entire calculation domain is horizontally divided by the number of MPI processes. The number followed by pe in the file name shows the process number of MPI. In log file <code>init_LOG.pe000000</code>, detailed information that is not displayed in the command-line is recorded. Although the two MPI processes are used in the case, only the log file of the 0th process (master rank) is output as default. If the execution is normally concluded, the statements below are output at the end of this LOG file:

```
+++++ finalize MPI...
+++++ MPI is peacefully finalized
```

The two files <code>init_00000101-000000.000.pe000000.nc</code> and <code>init_00000101-000000.000.pe000001.nc</code> are the initial-condition files, and each is approximately 600 KB. The file whose name ends with ".nc" is formatted by netCDF . It can be directly read by GPhys/Ruby-DCL and neview.

Execution of simulation

The number of parallel process is required to be the same as that when creating the initial conditions. The configuration file for the run is run_R20kmDX500m.conf.

```
$ mpirun -n 2 ./scale-rm run_R20kmDX500m.conf
```

If a computer satisfying the necessary requirements is used, the calculation is concluded within two minutes. The following three files are then generated under the given directory:

```
LOG.pe000000
history.pe000000.nc
history.pe000001.nc
```

When the execution concludes normally, the following message is output at the end of this LOG file:

```
+++++ finalize MPI...
+++++ MPI is peacefully finalized
```

The two files history.pe000000.nc and history.pe000001.nc are history files containing the results of the calculation. They are formatted by netCDF, and each file is approximately 5.8 MB.

3.1.3 Post-processing and drawing

In this section, we explain post-processing and the method of drawing the calculation result. In the tutorial, the distributed files in netCDF format are merged into one file and converted into simple binary form (GrADS form) that can be directly accessed. The binary form makes it easy for users to analyze the result. Link to the post-processing tool net2g compiled in Section 2.3.1:

```
$ ln -s ../../util/netcdf2grads_h/net2g ./
```

The method of execution of net2g is the same as that of SCALE-RM, i.e.,

```
$ mpirun -n [the number of the processes] ./net2g [the configuration file]
```

The configuration file net2g_R20kmDX500m.conf is intended for special uses of net2g. Give this configuration file to net2g and execute it as follows:


```
$ mpirun -n 2 ./net2g net2g_R20kmDX500m.conf
```

If there is no error message and the following message is displayed to the standard output, the conversion is completed without problem:

```
+++ MPI COMM: Corrective Finalize
```

The execution of net2g should be handled, so that the number of MPI processes is identical to, or a divisor of, that used for the run of SCALE-RM . The following six files are generated under the same directory by this execution:

```
QHYD_d01z-3d.ctl
QHYD_d01z-3d.grd
U_d01z-3d.ctl
U_d01z-3d.grd
W_d01z-3d.ctl
W_d01z-3d.grd
```

The "grd" files are the converted files in the simple binary form of direct access (GrADS form) obtained by merging the divided files, whereas the "ctl" files are used to render them readable by GrADS .

To confirm whether the calculation is satisfactory, draw a figure using GrADS script checkfig_ideal.gs. Note that the grammar depends on the version of GrADS . If a warning appears, the GrADS script should be rewritten appropriately:

```
$ grads -blc checkfig_ideal.gs
```

If it is successfully completed, the following files are generated:

```
ideal_QHYD.png
ideal_W.png
```

The same figures as Fig. 3.1.1 can be found in the simulation, and post-processing is successfully concluded.

To convert the result of the output into binary data for other variables, add them to (VNAME) in [VARI] in the configuration file net2g_R20kmDX500m.conf:

```
&VARI
VNAME = "U","W","QHYD"
/
```

To check the output variable in the history file, use ncdump of netCDF. Refer to Section 4.6.1 for the detailed use of net2g.

3.1.4 Guideline for further study

In this chapter, the method for the execution of SCALE-RM was explained by using a simple ideal experiment. We recommend studying methods of changing the model resolution, the calculation domain, and the number of MPI processes for further study. With regard to the ideal experiment, several files of other configurations, e.g., to increase resolution, the number of domains, and the physical scheme, are prepared in the directory "sample" under the same directory as was used in this experiment. These configuration files are useful to change such configurations. Moreover, various ideal experimental settings have been prepared in the directory "scale-rm/test/case." For some ideal experiments, it may be necessary to carry out the "make" command again in the same directory as in the configuration file because some test cases need special source codes according to their experimental settings. The procedures for the generation of the initial conditions and those for simulation execution are the same as in the tutorial in this chapter.

It is important to study the method for the configuration of physical processes, such as cloud microphysics, radiation, and turbulence schemes. Methods to alter them in detail are described in $Part\ 4$.

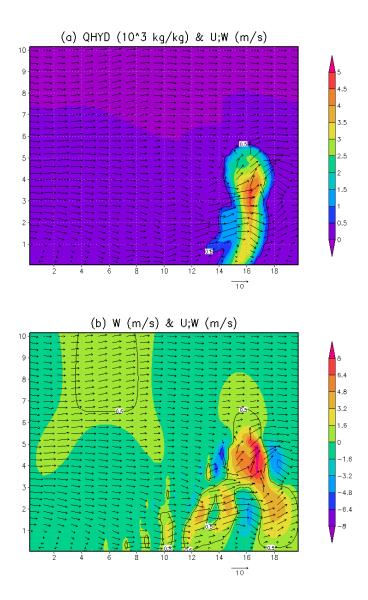


Figure 3.1.1: The horizontal-vertical cross-section at Y=750m after t=1200 s (20 minutes later); The color indicates (a) the mass concentration of the hydrometeor and (b) vertical velocity. The vector indicates flow in both of figures.

Chapter 3.2

Real atomsphere experiment

3.2.1 Overview

In this chapter, the basic execution procedure of the real atmospheric experiment is described using a simple case according to the workflow in Fig. 3.2.1.

- 1. Preparations for input data. The input data must be prepared by users themselves.
- 2. pp: Making topographical data
- 3. init: Making initial and boundary data
- 4. run: Executing the simulation
- 5. net2g: Converting netCDF output data to GrADS format (optional)

Hereinafter, the absolute path scale-5.3.6/scale-rm/test/tutorial/ is denoted by \${Tutorial_DIR}.

The settings for the calculation domain used in this tutorial are given in Table 3.2.1. Figure 3.2.2 shows the target domain. Since this tutorial focuses on learning how to conduct real atmospheric experiments using SCALE-RM quickly, the experiment is designed to be completed in a short time. Note that this setting may not be appropriate as a physically valid experiment, and in practical application one should examine the experimental setup as needed.

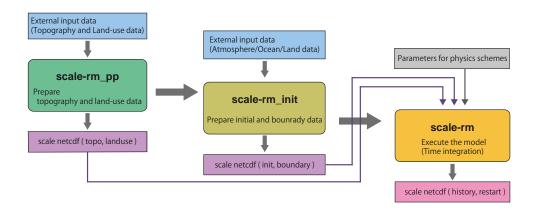


Figure 3.2.1: SCALE-RM procedure of model execution

Table 3.2.1: Overview of experimental settings	Table 3.2.1:	Overview	of e	xperimental x	settings
--	--------------	----------	------	---------------	----------

Item	Configuration
MPI process decomposition (east-west \times north-south)	2×2 (total: 4 processes)
Number of horizontal grids (east-west \times north-south)	90×90
Number of vertical layers	36
Horizontal grid intervals	$\Delta x = \Delta y = 20 \text{km}$
Integration period	July 14, 2007, 18UTC - July 15
	00UTC (6 hour integration)
Time step	90 s/step (total:240 steps)

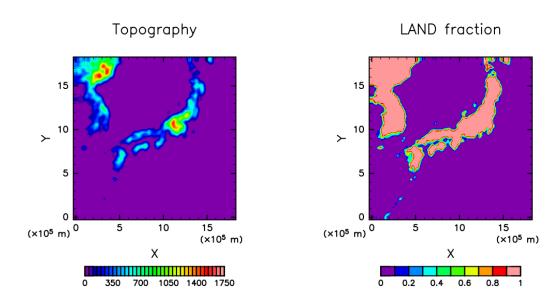


Figure 3.2.2: Topographical and land-ocean distribution in the domain

3.2.2 Preparations for input data (boundary data)

When a realistic atmospheric experiment is conducted, boundary data need to be provided to SCALE-RM. Table 3.2.2 shows the items for external input data to create boundary data. The variables denoted by blue character in this table are always needed, whereas the others (black character) are optional.

Topography and land-use classification data

The external topography and land-use classification data are used to obtain the altitude, the ocean to land ratio, the lake ratio, urban covering and vegetation rates, and the classification of land use at every grid point. In order to allow users to calculate at any areas over the globe, the altitude data GTOPO30 from the USGS (U.S. Geological Survey) and land-use classification data from the GLCCv2 are provided in SCALE-RM . These files have already been formatted for SCALE-RM .

1. Downloading database

Obtain the data for altitude and land-use classification formatted for SCALE-RM from http://scale.aics.riken.jp/download/scale_database.tar.gz, and extract them to any directory:

\$ tar -zxvf scale_database.tar.gz

Table 3.2.2: Items of external input data for real atmospheric experiments

Data to create the topography and land-use data (in general, in-situ data)

Altitude data

Land-use classification data

data to craete the initial and boundary data for SCALE-RM (in general, GCM data)

Information for latitude and longitude of the parent model

- 3D atmospheric data zonal and meridional winds, temperature, specific humidity (relative humidity), pressure, geopotential height
- 2D atmospheric data sea-level pressure, surface pressure, zonal and meridional wind at 10m, temperature and specific humidity (relative humidity) at 2m
- 2D land data land and sea map in the parent model surface skin temperature
 - information of depth of soil data in the parent model, soil temperature, soil moisture(volume content or degree of saturation)
- 2D ocean data at the surface sea surface temperature (omitted if skin temperature is also used for SST)

```
$ ls
scale_database/topo/ <- altitude data
scale_database/landuse/ <- land use classification data</pre>
```

2. Setting of the path

To prepare the files used in the realistic atmospheric experiment, the "making tool for the complete settings of the experiment" is available. To use the tool, set the directory name including above database to an environment variable SCALE_DB (hereinafter, it denoted as SCALE_DB):

```
$ export SCALE_DB="${path_to_directory_of_scale_database}/scale_database"
```

where \${path_to_directory_of_scale_database} is the directory name which the tar file including topography and land-use database is extracted in. For example, if the absolute path where you expanded scale_database.tar.gz was /home/user/scale, you need to set as follows.

\$ export SCALE_DB="/home/user/scale/scale_database"

Data for atmosphere, land, and sea surface temperature

The initial and boundary data are readable when they are converted into four-byte binary (GrADS form. Hereinafter, it is denoted by "binary data."). The users prepare the "binary" data by themselves as mentioned above. However, the programs to prepare the "binary" data are provided in the directory

\$\{Tutorial_DIR\}/real/tools/\ for the execution of this tutorial. A procedure is explained below. Note that it is assumed that the installation of wgrib*1) is complete to use NCEP FNL (Final) Operational Global Analysis data with grib1 format.

Downloading data Download 12-hour data from July 14, 2007 1800UTC from the NCAR website http://rda.ucar.edu/datasets/ds083.2/ and place them in the directory \${Tutorial_DIR}/real/tools/FNL_input/grib1/2007. The following is the data list, formatted by grib1:

^{*1)}http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html


```
fnl_20070714_18_00.grib1
fnl_20070715_00_00.grib1
```

2. Conversion of data from grib to binary format

Execute convert_FNL-grib2grads.sh in the directory \${Tutorial_DIR}/real/tools/:

```
$ cd ${Tutorial_DIR}/real/tools/
$ sh convert_FNL-grib2grads.sh 2007071418 2007071500 FNL_input FNL_output
```

The following files are found if it is successful:

```
$ 1s FNL_output/*/*
FNL_output/200707/FNL_ATM_2007071418.grd
FNL_output/200707/FNL_ATM_2007071500.grd
FNL_output/200707/FNL_LND_2007071418.grd
FNL_output/200707/FNL_LND_2007071500.grd
FNL_output/200707/FNL_SFC_2007071418.grd
FNL_output/200707/FNL_SFC_2007071500.grd
```

If the generation of the intended files is failed because of changing data format and variable names in NCEP-FNL data, convert_FNL-grib2grads.sh should be fixed according to the used NCEP-FNL data.

3.2.3 Preparation for experiment set

In the real atmospheric experiment, many execution procedures and a large number of files are needed in comparison with the ideal experiment. In addition, it is necessary to maintain consistency between settings in the configuration file (***.conf) between pre-processing pp, initial value making init, and simulation execution run. The inconsistency between these settings and the lack of files in the preparation step may cause an abnormal model run. To avoid such situations, the tool "the making tool for the complete settings of the experiment" is prepared for the generation of a set of necessary files. You first move to the following directory and prepare a series of files for the tutorial for the real atmospheric experiment using the next procedure:

```
$ cd ${Tutorial_DIR}/real/
   Makefile: Makefile for generation of a set of necessary files.
           : README related to use of the script
   USER.sh : Description of experimental setting.
           : Each of configurations for generation of a set of files
              ( basically, unnecessary for users to be rewritten)
           : sample script of USERS.sh
   sample/
   data/
            : tools for the tutorial
            : tools for initial condition used in the tutorial
   tools/
              (basically, users do it themselves except for the tutorial case)
$ make
$ ls experiment/
                    : directories added by the above make command
   init/
   net2g/
   pp/
```

According to the settings described in USER.sh, an experiment set is generated under the directory experiment when the make command is executed. Refer to Section 4.2.1 for a detailed explanation of "the making tool for the complete settings of the experiment."

3.2.4 Creating topographical data: pp

Move to the directory pp and create topographical data for the experiment as follows:

```
$ cd ${Tutorial_DIR}/real/experiment/pp/
$ ls
    pp.d01.conf
    scale-rm_pp
```

In the directory pp, there exists configuration file pp.d01.conf. It is necessary to edit pp.d01.conf according to the experiment settings, such as the position of the domain and the number of grids. Since pp.d01.conf has already been edited for this tutorial, it can be used without any change. The setting of this experiment is shown in Table 3.2.1.

In Namelists in pp.d01.conf, the parameters related to the domain are configured in [PARAM_PRC_CARTESC], [PARAM_ATMOS_GRID_CARTESC_INDEX], and [PARAM_ATMOS_GRID_CATESC]. The domain is decomposed along each of the X and Y directions into two domains. Thus, four MPI processes are used. The number of grids per MPI process is (IMAX = 45) and (JMAX = 45). Thus, the total number of grids is $90 \ (= 2 \times 45)$ along the X and Y directions. The grid spacings in each direction (DX, DY) in [PARAM_ATMOS_GRID_CARTESC] is $20,000 \ \text{m}$ (20 km). This means that the domain of calculation is an area of $1,800 \ \text{km} \times 1,800 \ \text{km}$ because one side has length $90 \times 20 \ \text{km}$.

```
&PARAM_PRC_CARTESC
PRC_NUM_X = 2,
PRC_NUM_Y = 2,
PRC_PERIODIC_X = .false.,
PRC_PERIODIC_Y = .false.,
&PARAM_ATMOS_GRID_CARTESC_INDEX
KMAX = 36,
IMAX = 45,
JMAX = 45,
&PARAM_ATMOS_GRID_CARTESC
DX = 20000.0,
DY = 20000.0,
FZ(:) = 80.841, 248.821, 429.882, 625.045, 835.409, 1062.158,
      1306.565, 1570.008, 1853.969, 2160.047, 2489.963, 2845.575,
      3228.883, 3642.044, 4087.384, 4567.409, 5084.820, 5642.530,
      6243.676, 6891.642, 7590.074, 8342.904, 9154.367, 10029.028,
      10971.815, 11988.030, 13083.390, 14264.060, 15536.685, 16908.430,
      18387.010, 19980.750, 21698.615, 23550.275, 25546.155, 28113.205,
BUFFER_DZ = 5000.0,
BUFFER_DX = 400000.0
BUFFER_DY = 400000.0,
```

scale-rm_pp has a particular namelist of [PARAM_CONVERT]. If (CONVERT_TOPO=.true.), the altitudes are processed. If (CONVERT_LANDUSE=.true.), land-use classification data are processed.

```
&PARAM_CONVERT

CONVERT_TOPO = .true.,

CONVERT_LANDUSE = .true.,
```


(GTOPO30_IN_DIR) in [PARAM_CNVTOPO_GTOPO30] and (GLCCv2_IN_DIR) in [PARAM_CNVLANDUSE_GLCCv2] specify the locations of altitude data and land-use classification data, respectively.

```
&PARAM_CNVTOPO_GTOPO30

GTOPO30_IN_DIR = "./topo/GTOPO30/Products",

GTOPO30_IN_CATALOGUE = "GTOPO30_catalogue.txt",

/

&PARAM_CNVLANDUSE_GLCCv2

GLCCv2_IN_DIR = "./landuse/GLCCv2/Products",

GLCCv2_IN_CATALOGUE = "GLCCv2_catalogue.txt",

limit_urban_fraction = 0.3D0,
```

After preparation of the configure file, execute scale-rm_pp to create topographical data by the following command:

```
$ mpirun -n 4 ./scale-rm_pp pp.d01.conf
```

In the case of this tutorial, the number of MPI processes is four as in Table 3.2.1. When the job is finished normally, the following message is output at the end of the log file: pp_LOG_dO1.pe000000.

```
+++++ finalize MPI...
+++++ MPI is peacefully finalized
```

Furthermore, the files topo_d01.pe#####.nc (file size of approximately 310 KB) and landuse_d01.pe#####.nc (file size of approximately 380 KB) are generated, dividing four files according to the MPI processes used. ##### represents the MPI process number. The information concerning altitude, the ocean and land ratio, the lake ratio, urban covering and vegetation rates, and the classification of land use are stored at every grid point in these files.

OPTION.

When "gpview" is installed, you can confirm whether topographical data has been correctly generated by the following command:

```
\ gpview topo_d01.pe00000*@TOPO --aspect=1 --nocont --range 0:1750 --int 50 \ gpview landuse_d01.pe00000*@FRAC_LAND --aspect=1 --nocont
```

The same figure as Fig. 3.2.2 is generated if the results are correct.

3.2.5 Creating the initial and boundary data: init

Move to the directory init and create the initial and boundary data for the SCALE-RM simulation as follows:

```
$ cd ${Tutorial_DIR}/real/experiment/init
$ ls
   init.d01.conf
   init.launch.conf
   param.bucket.conf
   scale-rm_init
```


In the directory init, there exists the configuration file init.d01.conf. The file init.launch.conf also exists but is not used here. It is necessary to edit the file init.d01.conf according to such experimental settings as pp.d01.conf. init.d01.conf has been already edited for this tutorial experiment as shown in Table 3.2.1. To create the initial and boundary data, the topographical data generated in the previous section is used. This is set in init.d01.conf to refer the relative path as follows:

```
&PARAM_TOPO

TOPO_IN_BASENAME = "../pp/topo_d01",

/

&PARAM_LANDUSE

LANDUSE_IN_BASENAME = "../pp/landuse_d01",

/
```

In particular, the contents of [PARAM_MKINIT_REAL_ATMOS], [PARAM_MKINIT_REAL_OCEAN] and [PARAM_MKINIT_REAL_LAND] are handled. It should be confirmed that the settings in init.do1.conf are correct.

```
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_FILES = 2,
                                        : number of files read
FILETYPE_ORG = "GrADS",
                                       : choose from Table 4.1.1
BASENAME_ORG = "namelist.grads_boundary.FNL.2005053112-2016051106",
{\tt BASENAME\_BOUNDARY = "boundary\_d01", : output \ name \ of \ boundary \ data}
BOUNDARY_UPDATE_DT = 21600.0,
                                        : time interval of input data
PARENT_MP_TYPE = 3,
USE_FILE_DENSITY = .false.,
                                        : use the atmospheric density in the parent model or
                                         not?
&PARAM_MKINIT_REAL_OCEAN
 . . . . . . . . .
                                  : how to treat the missing value of SST
INTRP_OCEAN_SFC_TEMP = "mask",
INTRP_OCEAN_TEMP = "mask",
                                        : how to treat the missing value of SST
&PARAM_MKINIT_REAL_LAND
USE_FILE_LANDWATER = .true.,
                                       : use soil moisture data in the parent model or not?
INTRP_LAND_TEMP = "mask",
                                       : how to treat the missing value of soil temperature
INTRP_LAND_WATER = "fill",
                                       : how to treat the missing value of soil moisture
INTRP_LAND_SFC_TEMP = "fill",
                                        : how to treat the missing value of surface temperate
```

The file format of the meteorological field data is specified in (FILETYPE_ORG). In this case, it is given as "GrADS" to read data in GrADS format. Refer to Section 4.1.1 for the details of the input file.

Link the input data (FNL) that are converted into binary form in Section 3.2.2 to the current working directory. A shell script for this appropriate linkage is prepared as "gradsinput-link_FNL.sh" in the directory \${Tutorial_DIR}/real/data:

```
$ cp ../../data/gradsinput-link_FNL.sh ./
$ sh gradsinput-link_FNL.sh
```

If the following linkages are found, it is successfully concluded.


```
ATM_00000.grd -> ../tools/FNL_output/200707/FNL_ATM_2007071418.grd
ATM_00001.grd -> ../tools/FNL_output/200707/FNL_ATM_2007071500.grd
LND_00000.grd -> ../tools/FNL_output/200707/FNL_LND_2007071418.grd
LND_00001.grd -> ../tools/FNL_output/200707/FNL_LND_2007071500.grd
SFC_00000.grd -> ../tools/FNL_output/200707/FNL_SFC_2007071418.grd
SFC_00001.grd -> ../tools/FNL_output/200707/FNL_SFC_2007071500.grd
```

Then, link a namelist file to the directory init to read the binary (GrADS) data format in SCALE.

```
$ ln -s ../../data/namelist.grads_boundary.FNL.2005053112-2016051106 ./
```

After the above preparations, execute the scale-rm_init using four MPI processes.

```
$ mpirun -n 4 ./scale-rm_init init.d01.conf
```

If the job finishes normally, the following files are generated:

\$ ls

```
boundary_d01.pe000000.nc
boundary_d01.pe000001.nc
boundary_d01.pe000002.nc
boundary_d01.pe000003.nc
init_d01_20070714-180000.000.pe0000000.nc
init_d01_20070714-180000.000.pe0000001.nc
init_d01_20070714-180000.000.pe0000002.nc
init_d01_20070714-180000.000.pe0000003.nc
init_L0G_d01.pe000000
```

The file $init_LOG_d01.pe0000000$ is a log file. The following message is output at the end of the file $init_LOG_d01.pe0000000$:

```
+++++ finalize MPI...
+++++ MPI is peacefully finalized
```

The file sizes of the boundary and initial data, boundary_d01.pe#####.nc and init_d01_20070714-180000.000.pe######.nc, are approximately 18.9 MB and 12.6 MB, respectively, where ##### represents the MPI process number.

OPTION

When "gpview" is installed, one can confirm whether the initial and boundary data have been created correctly by the following command:

If the same figure as Fig. 3.2.3 is found, it is successfully concluded.

3.2.6 Execution of simulation: run

Preparations for run.conf

Move to the directory run.

```
$ cd ${Tutorial_DIR}/real/experiment/run
```

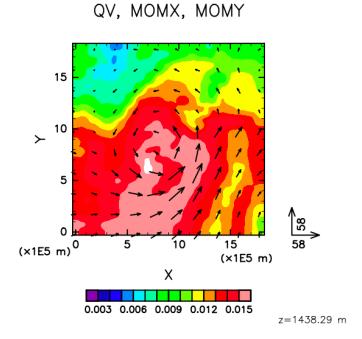



Figure 3.2.3: Initial field at z=1500m for the tutorial experiment. The color indicates specific humidity and the vector horizontal momentum flux.

In this directory, the configuration file run.dO1.conf has already been prepared according to the tutorial settings shown in Table 3.2.1. Although the file run.launch.conf also exists in this directory, it is not used here.

The topographical data and the initial/boundary data previously generated are used for this execution of the simulation model. These files are configured in the following part of run.dol.conf:


```
&PARAM_TOPO
TOPO_IN_BASENAME = "../pp/topo_d01",
&PARAM_LANDUSE
LANDUSE_IN_BASENAME = "../pp/landuse_d01",
&PARAM_RESTART
RESTART_OUTPUT = .true.,
RESTART_OUT_BASENAME = "restart_d01",
RESTART_IN_BASENAME = "../init/init_d01_20070714-180000.000",
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_TYPE = "REAL",
ATMOS_BOUNDARY_IN_BASENAME = "../init/boundary_d01",
ATMOS_BOUNDARY_START_DATE = 2007, 7, 14, 18, 0, 0,
ATMOS_BOUNDARY_UPDATE_DT = 21600.0,
ATMOS_BOUNDARY_USE_DENS = .true.,
{\tt ATMOS\_BOUNDARY\_USE\_QHYD = .false.,}
ATMOS_BOUNDARY_ALPHAFACT_DENS = 1.0,
ATMOS_BOUNDARY_LINEAR_H = .false.,
ATMOS_BOUNDARY_EXP_H = 2.0,
```

With regard to temporal integration, it is configured in [PARAM_TIME] in run.dol.conf. Specify the initial time in (TIME_STARTDATE) in UTC. In the tutorial, it is given as 18:00 UTC on July 14, 2007. The integration period is specified at (TIME_DURATION). The time steps for the physical processes can be configured process by process.

```
&PARAM_TIME
TIME_STARTDATE = 2007, 7, 14, 18, 0, 0, : starting time of integration
TIME\_STARTMS = 0.D0,
TIME_DURATION = 6.0D0,
                                            : integration period
TIME_DURATION_UNIT = "HOUR",
                                            : unit of TIME_DURATION
TIME_DT = 90.0D0,
                                           : time step for tracer advection
TIME_DT_UNIT = "SEC",
                                           : unit of TIME_DT
TIME_DT_ATMOS_DYN = 45.0D0,
                                           : time step of dynamical process except for tracer
                                            advection
TIME_DT_ATMOS_DYN_UNIT = "SEC",
                                            : unit of TIME_DT_ATMOS_DYN
```

The output of the results of the calculation are configured in (PARAM_FILE_HISTORY).

```
&PARAM_FILE_HISTORY

FILE_HISTORY_DEFAULT_BASENAME = "history_d01", : output file name

FILE_HISTORY_DEFAULT_TINTERVAL = 3600.D0, : time interval for output

FILE_HISTORY_DEFAULT_TUNIT = "SEC", : unit of output time interval

FILE_HISTORY_DEFAULT_TAVERAGE = .false.,

FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",

FILE_HISTORY_DEFAULT_ZCOORD = "model", : no vertical interpolation

FILE_HISTORY_OUTPUT_STEPO = .true., : output at initial time(t=0) or not
```


According to the above setting, variables listed in the following (HISTORY_ITEM) are output. It is possible to change output intervals at every variable in (HISTORY_ITEM) by adding options if needed. The mean value instead of the snapshot value can be output. Refer to Section 4.2.8 for the details.

```
&HISTORY_ITEM NAME="MSLP" /
                                    : Sea-level pressure
&HISTORY_ITEM NAME="PREC" /
                                    : Precipitation intensity (2D)
&HISTORY_ITEM NAME="OLR" /
                                    : Outgoing longwave radiation (2D)
&HISTORY_ITEM NAME="U10m" /
                                    : Zonal wind vector at 10 m (2D)
                                    : Meridional wind vector at 10 m (2D)
&HISTORY_ITEM NAME="V10m" /
&HISTORY_ITEM NAME="U10" /
                                    : Horizontal wind speed along X direction at 10 m(2D)
&HISTORY_ITEM NAME="V10" /
                                    : Horizontal wind speed along Y direction at 10 m(2D)
&HISTORY_ITEM NAME="T2" /
                                    : Temperature at 2m (2D)
&HISTORY_ITEM NAME="Q2" /
                                    : Specific humidity at 2m (2D)
&HISTORY_ITEM NAME="SFC_PRES" /
                                    : Surface pressure (2D)
&HISTORY_ITEM NAME="SFC_TEMP" /
                                   : Bulk surface temperature(2D)
&HISTORY_ITEM NAME="DENS" /
                                    : Density (3D)
&HISTORY_ITEM NAME="QV" /
                                    : Specific humidity (3D)
&HISTORY_ITEM NAME="QHYD" /
                                    : Mass concentration of total hydrometeor (3D)
&HISTORY_ITEM NAME="PRES" /
                                    : Pressure (3D)
&HISTORY_ITEM NAME="Umet" /
                                    : Zonal wind vector (3D)
&HISTORY_ITEM NAME="Vmet" /
                                    : Meridional wind vector (3D)
&HISTORY_ITEM NAME="U" /
                                    : Horizontal wind speed along X direction (3D)
&HISTORY_ITEM NAME="V" /
                                    : Horizontal wind speed along Y direction (3D)
&HISTORY_ITEM NAME="T" /
                                    : Temperature (3D)
&HISTORY_ITEM NAME="W" /
                                    : Vertical wind speed (3D)
&HISTORY_ITEM NAME="Uabs" /
                                    : Absolute value of wind velocity(3D)
&HISTORY_ITEM NAME="PT" /
                                    : Potential temperature (3D)
&HISTORY_ITEM NAME="RH" /
                                    : Relative humidity (3D)
```

If other schemes for the dynamics process and the physical processes are used, configure [PARAM_ATMOS_DYN] for the dynamical process and [PARAM_ATMOS, PARAM_OCEAN, PARAM_LAND, PARAM_URBAN] for the physical processes. Refer to Sections 4.3.1 and 4.4 for the details.

Execution of simulation

The lists below are the necessary files for the execution. They have already been prepared:

\$ ls

```
MIPAS PARAG.29 PARAPC.29 VARDATA.RM29 cira.nc
: parameter file for radiation scheme
run.d01.conf : configuration file
param.bucket.conf : parameter file for land schemes
scale-rm : executable binary of \scalerm
run.launch.conf : launch file for nesting calculations (not used in the tutorial)
```

If all preparations are complete, execute SCALE-RM by using four-MPI parallel:

```
$ mpirun -n 4 ./scale-rm run.d01.conf >& log &
```

The execution takes some time to complete. It takes 10-20 minutes in the recommended environment. It is convenient to execute it as a background job so that the standard output is written to a file. The processed results are output to the file "LOG_dO1.pe000000" while the computation is progressing. If the job finishes normally, the following messages are output in the file:

```
+++++ finalize MPI...
+++++ MPI is peacefully finalized
```


The following files are also generated:

```
$ ls
history_d01.pe000000.nc
history_d01.pe000001.nc
history_d01.pe000002.nc
history_d01.pe000003.nc
```

The size of each file is approximately 34 MB. The output files (history_d01.pe#####.nc) are split according to number of MPI processes, where ###### represents the MPI process number. In these files, the variables specified in (HISTORY_ITEM) are output. The files are formatted by NetCDF, corresponding to climate and forecast (CF) metadata convention.

3.2.7 Quick look at simulation result: net2g

In this section, we explain how to use netcdf2grads. The program netcdf2grads (for short, net2g) merges the netCDF files (history.**.nc)*2), which are divided process by process, into a binary file in GrADS format. The simulation results are also validated using the converted GrADS binary data.

Conversion to GrADS binary

Use net2g to convert GrADS binary from the history file of netCDF having divided every process. Only a minimum of the procedures is explained here. Refer to Section 4.6.1 for their detailed use. First, move to the directory net2g:

```
$ cd ${Tutorial_DIR}/real/experiment/net2g
$ ls
net2g -> ../../../util/netcdf2grads_h/net2g
net2g.2D.d01.conf
net2g.3D.d01.conf
```

There are some configuration files and a binary file in this directory. The binary file is linked to the executable file compiled in Section 2.3.1. As an example, a procedure to convert the 2D variables MSLP and PREC to GrADS format is explained here. We also explain how to extract the 3D variables, zonal wind (Umet) and meridional wind (Vmet), at 850 hPa, 500 hPa, and 200 hPa, and convert them into GrADS format. The configuration files for 2D and 3D variables are prepared as files net2g.3D.d01.conf and net2g.2D.d01.conf, respectively.

When net2g is executed, the number of processes needs to be a divisor of the number of the processes used for the simulation. The number of processes is four here. Since net2g cannot simultaneously convert 2D and 3D variables, they must be converted separately as follows:

```
$ mpirun -n 4 ./net2g net2g.2D.d01.conf
$ mpirun -n 4 ./net2g net2g.3D.d01.conf
```

The conversion succeeds only if the following messages are found in the standard output without an error message:

```
+++ MPI COMM: Corrective Finalize
```

The following files are also found. **.ctl represents the "ctl" file for the XY grid system of SCALE-RM, **lccr.ctl a ctl file for the drawing results on the latitude-longitude coordinates:

^{*2)}If "gpview" is installed, it can also be used for drawing. This tool is more suitable for quick check because it is available without the conversion of history data.


```
MSLP_d01z-2d.ctl
MSLP_d01z-2d.grd
MSLP_d01z-2d.ctl
PREC_d01z-2d.ctl
PREC_d01z-2d.grd
PREC_d01z-2d.grd
PREC_d01z-3d.ctl
PRES_d01z-3d.ctl
PRES_d01z-3d.ctl
Umet_d01z-3d.ctl
Umet_d01z-3d.grd
Umet_d01z-3d.grd
Vmet_d01z-3d.ctl
Vmet_d01z-3d.ctl
Vmet_d01z-3d.ctl
```

Validation of simulation result

Confirm the calculation results using a GrADS script checkfig_real.gs:

```
$ cp ../../data/checkfig_real.gs ./
$ grads -blc checkfig_real.gs
```

The following files are generated when the conversion is successfully finished. Note that the script changes accordingly when a warning appears. This is because the syntax is different according to the version of GrADS .

```
real_mslp.png
real_prec.png
real_wind.png
```

If the calculation are successful, the same figures as Figs. 3.2.4, 3.2.5, and 3.2.6 are obtained.

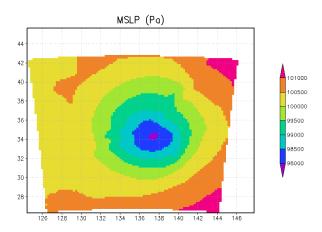


Figure 3.2.4: Sea-level pressure after 6 hours

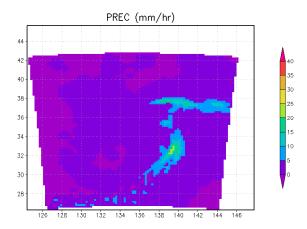


Figure 3.2.5: Precipitation flux after 6 hours

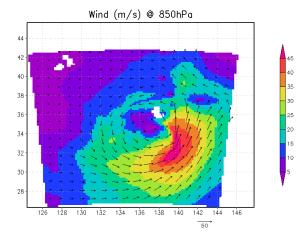


Figure 3.2.6: Wind velocity after 6 hours

Part 4 Various settings

Chapter 4.1

Pre-processing

4.1.1 How to prepare initial and boundary data

Table 4.1.1: External input data supported in SCALE

Data type	FILETYPE_ORG	Note	
SCALE format	SCALE-RM	History and restart files are supported. The latitude-	
		longitude catalog is needed.	
Binary format	GrADS	Another namelist for data input is required.	
WRF format	WRF-ARW	Both "wrfout" and "wrfrst" are supported.	

SCALE-RM can generate initial and boundary data by entering various types of external data, as shown in Table 4.1.1. The program scale-rm_init converts external data into boundary and initial data by configuring the file init.conf. The input data format is specified at (FILETYPE_ORG) in [PARAM_MKINIT_REAL_***].

The SCALE format is mainly used for offline nesting. Refer to Section 4.2.10.2 for details.

The WRF data format is available; WRF model output data can be used directly. Note that the file should contain all data required for the generation of the boundary data of SCALE-RM .

The "binary format" in this documentation is defined as binary data with single-precision floating points that FORTRAN can directly access. GRIB/GRIB2 data are available by converting them to binary format; this procedure is explained in Section 3.2.2. Other arbitrary data can also be used if it is converted into binary format.

Note that the format of output files in the latest version is different from that in the version 5.2 or older. Therefore, the init/boundary files which are made in the version 5.2 or older can't be used in the SCALE 5.3.6.

Input from binary format data

The input data format is specified in [PARAM_MKINIT_REAL_***] in the configuration file init.conf as follows:


```
&PARAM_RESTART
RESTART_OUTPUT = .true.,
RESTART_OUT_BASENAME = "init_d01",
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_FILES = 2,
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.grib1",
BASENAME_BOUNDARY = "boundary_d01",
BOUNDARY_UPDATE_DT = 21600.0,
PARENT_MP_TYPE = 3,
USE_FILE_DENSITY = .false.,
&PARAM_MKINIT_REAL_OCEAN
NUMBER_OF_FILES = 2,
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.grib1",
INTRP_OCEAN_SFC_TEMP = "mask",
INTRP_OCEAN_TEMP = "mask",
&PARAM_MKINIT_REAL_LAND
NUMBER_OF_FILES = 2,
FILETYPE_ORG = "GrADS",
BASENAME_ORG = "namelist.grads_boundary.FNL.grib1",
USE_FILE_LANDWATER = .true.,
INTRP_LAND_TEMP = "mask",
INTRP_LAND_WATER = "fill"
INTRP_LAND_SFC_TEMP = "fill",
```

If binary data is entered, "GrADS" is given to (FILETYPE_ORG). In SCALE-RM, the namelist file namelist.grads_boundary**, which contains the file name and the structure of binary data, is prepared instead of the "ctl" file. Give its path at (BASENAME_ORG).

(NUMBER_OF_FILES) is the number of input files. In case of a single input file, prepare only file "filename.grd". In the case of multiple input files, prepare the files numbered as "filename_XXXXX.grd" in the forward direction. The program scale-rm_init reads these files enumerated from 00000 to the given number (NUMBER_OF_FILES)-1. The header name of input files, i.e., "filename", is specified in the namelist file and explained later.

(BOUNDARY_UPDATE_DT) is the time step of input data. (RESTART_OUT_BASENAME) in [PARAM_RESTART] is the header name of the initial file converted. (BASENAME_BOUNDARY) is the header name of the boundary files converted. If (BASENAME_BOUNDARY) is empty, no boundary files are output.

The above configurations are the common among [PARAM_MKINIT_REAL_ATMOS], [PARAM_MKINIT_REAL_OCEAN], and [PARAM_MKINIT_REAL_LAND]. Unless otherwise specified in [PARAM_MKINIT_REAL_OCEAN] and [PARAM_MKINIT_REAL_LAND], these information are inherited. (USE_FILE_DENSITY) is an option in case of FILETYPE_ORG="SCALE-RM". If binary data is

(USE_FILE_DENSITY) is an option in case of FILETYPE_ORG="SCALE-RM". If binary data is selected, provide .false. to (USE_FILE_DENSITY). (PARENT_MP_TYPE) is the category type of the water substance in the parent model. If binary data format is entered, give 3 to (PARENT_MP_TYPE).

There are two options in preparation of soil moisture; one is a method to provide the data from the parent model and the other a method to provide it as a constant value in the entire region. In the former case, 3D soil moisture data are required. In the latter, configure USE_FILE_LANDWATER = .false. in [PARAM_MKINIT_REAL_LAND] in init.conf. The soil water condition is specified in INIT_LANDWATER_RATIO as the ratio of occupation of water to the void in the soil per unit volume (degree of saturation). The default value is 0.5. The size of void in the soil per unit volume (void ratio) depends on land use.


```
&PARAM_MKINIT_REAL_LAND

USE_FILE_LANDWATER = .false. whether or not soil moisture is given by file. The default is .true.

INIT_LANDWATER_RATIO = 0.5 in the case of USE_FILE_LANDWATER=.false. the ratio of occupation of water to void (degree of saturation)
```

If binary data (GrADS format) is used as input file, prepare them yourself. Refer to GrADS Web page (http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html#structure) for the format.

The following example is the namelist file namelist.grads_boundary** to provide information pertaining to the data file name and data structure in SCALE-RM in stead of "ctl" file.

```
# Dimension
&nml_grads_grid
                  ; the number of grids of the atmosphere along the x direction
outer_nx = 360,
outer_ny = 181,
                  ; the number of grids of the atmosphere along the y direction
outer_nz = 26,
                  ; the number of layers for the atmosphere
outer_nl = 4,
                  ; the number of layers for soil data
# Variables
&grdvar item='lon', dtype='linear', swpoint=0.0d0, dd=1.0d0 / \,
&grdvar item='lat', dtype='linear', swpoint=90.0d0, dd=-1.0d0 /
&grdvar item='plev', dtype='levels', lnum=26,
  lvars=100000,97500,....,2000,1000, /
&grdvar item='MSLP', dtype='map', fname='FNLsfc', startrec=1, totalrec=6 /
&grdvar item='PSFC', dtype='map', fname='FNLsfc', startrec=2, totalrec=6 /
&grdvar item='U10', dtype='map', fname='FNLsfc', startrec=3, totalrec=6 /
&grdvar item='V10', dtype='map', fname='FNLsfc', startrec=4, totalrec=6 /
&grdvar item='T2', dtype='map', fname='FNLsfc', startrec=5, totalrec=6 /
&grdvar item='RH2', dtype='map', fname='FNLsfc', startrec=6, totalrec=6 /
&grdvar item='HGT', dtype='map', fname='FNLatm', startrec=1, totalrec=125 /
&grdvar item='U', dtype='map', fname='FNLatm', startrec=27, totalrec=125 /
&grdvar item='V', dtype='map', fname='FNLatm', startrec=53, totalrec=125 /
&grdvar item='T', dtype='map', fname='FNLatm', startrec=79, totalrec=125 /
&grdvar item='RH', dtype='map', fname='FNLatm', startrec=105,totalrec=125, knum=21 /
&grdvar item='llev', dtype='levels', lnum=4, lvars=0.05,0.25,0.70,1.50, /
&grdvar item='lsmask', dtype='map', fname='FNLland', startrec=1, totalrec=10 /
&grdvar item='SKINT', dtype='map', fname='FNLland', startrec=2, totalrec=10 /
&grdvar item='STEMP', dtype='map', fname='FNLland', startrec=3, totalrec=10,
      missval=9.999e+20 /
&grdvar item='SMOISVC', dtype='map', fname='FNLland', startrec=7, totalrec=10,
      missval=9.999e+20 /
```

The number of grids in the atmosphere is specified as outer_nx, outer_ny, outer_nz, and the number of layers of soil data (STEMP, SMOISVC) is specified as outer_nl.

The input data to QV and RH is not often provided in the upper layers. In such cases, the number of layers where the data exist is specified as knum. Two methods of giving values to the upper layers are prepared. As default, upper_qv_type = "ZERO" as


```
&PARAM_MKINIT_REAL_GrADS
upper_qv_type = "ZERO" "ZERO": QV=0
"COPY": copy the RH at the top layer where input humidity data exists
to the upper layers without the data
```

The configuration of [grdvar] is different by data, as shown in Table 4.1.2. The list of [grdvar] is shown in Table 4.1.3. In Table 4.1.3, soil moisture (fraction of volume) is the ratio of water volume (V_w) to soil volume (V), i.e., V_w/V . The saturation ratio is the ratio of water volume V_w to void volume in V, i.e., V_w/V_v . If (USE_FILE_LANDWATER)=.true. in [PARAM_MKINIT_REAL_LAND], prepare data either for SMOISVC or of SMOISDS.

Table 4.1.2: Variables of [grdvar]

item of grdvar	Explanation	Note			
item	Variable name	Select from Table 4.1.3			
dtype	Data type	"linear" or "levels" or "map"			
namelist at (namelist at (dtype)="linear"				
(Specific use of	(Specific use of "lon", "lat")				
swpoint	Value of start point				
$\mathrm{d}\mathrm{d}$	Increment				
namelist at (dtype)"=levels"					
(Specific use of	(Specific use of "plev", "llev")				
lnum	Number of levels (layers)				
lvars	Values of each layer				
namelist at (dtype)="map"					
fname	Header name of files				
startrec	Recorded number of variables (item)	time at $t=1$			
totalrec	Recorded length of all variables per time				
knum	Number of layers of 3D data	(option) in the case of specifying			
		value that differs from outer_nz			
		available for RH and QV			
missval	missing value	(option)			

Table 4.1.3: Variable list of (item) in [grdvar]. The asterisk means "it is optional but recommended as possible". The double-asterisk means "it is available but not recommended". When you target on the place at high altitude, use of HGT is stongly recommended.

-	Variable name	Explanation	Unit	(dtype)
	lon	longitude data	[deg.]	linear, map
	lat	latitude data	$[\deg.]$	linear, map
	plev	pressure data	[Pa]	levels, map
*	HGT	geopotential height data	[m]	map
**	DENS	air density	[kg/m3]	map
	U	eastward wind speed	[m/s]	map
	V	northward wind speed	[m/s]	map
**	W	vertical wind speed	[m/s]	map
	T	temperature	[K]	map
	RH	relative humidity	[%]	map
		(optional if QV is given)		
	QV	specific humidity	[kg/kg]	map
		(optional if RH is given)		
**	QC	ratio of cloud water mass	[kg/kg]	map
**	QR	ratio of rain water mass	[kg/kg]	map
**	QI	ratio of cloud ice mass ratio	[kg/kg]	map
**	QS	ratio of snow miass ratio	[kg/kg]	map
**	QG	ratio of graupel mass ratio	[kg/kg]	map
*	MSLP	sea level pressure	[Pa]	map
*	PSFC	surface pressure	[Pa]	map
*	U10	eastward 10m wind speed	[m/s]	map
*	V10	northward 10m wind speed	[m/s]	map
*	T2	2m temperature	[K]	map
*	RH2	2m relative humidity	[%]	map
		(optional if Q2 is given)		
*	Q2	2m specific humidity	[kg/kg]	map
		(optional if RH2 is given)		
*	TOPO	topography of GCM	[m]	map
*	lsmask	ocean—land distribution of GCM	0:ocean,1:land	map
	SKINT	surface temperature	[K]	map
	llev	soil depth	[m]	levels
	STEMP	soil temperature	[K]	map
	SMOISVC	soil moisture (volume fraction)	[-]	map
		(optional if SMOISDS is given)		
	SMOISDS	soil moisture (saturation ratio)	[-]	map
		(optional if SMOISVC is given)		
	SST	sea surface temperature	[K]	map
		(optional if SKINT is given)		

Chapter 4.2

Framework for SCALE-RM

4.2.1 Supporting tool for preparation of configuration files

The configuration files ***.conf for experiment are required to be individually prepared for pp, init, run. Some items in namelist are required to be the same among these configure files. If there is an inconsistency among them, the model does not run properly. To avoid such mistakes, a convenient supporting tool for the preparation of configuration files is provided as follows:

```
$ cd ${Tutorial_DIR}/real/
$ ls
   Makefile
     : Makefile for generation of necessary files for experiment
   README
     : README file
   USER.sh
     : Shell script for specifying the settings
   config/
     : Configuration files for each setting (not necessary for user to rewrite it)
   sample
     : Sample scripts of USER.sh
   data
     : Files for tutrial real
   tools
     : Files for tutrial real, converting FNL data from grib format to binary format
```

Although this tool is intended for the tutorial experiment of real atmosphere as initial setting, users can change the settings in USER.sh.

Under the directory sample/, several sample scripts are provided for the typical configuration. Use them as necessary by copying them to USER.sh.

```
$ ls sample/
USER.default.sh
: USER.sh same as for the tutorial experiment of real atmosphere
    ( single domain )
USER.offline-nesting-child.sh
: for the child domain for off-line nesting experiment
USER.offline-nesting-parent.sh
: for the parent domain for off-line nesting experiment
USER.online-nesting.sh : for the on-line nesting experiment
```

How to use the tool

The use of this tool is described as follows (or refer to README):

- 1. Edit USER.sh according to experimental settings intended by the users.
- Execute make command.

All the necessary files for the experiment are generated under the directory experiment.

Since the configuration in USER.sh is that for tutorial of real atmosphere, it is recommended to leave the tutrial setting as a different file as follows:

Editing USER.sh

NUM_DOMAIN specifies the number of domains appearing in the script. Change the items appropriately; the settings for each item are specified in configure files generated. When items following "# require parameters for each domain", settings are described to the number of domains. Note that if the number of nesting domains according to NUM_DOMAIN and the number of variables are different, the set of files for the experiment cannot be generated. When items do not appear in USER.sh, edit directly the configuration file generated under the directory experiment.

4.2.2 Configure File Converter from Previous Version

From version 5.2 to 5.3, there are many changes in namelist parameters. So, we provide the configure file converter from 5.2 to 5.3. It requires "ruby" (https://www.ruby-lang.org/en/). Usage of the converter is the following:

```
$ ruby scale-5.3.6/utils/config-converter/config-converter_5.2-5.3.rb \\
    old.conf > new.conf
```


4.2.3 Setting the target domain

This section explains the number of grids, and the target domain and its relationship with the MPI process. The calculation domain is determined by the horizontal grid spacing, the number of grid points, and the number of MPI processes. Figure 4.2.1 gives an example of this relationship. The parallelization is implemented by a 2D domain decomposition in the horizontal direction.

The numbers of grids and of MPI processes are specified in (IMAX, JMAX) in [PARAM_ATMOS_GRID_CARTESC_INDEX], and in (PRC_NUM_X, PRC_NUM_Y) in [PARAM_PRC_CARTESC], respectively. As shown in Fig. 4.2.1, the entire domain is divided into (PRC_NUM_X) along the X direction and (PRC_NUM_Y) in the Y direction. The process number starts zero and is numbered in order from the bottom left to the top right (Arrow in Fig. 4.2.1). Each sub-domain is managed by an MPI process, each of which takes charge of a grid block of IMAX × JMAX × KMAX. Care is taken to ensure that this number of grids is taken charge of by one process: its value is not identical to the total number of grids in the domain. In other words, the entire domain depends on the number of MPI processes, the horizontal grid spacing, and the number of grids.

Thus, the number of grids along each horizontal direction and that in the entire domain are derived as follows:

Number of grids in the X direction =
$$IMAX \times PRC_NUM_X$$
 (4.2.1)

Number of grids in the Y direction =
$$JMAX \times PRC_NUM_Y$$
 (4.2.2)

Total number of grids in the domain

$$= (\texttt{IMAX} \times \texttt{PRC_NUM_X}) \times (\texttt{JMAX} \times \texttt{PRC_NUM_Y}) \times (\texttt{KMAX}), \tag{4.2.3}$$

where (KMAX) is the number of grids along the vertical direction, which is specified in [PARAM_ATMOS_GRID_CARTESC_INDEX].

By using Eqs. (4.2.1 and 4.2.2), the size of the entire domain is determined as follows:

```
Domain length in the X direction = \text{number of grids in the X direction} \times \text{DX} \tag{4.2.4} Domain length in the Y direction = \text{number of grids in the Y direction} \times \text{DY}, \tag{4.2.5}
```

where (DX, DY) is grid spacings specified in [PARAM_ATMOS_GRID_CARTESC] as described in subsection 4.2.3.3. If the horizontal resolution and domain size are set and the available number of MPI processes is given, the number of grids that are controlled by one MPI process can be determined as in the above relationship.

In the next subsections, the configuration of the MPI processes, the number of grids, and the grid interval are described in more detail. Note that it is necessary that these settings be identical among the configuration files pp.conf, init.conf, and run.conf.

4.2.3.1 Setting the number of MPI processes

The number of MPI processes is specified in [PARAM_PRC_CARTESC] in the configuration file. Since the input and output files of SCALE-RM are divided process by process according to the MPI, the total number of files is changed according to the number of MPI processes. For example, the initial condition file made by a two-MPI parallel combination cannot be used for model execution by a four-MPI parallel. It is necessary to edit [PARAM_PRC_CARTESC] in pp.conf, init.conf, and run.conf if the number of MPI processes is changed, and to conduct once again the processes of pp and init.

```
&PARAM_PRC_CARTESC
PRC_NUM_X = 2, ; number of divisions by MPI parallelization in the X direction (zonal direction)

PRC_NUM_Y = 1, ; number of divisions by MPI parallelization in the Y direction (meridional direction)
```

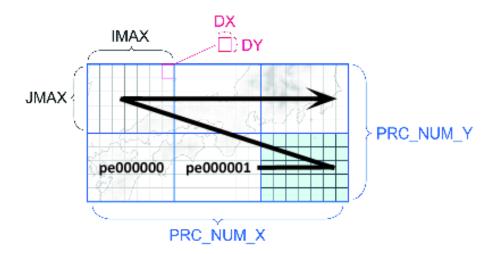



Figure 4.2.1: Relation between horizontal grid interval (DX, DY), number of grids (IMAX, JMAX) per MPI process, and the number of MPI processes (PRC_NUM_X, PRC_NUM_Y) in the entire domain. The light-blue part corresponds to a region managed by an MPI process. The six digit number following "pe" shows the process number.

The total number of MPI processes is given by $PRC_NUM_X \times PRC_NUM_Y$. The above example expresses a two-MPI parallel by dividing the domain into two sub-domains along the X direction, but not dividing along the Y direction. The total number of processes must be given as the number of MPI processes in the MPI command at submitting job. If this condition is not satisfied, the program is terminated immediately without calculation and the following message is output to the standard output.

```
xxx total number of node does not match that requested. Check!
```

4.2.3.2 Setting the number of horizontal and vertical grids

The number of grids is specified in [PARAM_ATMOS_GRID_CARTESC_INDEX] in the configuration files ***.conf. It should be noted that the specified horizontal grids are values controlled by one MPI process.

4.2.3.3 Setting grid intervals along the horizontal and vertical directions

Excluding the buffer region explained in Section 4.2.3.5, the horizontal grid intervals are configured only equidistantly, whereas the vertical grid intervals are configured freely. When the grid intervals are configured uniformly along all directions, specify the zonal, meridional, and vertical grid intervals at (DX, DY, DZ) in [PARAM_ATMOS_GRID_CARTESC], respectively. The unit is [m].


```
&PARAM_ATMOS_GRID_CARTESC
DX = 500.D0, ; grid interval along the zonal (X) direction
DY = 500.D0, ; grid interval along the meridional (Y) direction
DZ = 500.D0, ; grid interval along the vertical (Z) direction
/
```

The box below shows the method to set how to specify a non-uniform grid system. Since the model employs the Lorenz grid system, the points of definition for the velocity vector and other scalars are staggered, deviating by a half grid. In this document, the scalar location is called the center point and the half-grid-deviated location the face point. When the vertical grid locations are directly specified, provide them in (FZ(:)) in [PARAM_ATMOS_GRID_CARTESC] as an array.*1) Refer to Figure 4.2.2 for the details. Note that the number of elements specified in (FZ(:)) should correspond to the number of vertical layers ((KMAX) in [PARAM_ATMOS_GRID_CARTESC_INDEX]). The following file for the ideal experiment is shown as an example:

```
&PARAM_ATMOS_GRID_CARTESC
DX = 500.D0,
                              grid interval along the X direction (equidistant) [m]
DY = 500.D0,
                              grid interval along the Y direction (equidistant) [m]
                              location at face point along the Z direction [m]
FZ(:) =
80.00000000000000
168.00000190734863 ,
264.80000610351567
 . . . . . . . .
14910.428862936289 ,
15517.262523292475
16215.121232702089 ,
17017.658748523147
17940.576891717363
19001.932756390710 ,
20222.492000765058 ,
BUFFER_DZ = 5000.D0,
                              Refer to Section 4.2.3.5
BUFFFACT = 1.0D0,
                              Refer to Section 4.2.3.5
```

The above setting is processed at a topographical height of 0 m. The location of the vertical grids at the non-zero topography is appropriately treated by the terrain-following coordinate.

The locations of the vertical grids are configured freely. However, an unusual configuration sometimes leads to numerical instability. To avoid it, the tool for the generation of vertical grids is supported as a FORTRAN program make_vgrid.f90 in the directory

scale-5.3.6/scale-rm/util/makevgrid/ with several samples of the namelist. If needed, use them as references. The tool generates the values of (FZ(:)) directly. Copy and paste them in the configuration file.

4.2.3.4 Setting sponge layer

SCALE-RM adopts height coordinate system in vertical. The uppermost boundary condition is a rigid lid, and the sound and gravity waves often reflect at the model top. To reduce worse effects of these reflecting waves, the damping layer named "sponge layer" is placed in the upper part of the model domain. In the sponge layer, a vertical velocity is dumped by Rayleigh friction. The relaxation time scale (= e-folding time) of damping is minimum at the model top and it increases with decreasing the height. Below the bottom boundary of sponge layer, the relaxation time scale is set to infinity. There are two methods to set the thickness of the sponge layer in [PARAM ATMOS DYN].

^{*1)}In this case, the same precision as used in the simulation is recommended to be specified. By default, the model is compiled as a double-precision floating point model.

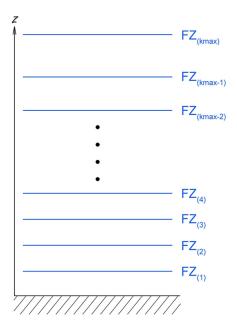


Figure 4.2.2: The point of definition of the face point in SCALE-RM . If (FZ) is given in [PARAM_ATMOS_GRID_CARTESC], the top height at the first layer is given for the value at k=1. Note that k=1 is not the ground surface height.

- 1. specify number of layer of the sponge layer

 The number of layer appointed in (ATMOS_DYN_wdamp_layer) is set as the sponge layer. The
 number is counted from the model top.
- 2. specify bottom boundary height [m] of the sponge layer

 The layer that is higher than altitude appointed in (ATMOS_DYN_wdamp_height) is set as the sponge layer.

Both parameters above are not set by default, and the sponge layer is not applied. If both are set, (ATMOS_DYN_wdamp_layer) is given priority.

The relaxation time at the uppermost boundary is specified by (ATMOS_DYN_wdamp_tau). The unit is [second]. This parameter is not allowed to set the value smaller than (TIME_DT_ATMOS_DYN). When (ATMOS_DYN_wdamp_tau) is not specified explicitly, the value ten times as large as (TIME_DT_ATMOS_DYN) is automatically set. Please refer to section 4.2.7 for (TIME_DT_ATMOS_DYN). The example of concrete setting is shown in section 4.3.1.2.

4.2.3.5 Setting Buffer Region and Boundary Nudging Method

In general, disagreement in values between input data as boundary condition and actual calculation output occurs at the lateral boundaries. They generate several problems, such as nonphysical mode, in calculation. To avoid these problems, the "buffer region" is placed in the domain.

As shown in Fig.4.2.3, SCALE-RM places the buffer region just inside the calculation domain. In the buffer region, prognostic variables are updated to be close to the specified values of boundary data and/or the parent model data with a certain relaxation time. Hereinafter, this relaxation is called nudging.

Buffer Region

The width of the buffer region is specified in [PARAM_ATMOS_GRID_CARTESC] in the configuration file. Note again that the configuration in all procedures must be identical. There are two methods

to configure the width of the buffer region.

- 1. specify number of grid of the buffer region with (BUFFER_NX, BUFFER_NY, BUFFER_NZ)
- 2. specify width [m] of the buffer region with (BUFFER_DX, BUFFER_DY, BUFFER_DZ)

Both parameters above are not set by default, and no buffer regions are set. If both are set, (BUFFER_NX, BUFFER_NY, BUFFER_NZ) is given priority. The buffer regions along the horizontal directions are placed at the four domain boundaries, whereas those along the vertical direction are placed just at the top of the domain. Nothing is affected in the bottom region. Note that the actual target region unaffected by the nudging (the region excluding the buffer regions) narrows compared to the calculation domain because the buffer region is placed on the inside of calculation domain.

Two examples are as below.

```
&PARAM_ATMOS_GRID_CARTESC

BUFFER_NX = 30, ; The number of grid for the buffer region along the X (zonal) direction

BUFFER_NY = 30, ; The number of grid for the buffer region along the Y (meridional) direction

BUFFFACT = 1.D0, ; Stretched factor for grid intervals in the buffer region (default: 1.0)
```

```
&PARAM_ATMOS_GRID_CARTESC
BUFFER_DZ = 5000.D0,
                               ; The width of the buffer region along the Z direction from the top
                               of the model (a reference) [m]
BUFFER_DX = 300000.D0,
                               ; The width of the buffer region along the X (zonal) direction ( a
                               reference ) [m]
BUFFER_DY = 300000.D0,
                               ; The width of the buffer region along the Y (meridional) direction (
                               a reference ) [m]
BUFFFACT_Z = 1.20D0,
                               ; Stretched factor for grid intervals along the Z direction
BUFFFACT_X = 1.05D0,
                               ; Stretched factor for grid intervals along the X (zonal) direction
BUFFFACT_Y = 1.05D0,
                               ; Stretched factor for grid intervals along the Y (meridional) direction
```

The setting procedure of buffer region for the X direction is described as follows. The number of grids ibuff in the buffer region is equal to BUFFER_NX. If BUFFER_DX is configured instead of BUFFER_NX, ibuff is automatically calculated as the minimum integer satisfying the following condition:

$$\sum_{n=1}^{\texttt{ibuff}} \texttt{BDX}(n) \geq \texttt{BUFFER_DX}.$$

Thus, it should be noted that the width of the buffer region $\mathtt{BUFFER}_{\mathsf{X}} \ (= \sum_{n=1}^{\mathtt{ibuff}} \mathtt{BDX}(n))$ does not always correspond to ($\mathtt{BUFFER}_{\mathtt{DX}}$). At the end, the actual target region excluded by the buffer region is expressed as

$$\mathtt{DX} \times (\mathtt{IMAX} \times \mathtt{PRC_NUM_X} - 2 \times \mathtt{ibuff}). \tag{4.2.6}$$

Although the situations along the Y and Z directions are similar to this, note that the actual target region along the Z direction is expressed as

$$DZ \times (KMAX - kbuff),$$
 (4.2.7)

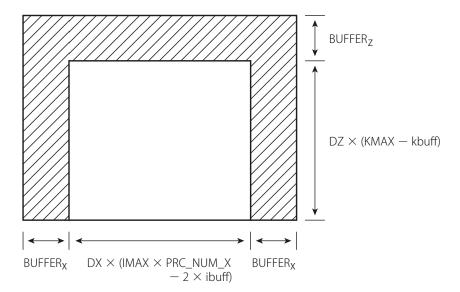


Figure 4.2.3: Location of the buffer region in the entire calculation domain: the shaded area indicates the buffer region. This figure shows the XZ cross-section. It is the same as the YZ cross-section.

using the number of grids kbuff in the upper buffer region.

In general, there is no clear criterion for setting the width and locating grids in the buffer region. This depends on a problem to be solved. In SCALE-RM, the followings are recommended: the number of grids in the vertical buffer region at the top of the model is greater than 5, whereas that in the lateral boundaries is approximately $20{\sim}40$. Depending on the experiment, it may be necessary to increase the number of grids in the buffer region, to increase the buffer region itself by using the appropriate stretch factor, to tune relaxation time, and so on. The relaxation time is explained below.

The grid intervals in the buffer region are the same as (DX, DY, DZ) in [PARAM_ATMOS_GRID_CARTESC] by default. But, it is possible for them to be stretched by setting (BUFFFACT) > 1. This specification of (BUFFFACT) is applied in all directions if the grid intervals are uniformly specified. When the stretched factor is configured separately in every direction, specify (BUFFFACT_X, BUFFFACT_Y, BUFFFACT_Z). Note that in case of the configuration of vertical levels by giving (FZ(:)) (refer to 4.2.3.3), the above stretched settings have no effect along the vertical direction.

The grid interval BDX in the buffer region is determined as follows:

$$BDX(n) = DX \times BUFFFACT^n$$
,

where n denotes the index of grids in the buffer region, in the order directed from the inner to the outer region in the domain. The grid interval is the same as the inner domain at (BUFFFACT=1.0), whereas it increases from the inner to the outer region by a factor of 1.2 at (BUFFFACT=1.2). Although any value of (BUFFFACT) can be configured, the value from 1.0 to 1.2 is recommended to avoid numerical instability.

Finally, the width of the buffer region ${\tt BUFFER}_{\tt X}$ is as follows:

$$\mathtt{BUFFER}_{\mathbf{X}} = \mathtt{DX} \times \frac{\mathtt{BUFFFACT^{ibuff}} - 1}{\mathtt{BUFFFACT} - 1} \tag{4.2.8}$$

Even if the same width of buffer region (BUFFER_DX) is specified, the number of grids in the buffer region decreases with increasing (BUFFFACT). When given by (BUFFER_NX), only the width of buffer region is changed.

Nudging Methods in Buffer Region

[PARAM_ATMOS_BOUNDARY] has parameters to configure the nudging in the buffer region. The boundary data type is configurable by (ATMOS_BOUNDARY_TYPE) in [PARAM_ATMOS_BOUNDARY] (Table 4.2.1.)

Table 4.2.1: Choices of the boundary data type

Value	Description of type
NONE	Do not nudge
CONST	Nudge to a prescribed constant value
INIT	Nudge to the initial value
OFFLINE	Nudge to value read from a file (temporally unchanged)
REAL	Nudge to time-dependent value of the parent model or domain

The following is the parameters in [PARAM_ATMOS_BOUNDARY].


```
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_TYPE = 'NONE',
                                              ; The boundary data type. See Table 4.2.1.
ATMOS_BOUNDARY_IN_BASENAME = '',
                                              ; File name of the boundary data for OFFLINE or REAL
ATMOS_BOUNDARY_IN_CHECK_COORDINATES \
                                              ; Flag to check coordinate variables in the boundary
  = .true.,
                                              data file.
ATMOS_BOUNDARY_START_DATE \
                                              ; Start time of the boundary data. Only for REAL
  = (/-9999, 0, 0, 0, 0, 0 /),
                                              ; Time interval of the boundary data. Only for REAL
ATMOS_BOUNDARY_UPDATE_DT = 0.0D0,
                                              type.
ATMOS_BOUNDARY_INTERP_TYPE \
  = 'lerp_initpoint',
                                              ; Temporal interpolation type.
                                               same_parent: use the latest step value (no interpo-
                                              nearest_neighbor: use the value of the nearest time
                                              step,
                                               lerp_initpoint: linear interpolation between val-
                                              ues at two time steps as the values are snapshot,
                                               lerp_midpoint: same as lerp_initpoint but the
                                              values are temporal average during the time step.
ATMOS_BOUNDARY_OUT_BASENAME = '',
                                              ; File name to output the initial boundary data.
ATMOS_BOUNDARY_OUT_TITLE \
                                              ; Title for the output file.
  = 'SCALE-RM BOUNDARY CONDITION',
ATMOS_BOUNDARY_OUT_DTYPE = 'DEFAULT',
                                              ; Data type (REAL4 or REAL8) for the output.
ATMOS_BOUNDARY_USE_DENS = .false.,
                                              ; Switch of the nudging for the density.
ATMOS_BOUNDARY_USE_VELZ = .false.,
                                              ; Switch for the w.
ATMOS_BOUNDARY_USE_VELX = .false.,
                                              ; Switch for the u.
                                              ; Switch for the v.
ATMOS_BOUNDARY_USE_VELY = .false.,
ATMOS_BOUNDARY_USE_POTT = .false.,
                                              ; Switch for the \theta.
ATMOS_BOUNDARY_USE_QV = .false.,
                                              ; Switch for the vapor.
ATMOS_BOUNDARY_USE_QHYD = .false.,
                                              ; Switch for the hydrometeors.
                                              ; Value of the w. Only for CONST type.
ATMOS_BOUNDARY_VALUE_VELZ = 0.0D0,
                                              ; Value of the u. Only for CONST type.
ATMOS_BOUNDARY_VALUE_VELX = 0.0D0,
                                              ; Value of the v. Only for CONST type.
ATMOS_BOUNDARY_VALUE_VELY = 0.0D0,
ATMOS_BOUNDARY_VALUE_POTT = 300.0D0,
                                              ; Value of the \theta. Only for CONST type.
ATMOS_BOUNDARY_VALUE_QTRC = 0.0D0,
                                              ; Value of the vapor. Only for CONST type.
                                              ; Factor of the 1/\tau for the density.
ATMOS_BOUNDARY_ALPHAFACT_DENS = 1.0D0,
                                              ; Factor for the w.
ATMOS_BOUNDARY_ALPHAFACT_VELZ = 1.0D0,
                                              ; Factor for the u.
ATMOS_BOUNDARY_ALPHAFACT_VELX = 1.0D0,
                                              ; Factor for the v.
ATMOS_BOUNDARY_ALPHAFACT_VELZ = 1.0D0,
ATMOS_BOUNDARY_ALPHAFACT_POTT = 1.0D0,
                                              ; Factor for the \theta.
                                              ; Factor for the vapor.
ATMOS_BOUNDARY_ALPHAFACT_QTRC = 1.0D0,
ATMOS_BOUNDARY_SMOOTHER_FACT = 0.2D0,
                                              ; Factor of the horizontal smoother against the point-
ATMOS_BOUNDARY_FRACZ = 1.0D0,
                                              ; Fraction for the nudging region to the buffer region
                                              in the z-direction.
ATMOS_BOUNDARY_FRACX = 1.0D0,
                                              ; Fraction in the x-direction.
ATMOS_BOUNDARY_FRACY = 1.0D0,
                                              ; Fraction in the y-direction.
ATMOS_BOUNDARY_TAUZ = DT * 10.0D0,
                                              ; Time scale of the nudging at the top boundary (in
                                              second).
ATMOS_BOUNDARY_TAUX = DT * 10.0D0,
                                              ; Time scale at the western and eastern boundary.
                                              ; Time scale at the southern and northern boundary.
ATMOS_BOUNDARY_TAUY = DT * 10.0D0,
ATMOS_BOUNDARY_LINEAR_V = .false.,
                                              Profile type of the time scale in the z-direction. If
                                              .true., it is a linear profile, otherwise a sinusoidal
ATMOS_BOUNDARY_LINEAR_H = .false.,
                                              ; Profile type in the x- and y-direction. If .true., it
                                              is a linear profile, otherwise a exponential profile.
ATMOS_BOUNDARY_EXP_H = 2.0D0,
                                              ; Factor of the exponent of the exponential profile.
```


The tendency due to the nudging is written as

$$\frac{\partial \phi_{k,i,j}}{\partial t}\Big|_{\text{nudging}} = -\alpha \Delta \phi_{k,i,j}
+\alpha_s \left(\frac{\Delta \phi_{k,i-1,j} + \Delta \phi_{k,i+1,j} + \Delta \phi_{k,i,j-1} + \Delta \phi_{k,i,j+1}}{8} - \frac{\Delta \phi_{k,i,j}}{2} \right),$$
(4.2.9)

where $\Delta \phi$ is difference from the boundary data and $\alpha_s = \alpha \times \text{ATMOS_BOUNDARY_SMOOTHER_FACT}$. The α is the maximum of those in the tree directions α_x, α_y and α_z . The α s depend on a length scale e as

$$e = \max\left(1 - \frac{d}{\text{BUFFER} \times \text{ATMOS_BOUNDARY_FRAC}}, 0\right), \tag{4.2.10}$$

where d is distance from the boundary. If $(ATMOS_BOUNDARY_LINEAR_V) = .true.$

$$\alpha_z = e_z/\tau_z,\tag{4.2.11}$$

otherwise

$$\alpha_z = \sin^2(\pi e_z/2)/\tau_z,\tag{4.2.12}$$

where τ_z is (ATMOS_BOUNDARY_TAUZ). For the horizontal direction, if (ATMOS_BOUNDARY_LINEAR_H) = .true.,

$$\alpha_x = e_x/\tau_x,\tag{4.2.13}$$

otherwise

$$\alpha_x = e_x \exp\{-(1-e_x) \times \texttt{ATMOS_BOUNDARY_EXP_H}\}/\tau_x. \tag{4.2.14}$$

 α_y is derived by the same way as α_x .

The τ is the relaxation time at the boundary (d=0) with which the difference between the simulated value and the boundary value becomes 1/e. On the other hand, two grid scale component of $\Delta\phi$ becomes 1/e with the time of $\tau/\text{ATMOS_BOUNDARY_SMOOTHER_FACT}$ by the second term of the right-hand side of Eq. 4.2.10. The default value of the τ is ten times of (TIME_DT). Please refer to Section 4.2.7 for (TIME_DT).

If (ATMOS_BOUNDARY_TYPE) in [PARAM_ATMOS_BOUNDARY] is REAL, the nudging at the lateral boundary for the horizontal velocities, potential temperature, and vapor is forced to be applied. The switches of (ATMOS_BOUNDARY_USE_VELX), (ATMOS_BOUNDARY_USE_VELY),

(ATMOS_BOUNDARY_USE_POTT), and (ATMOS_BOUNDARY_USE_QV) are used only for the top boundary in this case. If the simulation is on a daughter domain of the online nesting (See Section 4.2.10.3), the same setting is applied with the REAL boundary type.

There exists a similar dumping method at near the top boundary, i.e., Rayleigh dumping. See Section 4.2.3.4.

4.2.4 Setting the map projection

In SCALE-RM, grids are allocated based on actual distance. The latitude and longitude for all grids are calculated by using the latitude and longitude of a certain reference point using a map projection. All information pertaining to the latitude and longitude of the grids are output to all output files in netCDF format. The locations of the domain and the map projection can be configured in (PARAM_MAPPROJECTION). This configuration must be shared among the configuration files pp.conf, init.conf, and run.conf. An example is as follows:

```
&PARAM_MAPPROJECTION

MAPPROJECTION_basepoint_lon = 138.727778D0,

MAPPROJECTION_basepoint_lat = 35.360556D0,

MAPPROJECTION_type = 'MER',

; Choose from Table 4.2.2.
```

Table 4.2.2: Map projections selectable in SCALE-RM

MAPPROJECTION_type	Map projection
NONE	No map projection for ideal experiment (default)
LC	Lambert conformal conic projection
PS	Polar stereo projection
MER	Mercator projection
EC	Equi-rectangular projection

(MAPPROJECTION_basepoint_lat, MAPPROJECTION_basepoint_lon) are the latitude and longitude at a reference point. This reference point is the center of the calculation domain by the default setting. In SCALE-RM, the north and south latitudes are expressed by positive and negative values, respectively. The east and west longitudes are also expressed by positive and negative values, respectively. It is possible to express longitude using an angle greater than 180°. In above setting, the center of the domain is configured at 35.360556°N and 138.727778°E, where N and E denote the north latitude and east longitude, respectively. The entire calculation domain is placed at the center with a specified size.

(MAPPROJECTION_type) provides the kind of map projection and MER the Mercator projection. Table 4.2.2 shows the selectable map projections in the current version of SCALE-RM. In the case of the Mercator projection, the standard latitude, to which a cylinder is tangent, is specified as (MAPPROJECTION_M_lat) in units of degrees. In general, the standard latitude is set to the Equator. In SCALE-RM, (MAPPROJECTION_basepoint_lat) is used as standard latitude, unless (MAPPROJECTION_M_lat) is explicitly specified. This is because this method is more precise with less distortion than the usual Mercator projection.

The text below explains the Lambert conformal conic projection, the usage frequency of which is highest. The example is the same as that in the file used in the tutorial for the real atmospheric experiment.

```
&PARAM_MAPPROJECTION

MAPPROJECTION_basepoint_lon = 135.220404,

MAPPROJECTION_basepoint_lat = 34.653396,

MAPPROJECTION_type = 'LC',

MAPPROJECTION_LC_lat1 = 30.0,

MAPPROJECTION_LC_lat2 = 40.0,
```

In SCALE-RM , two standard parallels are used for this projection. The north and south of them are specified in (MAPPROJECTION_LC_lat1, MAPPROJECTION_LC_lat2) in units of degrees. In the region between the latitudes, the ratio of the latitudinal to longitudinal length is adjusted

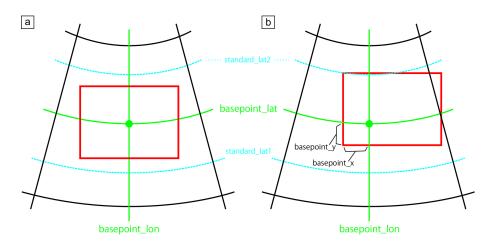


Figure 4.2.4: The relationship between projection center and calculation domain.; (a) Default setting and (b) the case where the center of projection is displaced at the center of the domain. The red line indicates the boundary of the calculation domain.

to be close to the Earths ellipsoid face.

Furthermore, it is possible for the reference point ((MAPPROJECTION_basepoint_lon), (MAPPROJECTION_basepoint_lat)) to be displaced from the default setting, i.e., domain center as follows:

```
&PARAM_MAPPROJECTION

MAPPROJECTION_basepoint_lon = 135.220404,

MAPPROJECTION_basepoint_lat = 34.653396,

MAPPROJECTION_basepoint_x = 100.0,

MAPPROJECTION_basepoint_y = 100.0,

MAPPROJECTION_type = 'LC',

MAPPROJECTION_LC_lat1 = 30.0,

MAPPROJECTION_LC_lat2 = 40.0,
```

The location of the reference point is specified as the distance from the south-west corner (bottom-left corner).; (MAPPROJECTION_basepoint_x) and (MAPPROJECTION_basepoint_y) are the distances in units of meters between the south-west corner and the reference point in X directionand in Y direction, respectively. If they are not specified, the center of projection corresponds to that of the domain. Figure 4.2.4 shows both cases.

4.2.5 Setting the topography

SCALE-RM employs the terrain-following coordinates to represent topography. In these coordinates, the bottom face of the lowest grid is given such that it can follow the surface altitude. The maximum allowable angle of inclination, $\theta_{\text{max}}[\text{radian}]$ is calculated as follows:

$$\theta_{\text{max}} = \arctan(\text{RATIO} \times \text{DZ/DX}),$$

where DZ and DX are the horizontal and vertical grid intervals, respectively. As shown in the above equation, θ_{max} depends on spatial resolution. If RATIO is greater than unity, the fine topography is expressed, and vice versa. Note that if RATIO is set to a greatly large value, the risk of numerical instability increases. In SCALE-RM, the default value of RATIO is 10.0.

The program scale-rm_pp converts external topography data into SCALE format. The detailed configurations are specified in [PARAM_CNVTOPO] in configuration file pp.conf. An example is as follows:

```
&PARAM_CNVTOPO
                                           ; Use GTOPO30 dataset?
CNVTOPO_UseGTOPO30 = .true.,
CNVTOPO_UseDEM50M = .false.,
                                           ; Use DEM50M dataset?
CNVTOPO_UseUSERFILE = .false.,
                                           ; Use user-defined dataset?
CNVTOPO_smooth_type = 'LAPLACIAN',
                                                     Type
                                                                         smoothing
                                                                                         filter
                                           (OFF, LAPLACIAN, GAUSSIAN)
CNVTOPO_smooth_maxslope_ratio = 5.DO,
                                           ; Maximum allowable ratio of inclination to DZ/DX
CNVTOPO\_smooth\_maxslope = -1.D0,
                                           ; Maximum allowable angle of inclination [deg]
                                           ; Try to continue smoothing, for only grids whose an-
CNVTOPO_smooth_local = .true.,
                                           gles of inclination exceed the maximum value?
CNVTOPO_smooth_itelim = 10000,
                                           ; Number limit of the smoothing iteration
CNVTOPO_smooth_hypdiff_niter = 20,
                                           ; Number of the smoothing iteration by hyperdiffusion
CNVTOPO_interp_level = 5,
                                           ; Number of the neighbor grid points for interpolation
                                           ; The topography in the buffer region of child domain
CNVTOPO_copy_parent = .false.,
                                           is copied from parent domain?
```

SCALE-RM supports GTOPO30 and DEM50M provided by the Geospatial Information Authority of Japan as the input of the topography data. The program scale-rm_pp can convert the topographic data prepared by user. Please refer to the next section 4.2.6, too. The combination of these datasets is also available. If both (CNVTOPO_UseGTOPO30) and (CNVTOPO_UseDEM50M) are set to true, the program makes the data as follows:

- Interpolate GTOPO30 dataset to the grid point of simulation domain,
- Interpolate DEM50M dataset and overwrite the region covered by DEM50M,
- Apply smoothing.

In default, the nearest five grid points of input data around the target grid point are used for the interpolation. The number of using grid point is determined by (CNVTOPO_interp_level). There are two types of filter for smoothing the elevation of the steep slope in re-gridded to-pography: Laplacian and Gaussian filter. The type can be chosen by (CNVTOPO_smooth_type). The Laplacian filter is used in default. In the smoothing operation, the selected filter is applied multiple times until the angle is below the maximum allowable angle θ_{max} . By specifying (CNVTOPO_smooth_maxslope_ratio), you can set RATIO described above directly. Or, you can use the parameter (CNVTOPO_smooth_maxslope), which determines the maximum angle in degree. The number limit of the smoothing iteration is 10000 times in default. You can set larger number by setting (CNVTOPO_smooth_itelim). When (CNVTOPO_smooth_local) is set to .true., the iterative filter operation is continued only at the grid point where the smoothing is not completed.

Additional hyperdiffusion is applied to the topography for removing the noise in a small spatial scale. We recommend to do this filtering to reduce the numerical noise in the simulation. If (CNVTOPO_smooth_hypdiff_niter) is set to negative, the filter is not applied.

(CNVTOPO_copy_parent) is the item used for the nesting computation. In general, the topography in the child domain is finer than in the parent domain due to higher spatial resolution. At this time, problems often occers due to an inconsistency between the atmospheric data in the buffer region of the child domain and that in the parent domain. To avoid this problem, the topography of the parent domain can be copied to the buffer region of the child domain by specifying (CNVTOPO_copy_parent) = .true. If there is no parent domain, (CNVTOPO_copy_parent) must be .false.. Section 4.2.10.1 provides a more detailed explanation of the case that involves the use of (CNVTOPO_copy_parent).

4.2.6 Preparation of user-defined topography

When (CNVTOPO_USeUSERFILE) is set to .true., the program scale-rm_pp try to convert the file specified by [PARAM_CNVTOPO_USERFILE]. The sample of the setting is as follows:

```
&PARAM_CNVTOPO_USERFILE
USERFILE_IN_DIR = "./input_topo",
                                                     ; Directory path of input file
USERFILE_IN_FILENAME = "GTOPO30_e100n40.grd",
                                                    ; Name of the input file
USERFILE_DLAT = 0.008333333333333300,
                                                     ; Interval of the grid (latitude, degree)
USERFILE_DLON = 0.008333333333333300,
                                                     ; Interval of the grid (longitude,degree)
USERFILE_IN_DATATYPE = "INT2",
                                                              Type
                                                                         of
                                                                                           data
                                                     (INT2,INT4,REAL4,REAL8)
USERFILE_LATORDER_N2S = .true.,
                                                     ; Data is stored from north to south in lati-
                                                     tudinal direction?
USERFILE_LAT_START = -10.D0,
                                                     ; Start of the grid point (latitude, degree)
USERFILE_LAT_END = 40.D0,
                                                    ; End of the grid point (latitude,degree)
USERFILE_LON_START = 100.D0,
                                                     ; Start of the grid point (longitude,degree)
USERFILE_LON_END = 140.D0,
                                                     ; End of the grid point (longitude,degree)
```

In this sample, the data file named GTOPO30_e100n40.grd is located in the directory ./input_topo. The data covers from 40 degree north to 10 degree south in latitude, and from 100 degree east to 140 degree east in longitude. The grid interval is 30 arc second for both latitude and longitude. Thus, this data contains 100 and 80 points for latitude and longitude, respectively. The value is stored with a 2-byte integer. The user-defined data must be a simple binary as same as the format of GrADS (direct access) except for USERFILE_IN_DATATYPE.

4.2.7 Setting integration period and time step

The integration period and time step are configured appropriately according to experimental design. The time step depends on the spatial resolution of the model. A shorter time step is sometimes required to avoid numerical instability. The period of integration and the time step are configured in [PARAM_TIME] in the configuration file for simulation run .

```
&PARAM_TIME
TIME_STARTDATE = 2014, 8, 10, 0, 0, 0,
                                             Start date of integration: it is required for the cal-
                                             culation of the radiation process.
TIME\_STARTMS = 0.D0,
                                             Start date [mili sec]
TIME_DURATION = 12.0D0,
                                             Integration
                                                                    [init
                                                                                 defined
                                                                                            by
                                                           time
                                             TIME_DURATION_UNIT
TIME_DURATION_UNIT = "HOUR",
                                             Unit for TIME_DURATION
                                             Time step for time integration
TIME DT = 60.0D0.
TIME_DT_UNIT = "SEC",
                                             Unit for {\tt TIME\_DT}
TIME_DT_ATMOS_DYN = 30.0D0,
                                             Time step for calculation of dynamical process
TIME_DT_ATMOS_DYN_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_DYN
TIME_DT_ATMOS_PHY_CP = 600.0D0,
                                             Time step for calculation of cumulus parameteriza-
                                             tion process
TIME_DT_ATMOS_PHY_CP_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_CP
TIME_DT_ATMOS_PHY_MP = 60.0D0,
                                             Time step for calculation of microphysics process
TIME_DT_ATMOS_PHY_MP_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_MP
TIME_DT_ATMOS_PHY_RD = 600.0D0,
                                             Time step for calculation of radiation process
TIME_DT_ATMOS_PHY_RD_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_RD
TIME_DT_ATMOS_PHY_SF = 60.0D0,
                                             Time step for calculation of bottom boundary con-
                                             dition (surface process) for atmosphere
TIME_DT_ATMOS_PHY_SF_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_SF
TIME_DT_ATMOS_PHY_TB = 60.0D0,
                                             Time step for calculation of turbulence process
TIME_DT_ATMOS_PHY_TB_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_TB
TIME_DT_ATMOS_PHY_BL = 60.0D0,
                                             Time step for calculation of boundary layer process
TIME_DT_ATMOS_PHY_BL_UNIT = "SEC",
                                             Unit for TIME_DT_ATMOS_PHY_BL
TIME_DT_OCEAN = 300.0D0,
                                             Time step for calculation of ocean process
TIME_DT_OCEAN_UNIT = "SEC",
                                             Unit for TIME_DT_OCEAN
TIME_DT_LAND = 300.0D0,
                                             Time step for calculation of land process
TIME_DT_LAND_UNIT = "SEC",
                                             Unit for TIME_DT_LAND
TIME_DT_URBAN = 300.0D0,
                                             Time step for calculation of urban process
TIME_DT_URBAN_UNIT = "SEC",
                                             Unit for TIME_DT_URBAN
TIME_DT_ATMOS_RESTART = 21600.D0,
                                             Output interval of restart files for atmospheric vari-
                                             ables
                                             Unit for TIME_DT_ATMOS_RESTART
TIME_DT_ATMOS_RESTART_UNIT = "SEC",
TIME_DT_OCEAN_RESTART = 21600.D0,
                                             Output interval of restart files for ocean variables
TIME_DT_OCEAN_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_OCEAN_RESTART
TIME_DT_LAND_RESTART = 21600.D0,
                                             Output interval of restart files for land variables
TIME_DT_LAND_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_LAND_RESTART
TIME_DT_URBAN_RESTART = 21600.D0,
                                             Output interval of restart files for urban variables
TIME_DT_URBAN_RESTART_UNIT = "SEC",
                                             Unit for TIME_DT_URBAN_RESTART
                                             Interval of checking wallclock
TIME_DT_WALLCLOCK_CHECK = 21600.D0,
                                             Unit for TIME_DT_WALLCLOCK_CHECK
TIME_DT_WALLCLOCK_CHECK_UNIT = "SEC",
TIME_WALLCLOCK_LIMIT = 86400.D0,
                                             Limit of elapse time of wall clock time [sec]
TIME_WALLCLOCK_SAFE = 0.95D0,
                                             Safety coefficient for elapse time limit
```

4.2.7.1 Time Step for Dynamical Processes

(TIME_DT) is the time step for time integration, usually described as Δt . It is used as time

step for tracer advection as well as the basic unit for all physical processes. To avoid numerical instability, (TIME_DT) must satisfy the following condition: it is less than the value calculated by dividing grid size by a supposed maximum advection velocity. A time step for dynamical process, i.e. (TIME_DT_ATMOS_DYN), should be given shorter than Δt because the time integration of dynamic variables is constrained not by advection velocity, but by the speed of the acoustic wave. (TIME_DT_ATMOS_DYN) depends on the time integration scheme in relation to the stability of calculation. As a criterion, the standard values of (TIME_DT_ATMOS_DYN) are calculated by dividing the minimum grid interval by 420 m/s and 840 m/s, in the case (ATMOS_DYN_TINTEG_SHORT_TYPE="RK4, RK3"), respectively. Note that (TIME_DT_ATMOS_DYN) needs to be a divisor of (TIME_DT). When the ratio of (TIME_DT) to (TIME_DT_ATMOS_DYN) is too large, the numerical instability sometimes occurs. The ratio of (TIME_DT)/(TIME_DT_ATMOS_DYN) is recommended to be set two or three. See also Section 4.2.7.2. In stead of setting (TIME_DT_ATMOS_DYN) and (TIME_DT_ATMOS_DYN_UNIT), the ratio of (TIME_DT)/(TIME_DT_ATMOS_DYN) can be specified by (TIME_NSTEP_ATMOS_DYN). Integer is acceptable for (TIME_NSTEP_ATMOS_DYN).

4.2.7.2 Check of CFL Condition

The time step for the advection (TIME_DT) must be smaller than the grid spacing divided by velocity, i.e., the Courant-Friedrichs-Lewy (CFL) condition. A non-dimensional number $U\Delta t/\Delta x$ is called the Courant number, where $U, \Delta x$ and Δt are velocity, spatial grid spacing, and time step, respectively. The CFL condition is that the Courant number must be smaller than 1.

SCALE-RM has a functionality to check whether the Courant number exceeds a limit. To enable this function, set (ATMOS_VARS_CHECKCFL_SOFT) and/or (ATMOS_VARS_CHECKCFL_HARD) in [PARAM_ATMOS_VARS]. Their default values are 1.0 and 2.0, respectively. If the Courant number in simulations exceeds (ATMOS_VARS_CHECKCFL_SOFT), the following message is output to the LOG file.

```
INFO [ATMOS_vars_monitor] Courant number = xxx exceeded the soft limit = yyy
```

If it exceeds (ATMOS_VARS_CHECKCFL_HARD), the following message is output to the standard output, and the simulation aborts.

```
ERROR [ATMOS_vars_monitor] Courant number = xxx exceeded the hard limit = yyy
```

4.2.7.3 Time Step for Physical Processes

A time step for the physical process represents the timing of the tendency to update given by the process. Once the model starts, each physical process is called during the setup of the model to obtain the initial tendency. Each tendency is updated at every time step specified process by process. All time steps for the physical process must be a multiple of (TIME_DT).

The surface fluxes are calculated by the surface process for the atmosphere. On the contrary, if a model grid contains several types of land use, such as ocean, urban, and land, ocean, land, and urban models are used and the fluxes are calculated by these models. The grid mean value of fluxes is obtained as the weighted average of fluxes over each instance of land use according to the fraction of land use.

As described above, the initial tendencies of all processes are updated during the setup of the model. Therefore, the output intervals of restart file are required as multiples of time steps for all processes. If not, a restart calculation disagrees with the continuous calculation. When (TIME_DT_ATMOS_RESTART), (TIME_DT_OCEAN_RESTART), (TIME_DT_LAND_RESTART), and (TIME_DT_URBAN_RESTART), are not specified, the restart files are created at the end of the simulation, i.e. at (TIME_DURATION). The details of the restarted simulation are described in Section 4.2.9.

4.2.7.4 Finalization by wall-clock timer

Some batch job system usually have the limit of the execution time. However, it is difficult to estimate the elapse time of the long-termed simulation, and the job sometimes exceeds the time limit. To solve this problem, SCALE-RM has the finalize option by using the self timer.

When the elapse time reached the time specified by (TIME_WALLCLOCK_LIMIT) (in second), the simulation outputs the restart file and finalize the time loop, even if the timestep is not finished. There is the safety factor for (TIME_WALLCLOCK_LIMIT). The default value is 0.9 and specified by (TIME_WALLCLOCK_SAFE).

As described above, the interval of the restart output should be a multiples of time steps for all physical processes and surface submodels. However, the self timer will stop the simulation suddenly. To avoid restart output at a time other than expected timing, you can specify the timing to check the wall clock time. The wall clock will be checked the time interval specified by (TIME_DT_WALLCLOCK_CHECK) and (TIME_DT_WALLCLOCK_CHECK_UNIT). When these parameters are not specified, maximum time interval in the physical process and the surface submodel is set. Note that if you set a very long interval for checking, the timing of the finalization may delay.

In the sample above, the (TIME_WALLCLOCK_LIMIT) and (TIME_WALLCLOCK_SAFE) are set to 24 hours and 0.95, respectively. The wall clock is checked every 6 hours of the simulation time. When the elapse time exceeds 22.8 hours, the restart file will be generated and the simulation will stop.

4.2.8 Setting the history file and output variable

A history file and output variables are configured at [PARAM_FILE_HISTORY_CARTESC], [PARAM_FILE_HISTORY] and [HISTORY_ITEM] in run.conf. The default format of the history file is configured at [PARAM_FILE_HISTORY].


```
&PARAM_FILE_HISTORY
FILE_HISTORY_TITLE = "",
                                                           Brief description of data (See
                                                        Sec. 5.1.1)
FILE_HISTORY_SOURCE = "",
                                                        ; Name of the source software (See
                                                        Sec.5.1.1)
FILE_HISTORY_INSTITUTION = "",
                                                        ; Data author (See Sec.5.1.1)
FILE_HISTORY_TIME_UNITS = "seconds",
                                                        ; Unit of time axis in netCDF
FILE_HISTORY_DEFAULT_BASENAME = "history_d01",
                                                        ; Base name of the output file
FILE_HISTORY_DEFAULT_POSTFIX_TIMELABEL = .false.,
                                                       ; Add the time label to the file name?
FILE_HISTORY_DEFAULT_ZCOORD = "model",
                                                        ; Type of vertical coordinate
FILE_HISTORY_DEFAULT_TINTERVAL = 3600.D0,
                                                        ; Time interval of history output
FILE_HISTORY_DEFAULT_TUNIT = "SEC",
                                                        ; Unit of DEFAULT_TINTERVAL
FILE_HISTORY_DEFAULT_TAVERAGE = .false.,
                                                        ; Average the value during the interval?
FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",
                                                        ; Output data type: REAL4 or REAL8
FILE_HISTORY_OUTPUT_STEP0 = .true.,
                                                        ; Output data at initial time (t=0)?
FILE_HISTORY_OUTPUT_WAIT = 0.D0,
                                                        ; Time to suppress output
FILE_HISTORY_OUTPUT_WAIT_TUNIT = "SEC",
                                                        ; Unit of OUTPUT_WAIT
FILE_HISTORY_OUTPUT_SWITCH_TINTERVAL = -1.D0,
                                                        ; Time interval to switch the file
                                                        ; Unit of OUTPUT_SWITCH_TINTERVAL
FILE_HISTORY_OUTPUT_SWITCH_TUNIT = "SEC",
FILE_HISTORY_ERROR_PUTMISS = .true.,
                                                        ; Check missing preparation of the
                                                        ; Aggregate to one file with PnetCDF?
FILE_HISTORY_AGGREGATE = .false.,
```

In default, each process output the history file. When (FILE_HISTORY_AGGREGATE) is set to .true., the distributed output file is aggregated into one file by using parallel NetCDF. The default setting of (FILE_HISTORY_AGGREGATE) is determined by the (FILE_AGGREGATE) in [PARAM_FILE]. Please refer to Section 5.1.1

(FILE_HISTORY_DEFAULT_TINTERVAL) is time interval of history output and its unit is defined by (FILE_HISTORY_DEFAULT_TUNIT). The unit can be selected from "MSEC", "msec", "SEC", "sec", "s", "MIN", "min", "HOUR", "hour", "h", "DAY", "day". When the average value output is selected as (FILE_HISTORY_DEFAULT_TAVERAGE) to = .true., the history data averaged over the last period, given as (FILE_HISTORY_DEFAULT_TINTERVAL), is output.

The time interval of history output must be the equal to or a multiple of the time interval of its related scheme. When you want to disable checking this consistency, please set (FILE_HISTORY_ERROR_PUTMISS) to .false..

When (FILE_HISTORY_DEFAULT_POSTFIX_TIMELABEL) is set to .true., the time label is added to the name of output file. The time label is generated from the current time in the simulation, and its format is defined by YYYYMMDD-HHMMSS.msec.

When (FILE_HISTORY_OUTPUT_STEPO) is set to .true., the variables at the time before time integration (initial state) are output to history file. You can suppress history output during the time in the simulation defined by (FILE_HISTORY_OUTPUT_WAIT) and (FILE_HISTORY_OUTPUT_WAIT_TUNIT). If the value is negative, no suppression occurs. (FILE_HISTORY_OUTPUT_SWITCH_TINTERVAL) is time interval of switching output file and its unit is defined by (FILE_HISTORY_OUTPUT_SWITCH_TUNIT). If the value is negative only one file per process is used for history output. If this option is enabled, the time label is added to the file name.

Three vertical coordinates are available to output atmospheric 3-D variables. (FILE_HISTORY_DEFAULT_ZCOORD) = "model" is selected in default. In this case, the variable is output with original coordinate of the model (terrain-following, z* coordinate for SCALE-RM). When (FILE_HISTORY_DEFAULT_ZCOORD) is set to "z", the variables are interpolated to absolute height the number of levels in output data is the same as that of the model level. The height at each level is the same as that of the model level in a grid cell with no topography. The variables are interpolated to the pressure level when (FILE_HISTORY_DEFAULT_ZCOORD) is set to "pressure". In this case, the configurations of (FILE_HISTORY_CARTESC_PRES_nlayer) and (FILE_HISTORY_CARTESC_PRES) in [PARAM_FILE_HISTORY_CARTESC] are required.

When (FILE_HISTORY_CARTESC_BOUNDARY) in [PARAM_FILE_HISTORY_CARTESC] is .true., the data in halo, which is located outside of a target domain, is also output except in the case of periodic boundary condition. The setting of (FILE_HISTORY_CARTESC_BOUNDARY) is applied to all output variables.

The output variables are set by adding [HISTORY_ITEM]. The output format follows the default setting specified at [PARAM_FILE_HISTORY]. By adding namelists with "(OPTION)", the format for a specific variable can be changed from the default setting.

```
&HISTORY_ITEM
NAME = "RAIN",
                                Variable name. List of variables is in the reference manual (See
                                Section 5.3.2)
OUTNAME = "",
                                (OPTION) same as NAME
BASENAME = "rain_d01",
                                (OPTION) same as FILE_HISTORY_DEFAULT_BASENAME
POSTFIX_TIMELABEL = .false.,
                                (OPTION) same as FILE_HISTORY_DEFAULT_TAVERAGE
ZCOORD = "model",
                                (OPTION) same as FILE_HISTORY_DEFAULT_ZCOORD
TINTERVAL = 600.D0,
                                (OPTION) same as FILE_HISTORY_DEFAULT_TINTERVAL
TUNIT = "SEC",
                                (OPTION) same as FILE_HISTORY_DEFAULT_TINTERVAL
TAVERAGE = .true.,
                                (OPTION) same as FILE_HISTORY_DEFAULT_TAVERAGE
DATATYPE = "REAL4",
                                (OPTION) same as FILE_HISTORY_DEFAULT_DATATYPE
```

If the variable requested by [HISTORY_ITEM] is not prepared during the time stepping of the simulation, the execution will stop and error log is written to the log file. This case may occur if there is the spelling miss of the (NAME), or when requested variables are not used in the selected scheme

Namelists with "(OPTION)" are applied only to the variable (NAME). If the default setting is used for the variable, the namelist with "(OPTION)" can be omitted. For example, let the below setting for [HISTORY_ITEM] be added, maintaining the above setting of [PARAM_FILE_HISTORY]. The snapshot values of U and V are stored as four-byte real values at an interval of 3600 s in the file history_d01.xxxxxx.nc, whereas the value of RAIN averaged over the last 600 seconds is stored each time in the file. The value of T is output as T in a rule same as U and V, and is also output as T_pres with interpolation to pressure coordinate.

```
&HISTORY_ITEM NAME="T" /
&HISTORY_ITEM NAME="U" /
&HISTORY_ITEM NAME="V" /
&HISTORY_ITEM NAME="RAIN", TINTERVAL=600.DO, TAVERAGE=.true. /
&HISTORY_ITEM NAME="T", OUTNAME="T_pres", ZCOORD="pressure" /
```

4.2.9 How to restart run

The restart function is beneficial to avoid termination of simulations because of the limitation of the job execution time controlled by a computer system. You can divide a long sequential simulation into multiple runs by restarting. The restart files have the same format as the data generated by the initialization run. The function allows outputting multiple restart files at the specified time interval, not only the end of each simulation. The settings for the restart files are configured in <code>[PARAM_RESTART]</code> and <code>[PARAM_TIME]</code> in the configuration file for simulation run. The example below indicates that the simulation restarts by the file <code>restart1_***</code> and <code>generates</code> restart files <code>restart2_****</code> every six hours.


```
&PARAM_RESTART
RESTART_IN_BASENAME = "restart1_d01_20070715-000000.000",
                                              Basename of input initial file or restart file.
RESTART_IN_POSTFIX_TIMELABEL = .false.
                                                                                         after
                                                      initial
                                                                date
                                              RESTART_IN_BASENAME?
RESTART_OUTPUT = .false.,
                                              Output restart file? Default is .false.
RESTART_OUT_BASENAME = "restart2_d01",
                                              Basename of output restart file.
RESTART_OUT_POSTFIX_TIMELABEL = .true.
                                              Add
                                                                 date
                                                                                         after
                                                      output
                                                                                 time
                                              RESTART_OUT_BASENAME?
RESTART_OUT_TITLE = "",
                                              Title written in the restart file.
RESTART_OUT_DTYPE = "DEFAULT",
                                              REAL4 or REAL8 or DEFAULT
&PARAM_TIME
TIME_STARTDATE = 2007, 7, 15, 00, 0, 0,
                                              Start date of restart run
TIME\_STARTMS = 0.D0,
                                              Start date [ms]
TIME_DURATION = 12.0D0,
                                              Integration time
                                              Unit for TIME_DURATION
TIME_DURATION_UNIT = "HOUR",
 ..... *snip* .....
TIME_DT_ATMOS_RESTART = 21600.D0,
                                              Output interval of restart files for atmospheric vari-
                                              ables
TIME_DT_ATMOS_RESTART_UNIT = "SEC",
                                              Unit for TIME_DT_ATMOS_RESTART
TIME_DT_OCEAN_RESTART = 21600.D0,
                                              Output interval of restart files for ocean variables
TIME_DT_OCEAN_RESTART_UNIT = "SEC",
                                              Unit for TIME_DT_OCEAN_RESTART
TIME_DT_LAND_RESTART = 21600.D0,
                                              Output interval of restart files for land variables
TIME_DT_LAND_RESTART_UNIT = "SEC",
                                              Unit for TIME_DT_LAND_RESTART
TIME_DT_URBAN_RESTART = 21600.D0,
                                              Output interval of restart files for urban variables
TIME_DT_URBAN_RESTART_UNIT = "SEC",
                                              Unit for TIME_DT_URBAN_RESTART
```

The time intervals for output of restart files are specifided by (TIME_DT_ATMOS_RESTART), (TIME_DT_OCEAN_RESTART), (TIME_DT_LAND_RESTART), and (TIME_DT_URBAN_RESTART). When they are not specified, the restart files are generated at the end of the simulation, i.e., (TIME_DURATION). The file names of output restart files are specified by (RESTART_OUT_BASENAME). (RESTART_OUT_POSTFIX_TIMELABEL) indicates whether date and time at output are automatically added to the file name after (RESTART_OUT_BASENAME).

The default setting is (RESTART_OUT_POSTFIX_TIMELABEL=.true.).

The restart files are not compatible for all simulation. The variables included in the restart file are different by the schemes, which chosen in the configuration file. The simple way for preparing restart files while keeping consistency is to use the same setting for the schemes in a series of the simulations.

The other settings are basically the same as the normal run. (RESTART_IN_BASENAME) is the name of the input file, which includes initial state of the atmosphere and surface sub-models. The normal run usually uses init_*** prepared by scale-rm_init, while the restart run uses a restart file output by the previous run. (RESTART_IN_POSTFIX_TIMELABEL) is the same as (RESTART_OUT_POSTFIX_TIMELABEL), but for (RESTART_IN_BASENAME). The default setting is (RESTART_IN_POSTFIX_TIMELABEL = .false.).

In avobe example, setting (RESTART_IN_BASENAME) ="restart1_d01_20070715-000000.000" is equivalent to setting (RESTART_IN_POSTFIX_TIMELABEL = .true.) and (RESTART_IN_BASENAME) ="restart1_d01". (TIME_STARTDATE) and (TIME_DURATION) represent the start date and the integration time for the restart simulation.

For a realistic atmospheric experiment, the boundary data prepared by scale-rm_init is needed in addition to the initial data. An example is as follows:


```
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_TYPE = "REAL",

ATMOS_BOUNDARY_IN_BASENAME = "../init/output/boundary_d01",

Head of file name of boundary data

ATMOS_BOUNDARY_START_DATE = 2010, 7, 14, 18, 0, 0,

ATMOS_BOUNDARY_UPDATE_DT = 21600.D0,

Time interval of boundary data
```

In the restart simulation, an appropriate date of the boundary data at will be read from the boundary file boundary_***.nc. You should specify the first date of the boundary data to (ATMOS_BOUNDARY_START_DATE) in [PARAM_ATMOS_BOUNDARY]. When (ATMOS_BOUNDARY_START_DATE) is not given, the date of the first data in the file is set to the start date of the restart simulation, whether the actual date is different or not.

4.2.10 How to conduct nesting experiment

"Nesting" is the method for settings multiple computational domains overlapping one another in a nested structure. Figure 4.2.5 shows an example of nesting using three domains. An outer domain is configured to be wider with coarser resolution to express larger-scale phenomena, while an inner domain is set narrower with finer resolution to represent smaller-scale phenomena. The result calculated in the outer domain is used for the boundary condition for the inner domain. Hereinafter, the outer domain that sends data is called the "parent domain" and the inner domain which receives data is called the "child domain."

Nesting methods are categorized as follows:

• Execution procedure

Online nesting

The computations in the parent and child domains are simultaneously conducted by exchanging information.

Off-Line nesting

Following the computation of the parent domain, the initial and boundary conditions of the child domain are formulated, and then the child domain is computed.

• Method of data exchange

One-way nesting

The parent domain sends data to the child domain. The latter does not send data to the former. Thus, data flow is one way. The results of the parent domain are not affected by those of the child domain.

Two-way nesting

The parent domain sends data to the child domain. The former also receives data from the latter. Thus, the calculations of the domains influence each other. Although this method can be applied in the case of online nesting, it has not yet been implemented in SCALE-RM v5.3.6.

The difference between online and offline nestings lie in the update frequency of providing data from the parent domain to the child domain. In an online nesting experiment, the boundary conditions of the child domain are updated at every time step (Δt) of the parent domain. In an offline nesting experiment, the update interval depends on the output interval of the history file in the calculation of the parent domain.

Regardless of whether the nesting is online or offline, the ratio of the grid interval of the parent domain to that of the child domain $(\mathrm{DX_{d01}/DX_{d02}})$ is not limited in terms of code implementation. However, there is the possibility of degradation in the physical performance of the results of calculations if the ratio is too high. In SCALE-RM , it is recommended that this ratio be equal to or lower than 5.

In this section, the configuration files for the parent and child domains are denoted by ***.d01.conf and ***.d02.conf, respectively.

4.2.10.1 Treatment of topography in child domain

In the nesting experiment, the resolutions of the topography were different between the parent and the child domains due to their different spatial resolutions. In the relaxation area of the child domain (refer to Section 4.2.3.5), the atmospheric variables were nudged toward those of the parent domain. If the representations of the topography are different between two domains, the reference data for nudging, calculated in the parent domain, often does not exist. In this case, atmospheric data at the missing levels are estimated by extrapolation. However, this may incur error if the estimation by the extrapolation is not accurate.

In order to avoid such inconsistency due to differences in topographies, the use of "the topography-copy" function in SCALE-RM is recommended. This function copies the topography of the parent

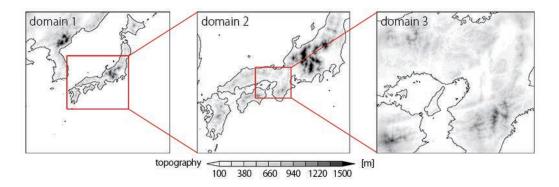


Figure 4.2.5: An example of domain nesting targeting the western area of Japan. Domain 1 is the outermost domain and domain 3 the innermost. The red rectangle and lines represents the domains location and its relations with other domains. The grid spacings are 7.5 km, 2.5 km, and 0.5 km for Domains 1, 2, and 3, respectively.

domain onto that of the child domain in the relaxation area. If this function is used, the topography of the relaxation area in the child domain perfectly corresponds to that in the parent domain, as shown in 4.2.6. To increase the resolution of topography from that in the parent domain to that in the inner domain, the topography transition area is present on the inside of the relaxation area. In the topography transition area, topography is generated by weighing those of the parent and the child domains. By default, the width of the topography transition area is identical to that of the relaxation area. In the inner calculation area, the topography is given by that of the child domain. If "the making tool for the complete settings of the experiment" is used (refer to 4.2.1), the topography-copy function is automatically applied.

The file pp.d0*.conf mentioned in this section can be generated by "the making tool for the complete settings of the experiment" by renaming

\${Tutorial_dir}/real/sample/USER.online-nesting.sh as USER.sh. This may help users understand this setting. The configuration and execution methods are explained below.

How to use topography-copy function

Generate the topography of the parent domain (scale-rm_pp) first, and output a catalog file that gives the size of the parent domain to the child domain. The following configuration is needed in pp.dO1.conf to output a catalog file:

```
&PARAM_DOMAIN_CATALOGUE

DOMAIN_CATALOGUE_FNAME = "latlon_domain_catalogue.d01.txt", Name of catalog file

DOMAIN_CATALOGUE_OUTPUT = .true., Whether catalog file is output

/
```

The other parameters are the same as usual.

To use the parent topography for the topography-copy function, edit file pp.d02.conf for the child domain as follows. Here, the output data of topography in the parent domain is assumed to be saved as file topo_d01.pe***.nc.

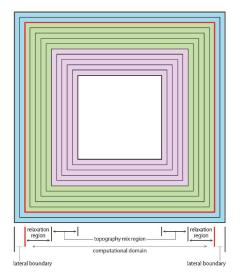


Figure 4.2.6: Horizontal distribution of topography when the topography-copy function is applied. The outermost grids shaded in light blue represent the HALO region, and the number of grids depends on the horizontal advection scheme. These grids are the lateral boundary. The area demarcated by the red line is the calculation domain. The green- and rose-colored areas are the relaxation and the topographical transition areas, respectively. The innermost area is where the resolution of topography is the same as that of the original child domain. In the topography transition area, topography is altered gradually from that of the parent domain to the original child domain.

```
&PARAM_NEST
OFFLINE_PARENT_BASENAME = "topo_d01",
                                                                   base name of the file of the
                                                                   parent domain
OFFLINE_PARENT_PRC_NUM_X = 2,
                                                                   PRC_NUM_X of the parent do-
                                                                   main
OFFLINE_PARENT_PRC_NUM_Y = 2,
                                                                   PRC_NUM_Y of the parent do-
                                                                   main
LATLON_CATALOGUE_FNAME = "latlon_domain_catalogue.do1.txt",
                                                                   catalog file for the parent
                                                                   domain
&PARAM_CNVTOPO
                                                                   whether the topography-
CNVTOPO_copy_parent = .true.,
                                                                   copy function is applied
&PARAM_COPYTOPO
COPYTOPO_IN_BASENAME = "topo_d01",
                                                                   base name of the file of par-
                                                                   ent topography data
COPYTOPO_TRANSITION_DX = -1,
                                                                   Width of transition area in
                                                                   x-direction
COPYTOPO_TRANSITION_DY = -1,
                                                                   Width of transition area in
                                                                   y-direction
COPYTOPO_ENTIRE_REGION = .false.,
                                                                   whether the parents topog-
                                                                   raphy is copied over the en-
                                                                   tire child domain
COPYTOPO_LINEAR_H = .true.,
```


If (CNVTOPO_copy_parent) in [PARAM_CNVTOPO] is .true., the topography-copy function is applied. (COPYTOPO_ENTIRE_REGION) is an option whereby the parents topography can be copied over the entire child domain. If this is .true., the topography in the child domain is completely copied from that in the parent domain. (COPYTOPO_LINEAR_H) is the parameter using which the topography transition method is applied. If (COPYTOPO_LINEAR_H) = .true., the ratio of the parents topography to the childs topography is linearly changed. Otherwise, it is changed exponentially. The width of transition area is specified by (COPYTOPO_TRANSITION_DX, COPYTOPO_TRANSITION_DY). If these have negative value, the default setting is applied: the width of transition area equals to that of relaxation area.

Generation of topography

In case of using the topography-copy function, the generation of the topography should start from the parent domain because a child domain requires the catalog file of the parent. If the number of domains is greater than three, the order of execution is as follows:

```
$ mpirun -n [number of processes] ./scale-rm_pp pp.d01.conf
$ mpirun -n [number of processes] ./scale-rm_pp pp.d02.conf
$ mpirun -n [number of processes] ./scale-rm_pp pp.d03.conf
```

4.2.10.2 Offline Nesting Experiment

The following two limitations are imposed for the offline nesting experiment:

- The child domain is completely included in the parent domain.
- The integration time for the child domain is the same as or less than that for the parent domain.

Furthermore, the offline experiment is conducted in the following order:

- 1. The temporal integration of the parent domain is conducted.
- 2. The initial and boundary conditions for the child domain are generated using the history or init/restart output of the parent domain.
- Using the generated initial and boundary data, the temporal integration of the child domain is conducted.

An explanation is provided according to the above workflow.

Time Integration of Parent Domain

In order to prepare the data in parent domain which is used as the boundary data for the child domain, there are some necessary settings. The configuration files for the simulation in the parent domain can be generated by using "the supporting tool for the preparation of configuration file" (See 4.2.1). Rename the sample files

\${Tutorial_dir}/real/sample/USER.offline-nesting-parent.sh to USER.sh, and run make.

The time integration of the parent domain is carried out as a single-domain computation.

However, the following five aspects need to be considered in the configuration.

- All variables required for the computation in the child domain have already been generated with the computation of the parent domain as history or restart output.
- The interval of the history or restart output is sufficiently short.
- The "catalog file," which gives information pertaining to the parents calculation domain to the child domain, is output.
- The history in the parent domain is output at the model levels if the history file is used.

• In case the starting time of the computation in the child domain is the same as that in the parent domain, history output data at t = 0 in the parent domain is required.

In order to output the "catalog file", configuration file for eigher the preprocess, initialization or simulation run should have setting like the following:

```
&PARAM_DOMAIN_CATALOGUE

DOMAIN_CATALOGUE_FNAME = "latlon_domain_catalogue_d01.txt", Name of catalog file

DOMAIN_CATALOGUE_OUTPUT = .true., Output the catalog file

/
```

If the output option of the catalog file is .true., the file latlon_domain_catalogue_d01.txt (in the case of this example) is output. In the case "the making tool for the complete settings of the experiment" is used, the file with the same name is generated in the directory pp. In this file, the latitudes and longitudes of the four corners of the regions where each MPI manages the parent domain calculation are described.

If you want to use history file, setting like the following is required.

```
&PARAM_FILE_HISTORY

FILE_HISTORY_DEFAULT_BASENAME = "history",

FILE_HISTORY_DEFAULT_TINTERVAL = 900.D0,

FILE_HISTORY_DEFAULT_TUNIT = "SEC",

FILE_HISTORY_DEFAULT_TAVERAGE = .false.,

FILE_HISTORY_DEFAULT_DATATYPE = "REAL4",

FILE_HISTORY_DEFAULT_ZCOORD = "model",

FILE_HISTORY_OUTPUT_STEP0 = .true.,

//
```

(FILE_HISTORY_DEFAULT_TINTERVAL) is the time interval of the history output, which is configured as the update time interval used in the calculation of the child domain. Take care of the free disk space if the time interval of the data output is relatively short. Refer to Section 4.2.8 for details of the items in [PARAM_FILE_HISTORY].

If you want to use restart files, the setting is like

```
&PARAM_RESTART
RESTART_OUTPUT = .true.
RESTART_OUT_BASENAME = 'restart_d01',
&PARAM_TIME
TIME_DT_ATMOS_RESTART = 900.D0,
                                           Time interval of restart data output
TIME_DT_ATMOS_RESTART_UNIT = "SEC",
TIME_DT_OCEAN_RESTART = 900.D0,
                                           Time interval of restart data output
TIME_DT_OCEAN_RESTART_UNIT = "SEC",
TIME_DT_LAND_RESTART = 900.D0,
                                           Time interval of restart data output
TIME_DT_LAND_RESTART_UNIT = "SEC",
TIME_DT_URBAN_RESTART = 900.D0,
                                           Time interval of restart data output
TIME_DT_URBASN_RESTART_UNIT = "SEC",
```

For details of these parameters, see Section 4.2.9.

All necessary variables for the generation of initial and boundary data for the child domain must be described in <code>[FILE_HISTORY_ITEM]</code> in the file the configuration file for simulation run . The necessary variables for offline nesting depends on the setting of the simulation in the child domain, the following is variables in standard real atmospheric simulations.

```
T2, MSLP, DENS, MOMZ, MOMX, MOMY, RHOT, QV LAND_SFC_TEMP, URBAN_SFC_TEMP, OCEAN_SFC_TEMP OCEAN_SFC_ALB_IR_dif, OCEAN_SFC_ALB_NIR_dif, OCEAN_SFC_ALB_NIR_dif,
```



```
OCEAN_SFC_ALB_VIS_dir OCEAN_SFC_ALB_VIS_dif,

LAND_SFC_ALB_IR_dir, LAND_SFC_ALB_IR_dif,

LAND_SFC_ALB_NIR_dir, LAND_SFC_ALB_NIR_dif,

LAND_SFC_ALB_VIS_dir, LAND_SFC_ALB_VIS_dif,

OCEAN_TEMP, OCEAN_SFC_ZOM, LAND_TEMP, LAND_WATER
```

(Output according to microphysics model used in the parent model)

```
QC, QR, QI, QS, QG
NC, NR, NI, NS, NG
```

Once this configuration is complete, conduct the time integration of the parent domain by scale-rm. In general, the variables at the lower layer than the lowest layer in the parent simulation are calculated by extrapolation. Extrapolation may result unrealistic value, especially the lowest layer in the parent simulation is much higher than that in the child simulation. In order to avoid this problem, the mean sea-level pressure and 2-m temperature are used to calculate these variables if you use the history file. On the other hand, if you use the restart file, such quantities are not contained in the file. Therefore, the variables at the layers lower than the parent lowest layer is just copy of the value at the lowest layer.

Generation of Initial and Boundary Data for Child Domain

To prepare the configuration files for simulations in the child domain can be generated by using "the supporting tool for the preparation of configuration file" (See 4.2.1). Rename the sample files \${Tutorial_dir}/real/sample/USER.offline-nesting-child.sh to USER.sh, and run make.

In the case that you generate the initial and boundary data using the history data from the simulation data of the parent domain, the configuration file for the initialization run is configured as follows:


```
&PARAM_NEST
 OFFLINE_PARENT_BASENAME = "history_d01",
                                              file name of the parent domain
 OFFLINE_PARENT_PRC_NUM_X = 2,
                                              PRC_NUM_X in the file run.dO1.conf
 OFFLINE_PARENT_PRC_NUM_Y = 2,
                                              PRC_NUM_Y in the file run.dO1.conf
 LATLON_CATALOGUE_FNAME = \
       "latlon_domain_catalogue_d01.txt",
                                              catalog file generated at the parent domain process
&PARAM_MKINIT_REAL_ATMOS
NUMBER_OF_TSTEPS = 25,
                                              number of time steps in the history file
 NUMBER_OF_FILES = 1,
 BASENAME_ORG = "history_d01",
                                              FILE_HISTORY_DEFAULT_BASENAME in the file
                                              run.d01.conf
 FILETYPE_ORG = "SCALE-RM",
 BASENAME_BOUNDARY = "boundary_d01",
 BOUNDARY_UPDATE_DT = 900.D0,
                                              time interval of history output (unit: "SEC")
&PARAM_MKINIT_REAL_OCEAN
NUMBER_OF_TSTEPS = 25,
                                              number of time steps in the history file
 NUMBER_OF_FILES = 1,
 BASENAME_ORG = "history_d01",
                                             FILE_HISTORY_DEFAULT_BASENAME in the file
                                             run.d01.conf
 FILETYPE_ORG = "SCALE-RM",
 BASENAME_BOUNDARY = "boundary_d01",
 BOUNDARY_UPDATE_DT = 900.D0,
                                              time interval of history output (unit: "SEC")
&PARAM_MKINIT_REAL_LAND
NUMBER_OF_TSTEPS = 25,
                                              number of time steps in the history file
 NUMBER_OF_FILES = 1,
 BASENAME_ORG = "history_d01",
                                             FILE_HISTORY_DEFAULT_BASENAME in the file
                                              run.d01.conf
 FILETYPE_ORG = "SCALE-RM",
 BASENAME_BOUNDARY = "boundary_d01",
 BOUNDARY_UPDATE_DT = 900.D0,
                                              time interval of history output (unit: "SEC")
```

In order to generate the initial and boundary data from the output of SCALE-RM format, (FILETYPE_ORG) is specified as "SCALE-RM". (BOUNDARY_UPDATE_DT) is set to the same value of (FILE_HISTORY_DEFAULT_TINTERVAL) as in the configuration file in the parent domain (run.d01.conf). The items in [PARAM_NEST] are prepared for the nesting experiment. In offline nesting, the file name of the data in the parent domain is specified as (OFFLINE_PARENT_BASENAME). The number of processes of the parent domain is also specified as (OFFLINE_PARENT_PRC_NUM_*). Configure them correctly by referring to the configuration file for the parent domain (run.d01.conf).

In the case that the restart files are used to generate the initial and boundary data, set (NUMBER_OF_TSTEPS) = 1 and (NUMBER_OF_FILES) to the number of the time steps. Additionally, the restart files must be renamed or symbolic links must be created to make file names have incremented number like restart_d01_00000.pe0000000.nc as described in Section 4.1.1.

After editing the configuration file, form the initial and boundary data for the child domain by scale-rm_init. If the execution is aborted with the message like the following, it means that the child domain is not completely contained in the parent domain:

```
ERROR [INTERP_domain_compatibility] REQUESTED DOMAIN IS TOO MUCH BROAD
-- LONGITUDINAL direction over the limit
```


Time Integration in Child Domain

Following the generation of the initial and boundary conditions, compute the time integration in the child domain by scale-rm. This is same as in the usual atmospheric experiment. Before this, confirm that (ATMOS_BOUNDARY_UPDATE_DT) of [PARAM_ATMOS_BOUNDARY] in the file the configuration file for simulation run is the same as the time interval of the output of history data for the parent domain. Note that the calculation continues without any message even if these time intervals are inconsistent in the current version.

```
&PARAM_ATMOS_BOUNDARY
ATMOS_BOUNDARY_UPDATE_DT = 900.D0,
```

If an experiment involving multiple offline nestings is performed, the above procedure is repeated; the results of the above time integration for the child domain are regarded as those for the parent domain, and the initial and boundary data are generated for further inner domain calculations.

4.2.10.3 Online Nesting Experiment

The following two limitations are imposed in carrying out the online nesting experiment:

- The integration time for the child domain is identical to that for the parent domain.
- The time step for the parent domain is a multiple of that for the child domain.

On the other hand, the configurations of vertical layers, map projections, and the physical scheme do not have to be identical in the parent and the child domains. In the online nesting experiment, computations of all domains are conducted simultaneously. In the current version, SCALE-RM supports only one-way nesting. The maximum number of domains allowed is 10.

In the online nesting experiment in SCALE-RM, the time integrations of multiple domains are not serial but parallel. As shown in Fig. 4.2.7, MPI processes are split into several groups; each group manages a domain and computes it, behaving like an independent model. The configuration file launch.conf is needed at execution to boot the multiple domains.

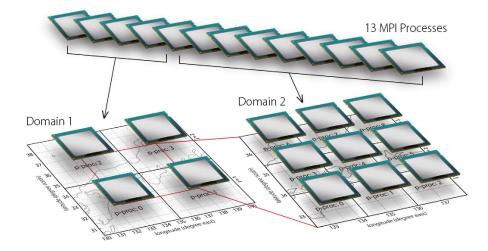


Figure 4.2.7: MPI process distribution in the online nesting experiment. In this example, 13 processes were launched at the beginning. These processes were distributed appropriately; 4-MPI parallel for 2×2 in Domain 1 and 9-MPI parallel for 3×3 in Domain 2 were executed. MPI communication flowed from Domain 1 to Domain 2.

The following explanation is provided for the most simple case of online nesting, two-domain nesting. The experimental set described here can be generated by renaming the sample files \${Tutorial_dir}/real/sample/USER.online-nesting.sh as USER.sh and conducting "the supporting tool for the preparation of configuration file" (refer to Section 4.2.1). The below explanation assumes that the generations of the topography/land-use data and initial/boundary data for each domain have been completed. The procedures for topography generation are described in Section 4.2.10.1.

Configurations for Online Nesting

In the configuration files run.***.conf for the parent and child domains, some nesting settings are added to [PARAM_NEST]:

— Configuration in run.d01.conf —

— Configuration in run.d02.conf —

(ONLINE_DOMAIN_NUM) is the ID number of the domain, which is enumerated from the outer-most domain to the innermost. In above example, the ID numbers of the parent and child domains are 1 and 2, respectively.

(ONLINE_IAM_PARENT) and (ONLINE_IAM_DAUGHTER) specify whether each domain has its parent domain and child domain or not. If (ONLINE_IAM_PARENT) = .true. in the Nth domain, the calculation data in the Nth domain is transferred to the child domain with the domain number of N+1. If (ONLINE_IAM_DAUGHTER) = .true., then boundary data in the Nth domain is received from the parent with the domain number of N-1. The outermost domain plays a role only in the parent domain, whereas the innermost domain is involved only in the child domain. Since the intermediate domains are involved in both the parent and child domains, both (ONLINE_IAM_PARENT) and (ONLINE_IAM_DAUGHTER) are .true.. Table 4.2.3 gives the configuration for an N-domain nesting experiment.

(ONLINE_BOUNDARY_USE_QHYD) specifies whether water condensation is used for the boundary condition. When the boundary condition is generated from external input data, water condensations are not usually employed. However, in the nesting experiment, water condensation calculated in the parent domain can be used for the boundary condition of the child domain because there is often no difference in physical schemes between the two domains. The delay in the generation of clouds and rain, as influence on the target domain, is expected to be suppressed by this remedy.

Table 4.2.3: A configuration for N-domain nesting

domain	ONLINE_DOMAIN_NUM	ONLINE_IAM_PARENT	ONLINE_IAM_CHILD
the outermost domain	1	.true.	.false.
intermediate domains	2 - (N - 1)	.true.	.true.
the innermost domain	N	.false.	.true.

Configuration of Launcher

The online nesting experiment requires the configuration of the launch file launch.conf other than run.***.conf.

```
&PARAM_LAUNCHER

NUM_DOMAIN = 2,

PRC_DOMAINS = 4, 16,

CONF_FILES = run.d01.conf, run.d02.conf,

MPI processes used for each domain (as many domains as necessary)

The configuration files for each domain (as many domains as necessary)
```

(CONF_FILES) must correspond to (PRC_DOMAINS) in order. The above case means that the run is executed by the 4-MPI parallel for the parent domain and the 16-MPI parallel for the child domain; each number of processes in the launch file must correspond to the total number of MPI processes (PRC_NUM_X×PRC_NUM_Y) specified in each configuration file run.***.conf.

At execution, the total number of MPI processes is given, which different from that in the case of single-domain execution. For example, 20 processes are specified in the above case.

```
$ mpirun -n [number of processes] ./scale-rm launch.conf
```

When multiple domain calculations are executed at the same time, the different file names must be used for input/output files among domains to avoid any confusion. For example, the configuration files prepared by the "the making tool for the complete settings of the experiment" use history_d01.pe***.nc, history_d02.pe***.nc for the file name of history output.

The calculation may sometimes abort, outputting the message below. This is the error message, meaning that the domain of computation of the child is larger than that of the parent domain. If such a message appears, retry creating the topography, the land-use data, and the initial/boundary data, and confirm again whether the configurations are correct:

```
 \hbox{\tt ERROR [COMM\_CARTESC\_NEST\_domain\_relate] region of daughter domain is larger than that of parent
```

Guideline for Distribution of MPI Processes

As shown in Fig. 4.2.7, no MPI process is shared between the multiple domains in the online nesting experiment. In other words, each MPI process takes charge of a part of a specific domain. Therefore, the user should determine how many MPI processes to allocate to each domain. When this allocation is not appropriate, a long waiting time is incurred. To avoid this situation, it is reasonable to allocate processes such the magnitude of time integrations for each process is as similar in value as is possible among processes *2). Here, the magnitude of time integration, i.e., computational effort, is defined as the product of the number of grids and time steps.

Let us consider N-domain nesting. The number of grids in the x, y, and z directions in n-th domain are denoted by IMAX_n, JMAX_n, and KMAX_n, respectively. DT_n is the time interval

 $^{^{\}ast 2)}\mathrm{More}$ accurately, floating-point operations should be estimated.

(TIME_DT) in the n-th domain. Using the time-step of the outermost domain (n=1) DT_1 as a benchmark, the necessary number of time steps in the n-th domain is estimated as:

$$TSTEP_n = DT_1/DT_n$$

The calculation for the n-th domain is derived by multiplying the number of grids as

$$\mathtt{OPR}_\mathtt{n} = \mathtt{IMAX}_\mathtt{n} \times \mathtt{JMAX}_\mathtt{n} \times \mathtt{KMAX}_\mathtt{n} \times \mathtt{TSTEP}_\mathtt{n}$$

The standard number of processes allocated to the n-th domain is estimated as

$$\begin{split} \texttt{MPI_total} \times \frac{\texttt{OPR_n}}{\sum_{m=1}^{N} \texttt{OPR_m}}, \end{split} \tag{4.2.15}$$

where MPI_total is the total number of MPI processes.

The number of processes distributed along the x and y directions (PRC_NUM_X, PRC_NUM_Y) can be arbitrarily decided. It is recommended to configure them so that the difference between IMAX and JMAX is as small as possible. This is because such a configuration can reduce the area of the halo. As a result, high computational performance can be obtained*3).

In the above explanation, only the number of grids and time steps are considered. However, in actual calculations such as nesting simulation in real atmospheric experiment, the time interval for each physical process, and intra-domain and inter-domain communications affect the elapsed time. In the online nesting configuration, the calculation in the innermost domain is largest in general. In case of large-scale computations, long integration and many ensemble simulations, it is recommended to tune for the distribution of processes following the above rough estimation.

^{*3)}Note that in case of hybrid parallelization used together with thread parallelism, e.g., in the K computer, it is necessary to take a larger number of grids along the y-axis than the x-axis to minimize computational imbalance between threads.

Chapter 4.3

Setting the dynamical core

4.3.1 Dynamical Core for Cartesian C-grid

In this section, the dynamical core for the Cartesian C-grid is described. The Cartesian C-grid is employed in SCALE-RM . In the Cartesian C-grid, scalar quantities, such as density, thermodynamics variable, and vapor, is defined at the cell center, while the momentums are at staggered point. See the description document of SCALE-RM for more details.

4.3.1.1 Setting Integration Numerical Method

The numerical method for time integration in the dynamical process is specified in (ATMOS_DYN_TYPE) in [PARAM_ATMOS] in the configuration file.

```
&PARAM_ATMOS
ATMOS_DYN_TYPE = "HEVE", ; Choose from Table 4.3.1.
```

With the explicit method, time step depends on the sound speed, while it does not with the implicit method. In the most real atmospheric simulations, vertical grid spacing is much smaller than the horizontal ones. Thus, fully explicit scheme, that is "HEVE", requires a quite small time step, which depends on vertical grid spacing and sound speed. Therefore, "HEVI" is often used for the real atmospheric simulations.

Table 4.3.1: Options of methods for time integration in dynamical process

	<u> </u>	
Scheme name	Description of scheme	Note
HEVE	Fully explicit method	
HEVI	Horizontally explicit and vertically implicit methods	Recommended for real
		experiment

4.3.1.2 Setting Temporal and Spatial Difference Schemes

The temporal integration and spatial difference schemes are configured in [PARAM_ATMOS_DYN]. This is an example of setting, which is recommended for real atmospheric simulations. along with the other options listed in Table 4.3.2.


```
&PARAM_ATMOS_DYN
ATMOS_DYN_TINTEG_SHORT_TYPE = RK4,
                                                    ; Choose from temporal integration schemes
                                                    in Table 4.3.2
ATMOS_DYN_TINTEG_TRACER_TYPE = RK3WS2002,
                                                    ; Choose from temporal integration schemes
ATMOS_DYN_FVM_FLUX_TYPE = UD3,
                                                    ; Choose from temporal spatial difference
                                                    schemes in Table 4.3.2
ATMOS_DYN_FVM_FLUX_TRACER_TYPE = UD3KOREN1993,
                                                    ; Choose from temporal spatial difference
                                                    schemes
ATMOS_DYN_FLAG_FCT_TRACER = .false.,
                                                    ; Use FCT scheme (.true.) or not (.false.)
ATMOS_DYN_NUMERICAL_DIFF_COEF = 0.D0,
ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER = 0.D0,
ATMOS_DYN_coriolis_type = 'SPHERE',
ATMOS_DYN_wdamp_height = 15.D3,
                                                    ; height [m] of the bottom of sponge layer
                                                    (for Rayleigh damping)
```

The other options for temporal integration and spatial difference schemes are shown in Table 4.3.2. Note that the time step should be set according to the schemes used for numerical stability. An criteria to determine the time step is described in Section 4.2.7.

Table 4.3.2: Setting time integration and spatial difference schemes

Scheme name	Description of scheme			
Temporal integration	on			
RK3	Heun-type 3rd-order Runge-Kutta scheme			
RK3WS2002	Wicker and Skamarock (2002)'s 3-step Runge–Kutta scheme			
RK4	4th-order Runge-Kutta scheme			
Spatial difference		Minimum	number	of
		halos		
CD2	2nd-order central difference	1		
CD4	4th-order central difference	2		
CD6	6th-order central difference	3		
UD3	3rd-order upwind difference	2		
UD5	5th-order upwind difference	3		
UD3KOREN1993	3rd-order upwind scheme + Koren (1993)'s filter	2		

For advection of the prognostic variables in dynamics ((ATMOS_DYN_FVM_FLUX_TYPE)), default setting is the 4th-order central difference (CD4) in the SCALE-RM. When using CD4 in a simulation with a steep terrain, an artificial grid-scale vertical flow is often seen at the peak of mountains. This grid-scale flow may be reduced by using UD3. So, the use of UD3 is recommended for experiments with steep terrains.

4.3.1.3 Numerical Diffusions

The numerical stability depends on schemes used in simulations. Numerical diffusion may improve the stability. SCALE-RM has the hyper-diffusion and divergence dumping as the numerical diffusion. The setting for them is the following:

```
&PARAM_ATMOS_DYN
ATMOS_DYN_NUMERICAL_DIFF_ORDER = 1,
ATMOS_DYN_NUMERICAL_DIFF_COEF = 1.D-4,
ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER = 0.D0,
ATMOS_DYN_DIVDMP_COEF = 0.D0,
/
```


The order of the hyper-diffusion is 4 times (ATMOS_DYN_NUMERICAL_DIFF_ORDER). (ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER) is a non-dimensional coefficient of the hyper-diffusion. The two-grid scale noise is dumped to 1/e in one time step if the coefficient is unity. The dumping is stronger for larger coefficient. The hyper-diffusion itself would be numerically unstable if the coefficient is larger than 1. (ATMOS_DYN_NUMERICAL_DIFF_COEF) is for the dynamical prognostic variables, such as density, momentum and potential temperature, and (ATMOS_DYN_NUMERICAL_DIFF_COEF_TRACER) is for the tracer variables, such as specific humidity, hydrometeors, and turbulent kinetic energy. (ATMOS_DYN_NUMERICAL_DIFF_COEF) can be set to zero when using the upwind schemes, such as UD3, UD5, which has implicit numerical diffusion.

The divergence dumping can also be available to improve numerical stability. Its coefficient can be set with (ATMOS_DYN_DIVDMP_COEF).

4.3.1.4 Positive Definit

For tracer advection, guaranteeing a non-negative value is required in most cases. The UD3KOREN1993 scheme guarantees a non-negative value, whereas other schemes do not. When schemes other than UD3KOREN1993 are used the FCT filter can be used to guarantee the non-negative value. The advection scheme is specified by (ATMOS_DYN_FVM_FLUX_TRACER_TYPE), and switch for the FCT filter is (ATMOS_DYN_FLAG_FCT_TRACER)=.true..

4.3.1.5 Halos

The necessary number of halos grid depends on the spatial difference scheme as shown in Table 4.3.2. Set (IHALO) and (JHALO) in [PARAM_ATMOS_GRID_CARTESC_INDEX] for the number of halos grid for the x- and y-directions, respectively. By default, the number of the grid is 2, which is suitable for "UD3", "UD3KOREN1993", and "CD4". For example, the configuration of the halo for the fifth-order upwind difference scheme is as follows:

```
&PARAM_ATMOS_GRID_CARTESC_INDEX
IHALO = 3,
JHALO = 3,
/
```

4.3.1.6 Setting for Coriolis Force

In this subsection, the Coriolis force in SCALE-RM is explained. The Coriolis parameter is zero as the default, so that you have to set (some) parameter(s) to introduce the Coriolis force in the simulation. There are two types of setting for the Coriolis parameter: f- $/\beta$ -plane and sphere. The type can be specified by (ATMOS_DYN_coriolis_type) in [PARAM_ATMOS_DYN].

```
f-/\beta-plane
```

If (ATMOS_DYN_coriolis_type) is set to "PLANE", the Coriolis parameter f is $f = f_0 + \beta(y - y_0)$. When $f_0 = 0$ and $\beta = 0$, which is default, no Coriolis force is taken into account.

For $\beta = 0$, the plane is called f-plane, otherwise it is called β -plane. The parameters of f_0, β and g_0 is set with the parameters of [PARAM_ATMOS_DYN] as follows:


```
&PARAM_ATMOS_DYN

ATMOS_DYN_coriolis_type = 'PLANE',

ATMOS_DYN_coriolis_f0 = 1.0D-5, ! f<sub>0</sub>

ATMOS_DYN_coriolis_beta = 0.0D0, ! \beta

ATMOS_DYN_coriolis_y0 = 0.0D0, ! y_0
:
```

The default values of the (ATMOS_DYN_coriolis_f0), (ATMOS_DYN_coriolis_beta), and (ATMOS_DYN_coriolis_y0) are 0.0, 0.0, and y at the domain center, respectively.

If you want to add the geostrophic pressure gradient force that is in balance with the Coriolis force accompanied by the geostrophic wind, you need to modify the user specific file $mod_user.f90$ (see Section 5.2.1). The test case of $scale-rm/test/case/inertial_oscillation/20km$ is an example of a simulation on the f-plane with the geostrophic pressure gradient force.

Sphere

On the sphere, the Coriolis parameter depends on the latitude as $f = 2\Omega \sin(\phi)$, where Ω and ϕ are angular velocity of the sphere and latitude, respectively. In this case, you have to set (ATMOS_DYN_coriolis_type) = "SPHERE". The angular velocity of the sphere is set by (CONST_OHM) parameter of [PARAM_CONST] (see Section 4.5.3). The latitude of the individual grids is determined depending on the map projection, which is explained in Section 4.2.4.

4.3.1.7 Lateral Boundary Condition for Coriolis

The lateral boundary in the x-direction for the all the setting (i.e., the f-plane, β -plane, and sphere) can be periodic condition, and that in the y-direction for the f-plane also can be periodic condition. On the other hand, the periodic boundary condition cannot be used in the y-direction for the β -plane or sphere, because the Coriolis parameter differs at the southern and northern boundaries.

The nudge lateral boundary conditions at the south and north boundaries might be used for f- and β -plane experiment. The test case of scale-rm/test/case/rossby_wave/beta-plane is an example of a simulation on the β -plane with the south and north nudging boundaries. For the details of the nudging boundary, see Sections 4.2.3.5.

Chapter 4.4

Setting the physical process

4.4.1 Cloud Micro-Physics

The cloud micro-physics scheme is configured in (ATMOS_PHY_MP_TYPE) in [PARAM_ATMOS] in files init.conf and run.conf, respectively. Note that it is necessary to specify the same scheme for (ATMOS_PHY_MP_TYPE) in the configure files for both init and run executions. The update interval for the cloud micro-physics scheme is specified in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of calling timing. The following example shows the configuration for cases involving a six-class one-moment bulk scheme that contains ice phase clouds:

```
&PARAM_ATMOS
ATMOS_PHY_MP_TYPE = "TOMITAO8", ; Choose from Table 4.4.1.
```

Table 4.4.1: Choices of cloud micro-physics scheme

Scheme name	Description of scheme	Reference
OFF	Do not calculate phase change of water	
	by cloud micro-physics.	
KESSLER	Three-class one-moment bulk scheme	Kessler (1969)
80ATIMOT	Six-class one-moment bulk scheme	Tomita (2008)
SN14	Six-class two-moment bulk scheme	Seiki and Nakajima (2014)
SUZUKI10	Spectral bin scheme (consideration of	Suzuki et al. (2010)
	ice cloud can be specified as option)	, ,

Four typical schemes are prepared:

1. One-moment bulk scheme without ice Kessler (1969)

This scheme assumes that the particle size distribution function is expressed only by mass concentration. Considering two categories of water in cloud and rain, the ratios of the densities of cloud and rain to total air density are prognostically predicted.

2. One-moment bulk scheme with ice Tomita (2008)

This scheme makes the same assumption as that in Kessler (1969) for the particle size distribution function, but with five categories of water: cloud, rain, ice, snow, and graupel.

3. Two-moment bulk scheme with ice Seiki and Nakajima (2014)

In this scheme, the particle size distribution is expressed by the numerical concentration of particles and their mass concentration.

4. One-moment bin scheme Suzuki et al. (2010)

This scheme explicitly expresses particle size distribution by discretizing it using an appropriate number of degrees of freedom for each category. There are six categories: cloud, rain, ice, snow, graupel, and hail. The accuracy of expressing the size distribution depends on the degrees of freedom.

The degrees of sophistication increases from 1 to 4, as does computational cost.

If SUZUKI10 is selected, in addition to the specification of (ATMOS_PHY_MP_TYPE), the following configuration needs to be added to both configuration files of init and run executions:

In this case, [PARAM_ATMOS_PHY_MP_SUZUKI10_bin] in the init configuration file must also be same as in the run configuration file. A necessary file micpara.dat is automatically generated. If file micpara.dat already exists, it is used for the calculation. When changing nbin as described in the first line, this file is regenerated. If nbin in file run.conf is different from that in file micpara.dat, the following error message is output and the simulation program is terminated instantaneously without calculation:

```
ERROR [ATMOS_PHY_MP_suzuki10_setup] nbin in inc_tracer and nbin in micpara.dat is different check!
```

To avoid this error, it is necessary to delete the old micpara.dat beforehand and regenerate it. The regeneration is automatically done at the execution of SCALE-RM with SUZUKI10.

4.4.2 Cumulus Parameterization

The cumulus parameterization is specified in (ATMOS_PHY_CP_TYPE) in [PARAM_ATMOS] in files init.conf and run.conf. The timing of the calling of the cumulus parameterization is specified in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of the calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_CP_TYPE = "KF", ; Select the scheme shown in Table 4.4.2
```

Table 4.4.2: Choices of cumulus parameterization

Value	Description of scheme	Reference
OFF	No use of the cumulus parameterization	
KF	Kain-Fritsch convective parameterization	Kain and Fritsch (1990); Kain (2004)

In this version of SCALE-RM, only KF is supported for cumulus parameterization. KF is a mass flux conservation type of cumulus parameterization scheme, representing one convection in the sub-grid scale. The cumulus parameterization is recommended to be used when grid spacing

is more than about 5 km to avoid calculation of unnatual strong deep convections. The cumulus parameterization and cloud micro-physics individually output precipitation named RAIN_CP and RAIN_MP, respectively. RAIN and PREC are the sum of precipitation from cumulus parameterization and cloud micro-physics schemes (i.e., RAIN = RAIN_CP + RAIN_MP and PREC = RAIN_CP + RAIN_MP). Note that KF calculates changes in the water vapor and hydrometeors such as cloud water and cloud ice in the atmosphere. The changes in hydrometeors is calculated futher in micro physics schemes. The number concentration of cloud water, ice, and so on is not considered in KF. Therefore, the changes in the number concentration associated with the changes in hydrometeors in KF is estimated by a prescribed fuction and then provided to double-moment micro-physics schemes.

Configuration for Kain-Fritsch

Following tuning parameters are available in KF:

```
&PARAM_ATMOS_PHY_CP_KF
PARAM_ATMOS_PHY_CP_kf_trigger = 1,
                                              ; Trigger function type: 1=Kain, 3=Narita-Ohmori
PARAM_ATMOS_PHY_CP_kf_dlcape = 0.1,
                                              ; Cape decleace rate
PARAM_ATMOS_PHY_CP_kf_dlifetime = 1800,
                                              ; Lifetime scale of deep convection [sec]
PARAM_ATMOS_PHY_CP_kf_slifetime = 2400,
                                              ; Lifetime scale of shallow convection [sec]
PARAM_ATMOS_PHY_CP_kf_DEPTH_USL = 300,
                                              ; Depth of updraft source layer [hPa]
PARAM_ATMOS_PHY_CP_kf_prec = 1,
                                              ; Precipitation type: 1=Ogura-Cho, 2=Kessler
PARAM_ATMOS_PHY_CP_kf_rate = 0.03,
                                              ; Ratio of cloud water and precipitation for Ogura-
                                              Cho precipitation fuction
PARAM_ATMOS_PHY_CP_kf_thres = 1.E-3,
                                              ; Autoconversion rate for Kessler precipitation fuc-
PARAM_ATMOS_PHY_CP_kf_LOG = false,
                                              ; Output warning messages
```

Users can select trigger fuction from two options:

- 1. Kain Type Kain (2004)
 Default trigger fuction in SCALE-RM.
- 2. Narita and Ohmori Type Narita and Ohmori (2007) A trigger fuction for KF cumulus parameterization for Japan area.

Users can select precipitation function from two options:

- Ogura-Cho Type Ogura and Cho (1973)
 Default precipitation fuction in SCALE-RM. For this type, additional tuning parameter of (PARAM_ATMOS_PHY_CP_kf_rate) is available.
- Kessler Type Kessler (1969)
 Kessler type simple precipitation fuction. For this type, additional tuning parameter of (PARAM_ATMOS_PHY_CP_kf_thres) is available.

The time interval of calling KF specified by (TIME_DT_ATMOS_PHY_CP) in [PARAM_TIME] is also a tuning parameter, which is effective to the precipitation amount. As the first setting of (TIME_DT_ATMOS_PHY_CP), 300s is recommended. KF will output a warning message of "go off top/bottom of updraft source layer", if (PALAM_ATMOS_PHY_CP_kf_LOG) is true. The updraft source layer should be thicker than the threshold layer depth (default is 50 hPa). However, the calculation is not aborted for these conditions.

4.4.3 Sub-Grid Scale Turbulence Scheme

The sub-grid scale turbulence model is for representing energy cascade to the sub-grid scale due to the advection terms in Large-eddy simulations (LESs).

The turbulence scheme is specified in (ATMOS_PHY_TB_TYPE) in [PARAM_ATMOS] in files init.conf and run.conf. The timing of the calling of the turbulence scheme is specified in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of the calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_TB_TYPE = "SMAGORINSKY", ; Select the scheme shown in Table 4.4.3
/
```

Table 4.4.3: Choices of turbulence scheme

Value	Description of scheme	Reference
OFF	Do not calculate the turbulence pro-	
SMAGORINSKY	cess SmagorinskyLily-type sub-grid model	Smagorinsky (1963); Lilly (1962); Brown et al. (1994); Scotti et al. (1993)
D1980	Deardorff-type sub-grid model	Deardorff (1980)

The SMAGORINSKY scheme can be also used for the horizontal eddy viscosity in RANS simulations. The planetary boundarly layer parameterization (Section 4.4.4) is a scheme considering only vertical mixing. If you want to consider the horizontal eddy viscosity in RANS simulations, use the sug-grid scale turbulence model for horizontal mixing. Then, (ATMOS_PHY_TB_SMG_horizontal) in [PARAM_ATMOS_PHY_TB_SMG] should be .true. as follows:

```
&PARAM_ATMOS_PHY_TB_SMG
ATMOS_PHY_TB_SMG_horizontal = .true.,
/
```

4.4.4 Planetary Boundary Layer Scheme

The planetary boundary layer (PBL) parameterization is a scheme for vertical mixing by turbulence in the PBL. It is for Reynolds-Averaged Navier-Stokes equations (RANS) simulations.

The planetary boundary layer parameterization scheme is specified in (ATMOS_PHY_BL_TYPE) in [PARAM_ATMOS] in files init.conf and run.conf. The timing of the calling of the turbulence scheme is specified in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of the calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_BL_TYPE = "MYNN", ; Select the scheme shown in Table 4.4.4
/
```

Table 4.4.4: Choices of planetary boundary layer scheme

Value	Description of scheme	Reference
OFF	Do not calculate the PBL process	
MYNN	MYNN level 2.5 boundary scheme	Mellor and Yamada (1982); Nakanishi and
		Niino (2004)

The PLB scheme calculate only vertical mixing. If you want to consider the horizontal eddy viscosity in RANS simulations, a sub-grid scale turbulence model can be used for the horizontal mixing. See Section 4.4.3 for the horizontal mixing.

4.4.5 Radiation scheme

The radiation scheme is specified in (ATMOS_PHY_RD_TYPE) in [PARAM_ATMOS] in files init.conf and run.conf. The timing of the calling of the radiation scheme is specified in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of calling timing.

```
&PARAM_ATMOS
ATMOS_PHY_RD_TYPE = "MSTRNX", ; Select the radiation scheme shown in Table 4.4.5
```

Table 4.4.5: Choices of radiation scheme				
Value	Explanation of scheme	Reference		
OFF or NONE	Do not calculate the radiation scheme			
OFFLINE	Use prescribed radiative data given			
	from a file			
MSTRNX	mstrnX (A k-distribution-based broad-	Sekiguchi and Nakajima (2008)		
	band radiation transfer model)			

Configuration for OFFLINE

When (ATMOS_PHY_RD_TYPE) is OFFLINE in [PARAM_ATMOS], the file name and information of the data are specified in [PARAM_ATMOS_PHY_RD_OFFLINE].

```
&PARAM_ATMOS_PHY_RD_OFFLINE
ATMOS_PHY_RD_OFFLINE_BASENAME = "",
                                                             ; base name of external data file
ATMOS_PHY_RD_OFFLINE_AXISTYPE = "XYZ",
                                                             ; order of spatial dimensions of the
                                                             data. 'XYZ' or 'ZXY
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_YEAR = .false.,
                                                             ; whether annually cyclic data
                                                             ; whether monthly cyclic data
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_MONTH = .false.,
                                                             ; whether daily cyclic data
ATMOS_PHY_RD_OFFLINE_ENABLE_PERIODIC_DAY = .false.,
ATMOS_PHY_RD_OFFLINE_STEP_FIXED = 0,
                                                             ; step number when data at a cer-
                                                             tain time step is used. Set the
                                                             value less than 1 for temporal var-
                                                             ied data.
ATMOS_PHY_RD_OFFLINE_CHECK_COORDINATES = .true.,
                                                             ; whether coordinate variables are
                                                             to be checked
                                                             ; maximum limit of steps. The
ATMOS_PHY_RD_OFFLINE_STEP_LIMIT = 0,
                                                             data at the time step exceed this
                                                             limit would not be read. 0 for no
                                                             limit
ATMOS_PHY_RD_OFFLINE_DIFFUSE_RATE = 0.5D0,
                                                             ; diffuse rate (diffuse solar ra-
                                                             diation/global solar radiation) of
                                                             short wave used when short-wave
                                                             direct flux data is not given
```


The file format of external data file is netCDF format with the same coordinate variables as that of initial/boundary data files. Variables required as the external data are shown in Table 4.4.6.

Table 4.4.6: Radiative data as external file input

Variable name	Description	# of dimensions
RFLX_LW_up	Upward long-wave radiative flux	3D (spatial) + 1D (time)
RFLX_LW_dn	Downward long-wave radiative flux	$3D ext{ (spatial)} + 1D ext{ (time)}$
RFLX_SW_up	Upward short-wave radiative flux	$3D ext{ (spatial)} + 1D ext{ (time)}$
RFLX_SW_dn	Downward short-wave radiative flux	$3D ext{ (spatial)} + 1D ext{ (time)}$
SFLX_LW_up	Upward long-wave radiative flux at	$2D ext{ (spatial)} + 1D ext{ (time)}$
	the surface	
SFLX_LW_dn	Downward long-wave radiative flux	$2D ext{ (spatial)} + 1D ext{ (time)}$
	at the surface	
SFLX_SW_up	Upward short-wave radiative flux at	$2D ext{ (spatial)} + 1D ext{ (time)}$
	the surface	
SFLX_SW_dn	Downward short-wave radiative flux	$2D ext{ (spatial)} + 1D ext{ (time)}$
	at the surface	
SFLX_SW_dn_dir	Downward short-wave direct radia-	$2D ext{ (spatial)} + 1D ext{ (time)} ext{ optional}$
	tive flux at the surface	

Configuration for MSTRNX

The solar radiation is calculated by using date, time, longitude, and latitude according to the model configuration of calculation. For the ideal experiment, they can be arbitrarily given as fixed values of time and location over the domain. The solar constant can also be changed. These are configured in [PARAM_ATMOS_SOLARINS] as follows:

&PARAM_ATMOS_SOLARINS		
ATMOS_SOLARINS_constant = 1360.250117	Solar constant [W/m2]	
ATMOS_SOLARINS_set_ve = .false.	Whether settings of the ideal vernal equinox are	
	used	
ATMOS_SOLARINS_set_ideal = .false.	Whether values are fixed for obliquity and eccen-	
	tricity	
ATMOS_SOLARINS_obliquity = 0.0	obliquity [deg.] in the case that	
	ATMOS_SOLARINS_set_ideal=.true.	
ATMOS_SOLARINS_eccentricity = 0.0	eccentricity in the case that	
	ATMOS_SOLARINS_set_ideal=.true.	
ATMOS_SOLARINS_fixedlatlon = .false.	Whether values are fixed for latitude and longi-	
	tude at radiation calculation	
ATMOS_SOLARINS_lon = 135.221	Longitude [deg.] in the case that	
	ATMOS_SOLARINS_fixedlatlon=.true.	
ATMOS_SOLARINS_lat = 34.653	Latitude [deg.] in the case that	
	ATMOS_SOLARINS_fixedlatlon=.true.	
ATMOS_SOLARINS_fixeddate = .false.	Whether values are fixed for date and time at ra-	
	diation calculation	
ATMOS_SOLARINS_date = -1,-1,-1,-1,-1,-1,	Date and time [Y,M,D,H,M,S] in the case that	
, , , , , ,	ATMOS_SOLARINS_fixeddate=.true.	

When (ATMOS_SOLARINS_set_ideal) is .true., the solar insolation is calculated using obliquity(deg.) and eccentricity specified at (ATMOS_SOLARINS_obliquity), (ATMOS_SOLARINS_eccentricity), respectively. These configurations are useful for the ideal simulations and the simulations of planets other than the Earth. When (ATMOS_SOLARINS_fixedlatlon) is .true., the solar insolation is calculated using same longitude and latitude specified at (ATMOS_SOLARINS_lon, ATMOS_SOLARINS_lat) over the whole domain. the default values of them are (MAPPROJECTION_basepoint_lon, MAPPROJECTION_basepoint_lat), which are set in [PARAM_MAPPROJECTION]. Refer to Section 4.2.4 for the explanation of [PARAM_MAPPROJECTION]. When (ATMOS_SOLARINS_fixeddate) is .true., the solar insolation is calculated according to date and time (Y,M,D,H,M,S) specified at (ATMOS_SOLARINS_date). The date and time are not fixed if the negative values are specified. For example, when configuring (ATMOS_SOLARINS_date) to 1950,3,21,-1,-1,-1, The date is fixed to March 21, 1950 (the vernal equinox) and diurnal variations of the solar insolation are considered in the simulation. When (ATMOS_SOLARINS_set_ve) is .true., the multiple configurations of ideal vernal equinox is automatically set. This option sets obliquity and eccentricity to zero, both longitude and latitude to zero deg., and the date and time to 12UTC, March 21, 1950. If the values are specified by using (ATMOS_SOLARINS_set_ideal, ATMOS_SOLARINS_fixedlatlon, ATMOS_SOLARINS_fixeddate) as described above, those settings are given priority.

Depending on the experimental design, the top of the model is often too low, such as $10 \sim 20$ km, compared to the height of the atmosphere. To remedy this situation, another top height used only for radiation calculation is set. The top height for radiation depends on the parameter file of the radiation scheme. For example, when MSTRNX is used, the default parameter table used for MSTRNX assumes that it is 100 km. For the calculation of radiation at levels higher than the top of the model, several layers are prepared. The additional layers are 10 by default; If the top of the model is 22 km, 10 additional layers with a grid spacing of 7.8 km are added for radiation calculation. These are configured in [PARAM_ATMOS_PHY_RD_MSTRN].

MSTRNX requires a parameter table for radiation calculation. By default, the wavelength between solar radiation and infrared radiation is divided into 29 bands/111 channels; nine types of cloud and aerosol particles with eight particle bins are prepared in the table. Three kinds of parameter files are prepared in the directory scale-rm/test/data/rad/.

```
scale-rm/test/data/rad/PARAG.29 ; absorption parameter for gas
scale-rm/test/data/rad/PARAPC.29 ; absorption and scattering param. for particles
scale-rm/test/data/rad/VARDATA.RM29 ; particle parameter for cloud and aerosol
```

These files are specified in <code>[PARAM_ATMOS_PHY_RD_MSTRN]</code> as follows:


```
&PARAM_ATMOS_PHY_RD_MSTRN
ATMOS_PHY_RD_MSTRN_KADD = 10
                                                                 Number of layers between
                                                                 model top and TOA for radi-
                                                                 ation
ATMOS_PHY_RD_MSTRN_TOA = 100.0
                                                                 Height of TOA for radiation
                                                                 [km] (depending on parameter
                                                                 file used)
ATMOS_PHY_RD_MSTRN_nband = 29
                                                                 Number of bins for wave-
                                                                 length (depending on param-
                                                                 eter file used)
ATMOS_PHY_RD_MSTRN_nptype = 9
                                                                 Number of aerosol species
                                                                 (depending on parameter file
                                                                 used)
ATMOS_PHY_RD_MSTRN_nradius = 8
                                                                 Number of particle bins for
                                                                 aerosol (depending on param-
                                                                 eter file used)
                                                                 Input file for absorption pa-
ATMOS_PHY_RD_MSTRN_GASPARA_IN_FILENAME = "PARAG.29"
                                                                 rameter by gas
ATMOS_PHY_RD_MSTRN_AEROPARA_IN_FILENAME = "PARAPC.29"
                                                                 Input file for absorption and
                                                                 scattering parameter by cloud
                                                                 and aerosol
ATMOS_PHY_RD_MSTRN_HYGROPARA_IN_FILENAME = "VARDATA.RM29"
                                                                 Input file for particle parame-
                                                                 ter of cloud and aerosol
ATMOS_PHY_RD_MSTRN_ONLY_QCI = .false.
                                                                 Whether only cloud water and
                                                                 ice are considered (rain, snow,
                                                                 graupel are ignored)
```

The parameter files were updated in version 5.2. It is recommended to use new parameter files in the latest version of SCALE-RM. The previous parameter files, provided in version 5.1 or earlier, are located in the directory <code>scale-rm/test/data/rad/OpenCLASTR</code>. The number of particle type and the number of particle bins are different from those in the new parameter files. So if you want to use these files, <code>(ATMOS_PHY_RD_MSTRN_nptype, ATMOS_PHY_RD_MSTRN_nradius)</code> should be specified in

[PARAM_ATMOS_PHY_RD_MSTRN] as follows.

```
ATMOS_PHY_RD_MSTRN_nptype = 11
ATMOS_PHY_RD_MSTRN_nradius = 6
```

It is necessary to provide vertical profiles of temperature, pressure, and gas concentration, such as carbon dioxide and ozone, in additional layers for radiation calculation. There are two methods for this. The profiles are input as climatologies or prepared by users in ASCII format.

In the case of providing climatologies, SCALE-RM provides the database form CIRA86*1) (Committee on Space Research; NASA National Space Science Data Center, 2006) for temperature and pressure, and MIPAS2001 (Remedios et al., 2007) for gas species. The climatology profiles are calculated from the databases according to date, time, latitude, and longitude. If the fixed date and location are specified in [PARAM_ATMOS_SOLARINS], the calculation of profile follows those settings. The input files are also provided in the directory scale-rm/test/data/rad/.

```
scale-rm/test/data/rad/cira.nc ; CIRA86 data (NetCDF format)
scale-rm/test/data/rad/MIPAS/day.atm ; MIPAS2011 data for mid-lat. (ASCII format)
```

 $^{^{*1)} \}rm http://catalogue.ceda.ac.uk/uuid/4996e5b2f53ce0b1f2072adadaeda262$


```
scale-rm/test/data/rad/MIPAS/equ.atm ; for tropics (ASCII format)
scale-rm/test/data/rad/MIPAS/sum.atm ; for summer-side high-lat. (ASCII format)
scale-rm/test/data/rad/MIPAS/win.atm ; for winter-side high-lat. (ASCII format)
```

The file and directory names are specified in [PARAM_ATMOS_PHY_RD_PROFILE]. The example of configuration of putting five files above to the current directory is as follows:

```
&PARAM_ATMOS_PHY_RD_PROFILE

ATMOS_PHY_RD_PROFILE_use_climatology = .true. Whether climatologies of CIRA86 and MIPAS2001 are used

ATMOS_PHY_RD_PROFILE_CIRA86_IN_FILENAME = "cira.nc" File name of CIRA86

ATMOS_PHY_RD_PROFILE_MIPAS2001_IN_BASENAME = "." Directory name which contains MIPAS2001 files
```

Gases considered in radiation calculation are water vapor (H_2O) , carbon dioxide (CO_2) , ozone (O_3) , Nauru's oxide (N_2O) , carbon monoxide (CO), methane (CH_4) , oxigen (O_2) , and chlorofluorocarbons (CFCs). These concentrations are able to be set to zero in [PARAM_ATMOS_PHY_RD_PROFILE].

```
&PARAM_ATMOS_PHY_RD_PROFILE
                                            When false, H2O concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_H20 = .true.
ATMOS_PHY_RD_PROFILE_USE_CO2 = .true.
                                            When false, CO<sub>2</sub> concentration is zero.
                                            When false, O3 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_03 = .true.
ATMOS_PHY_RD_PROFILE_USE_N20 = .true.
                                            When false, N2O concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CO = .true.
                                            When false, CO concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CH4 = .true.
                                            When false, CH4 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_02 = .true.
                                            When false, O2 concentration is zero.
ATMOS_PHY_RD_PROFILE_USE_CFC = .true.
                                            When false, CFC concentration is zero.
```

In case of using user-defined profiles, users must prepare height [m], pressure [Pa], temperature [K], water vapor [kg/kg], and ozone concentration [kg/kg] in ASCII format. The concentrations of gases other than water vapor and ozone are set to zero, and temporal variation is not considered. An example of user-defined files is provided in

```
scale-rm/test/data/rad/rad_o3_profs.txt
```

To use the user-defined profiles, it is required to set (ATMOS_PHY_RD_PROFILE_use_climatology) = .false. in [PARAM_ATMOS_PHY_RD_PROFILE], and to specify the file and directory names in (ATMOS_PHY_RD_PROFILE_USER_IN_FILENAME).

```
&PARAM_ATMOS_PHY_RD_PROFILE

ATMOS_PHY_RD_PROFILE_use_climatology = .false. Whether climatologies of CIRA86 and MI-
PAS2001 are used

User-defined file in the case of not using climatorogies (ASCII format)
```

The number of layers and their heights in this user-defined file can be given independently of the default model configuration. During execution, the values in the model layers are interpolated

from the given profiles. Note that if the top height considered TOA in the radiation calculation is higher than in the input profile, an extrapolation is adopted there.

4.4.6 Surface Flux at the Bottom of Atmospheric Boundary

The flux scheme at the bottom atmospheric boundary is configured in (ATMOS_PHY_SF_TYPE) in [PARAM_ATMOS] as follows:

```
&PARAM_ATMOS
ATMOS_PHY_SF_TYPE = "COUPLE", ; Select the surface flux scheme shown in Table 4.4.7
```

If ocean, land, and urban models are not used, the bottom atmospheric boundary is assumed to be a virtual surface used in an ideal experiment. The timing of the calling of the surface flux scheme is configured in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of the calling timing. If ocean, land, and urban models are used, "COUPLE" is given to (ATMOS_PHY_SF_TYPE):

Table 4.4.7: Choices for the atmospheric bottom boundary

	1 0
Value	Description of scheme
NONE	Do not calculate surface flux, but "NONE" is replaced to "COUPLE" according to settings
	of ocean, land, and urban models)
OFF	Do not calculate surface flux
CONST	Fix the constant value of surface flux
BULK	Calculate the surface flux in bulk mode
COUPLE	Receive surface flux from ocean, land, and urban models

Configuration of Constant

If (ATMOS_PHY_SF_TYPE) = "CONST", the surface flux can be kept to a value specified in the configuration file for simulation run as follows. The values below are the default ones.

```
&PARAM_ATMOS_PHY_SF_CONST
ATMOS_PHY_SF_FLG_MOM_FLUX = 0
                                            0: Bulk coefficient is constant
                                            1: Frictional velocity is constant
ATMOS_PHY_SF_U_minM = 0.0E0
                                            Lower limit of absolute velocity [m/s]
ATMOS_PHY_SF_Const_Cm = 0.0011E0
                                            Constant bulk coefficient for momentum
                                            (Active at ATMOS_PHY_SF_FLG_MOM_FLUX = 0)
                                            Lower limit of bulk coefficient for momentum
ATMOS_PHY_SF_CM_min = 1.0E-5
                                            (Active at ATMOS_PHY_SF_FLG_MOM_FLUX = 1)
ATMOS_PHY_SF_Const_Ustar = 0.25E0
                                            Constant fictional velocity [m/s]
                                            (Active at ATMOS_PHY_SF_FLG_MOM_FLUX = 1)
ATMOS_PHY_SF_Const_SH = 15.E0
                                            Constant sensible heat flux at the surface [W/m2]
ATMOS_PHY_SF_FLG_SH_DIURNAL = .false.
                                            Whether diurnal variation is enabled for sensible heat
                                            flux [logical]
ATMOS_PHY_SF_Const_FREQ = 24.E0
                                            Daily cycle if diurnal variation is enabled [hour]
ATMOS_PHY_SF_Const_LH = 115.E0
                                            Constant latent heat flux at the surface [W/m2]
```


Bulk Configuration

If (ATMOS_PHY_SF_TYPE) = "BULK", the surface flux is calculated by the bulk model using the prescribed surface temperature and roughness lengths. Evaporation efficiency can also be given optionally in a range of 0 to 1. This flexibility enables the ideal experiment not only for ocean surfaces but also for land. The evaporation efficiency is specified in (ATMOS_PHY_SF_BULK_beta) in [PARAM_ATMOS_PHY_SF_BULK] in the configuration file for simulation run as follows:

The scheme for the bulk coefficient is configured in (BULKFLUX_TYPE) in [PARAM_BULKFLUX] in the file the configuration file for simulation run as follows:

```
&PARAM_BULKFLUX
BULKFLUX_TYPE = "B91W01", ; Select the bulk coefficient scheme shown in Table 4.4.8
/
```

Table 4.4.8: Choices of bulk coefficient scheme

Value	Description of scheme	Reference
B91W01	Bulk method by the universal function (Default)	Beljaars and Holtslag
		(1991); Wilson (2001)
U95	Louis-type bulk method (improved version of Louis (1979)	Uno et al. (1995)

4.4.7 Ocean Model

The ocean process consists of two main parts, i.e., the update of the state of the near-surface ocean and the calculation of the flux at the interface of atmosphere and ocean. The timing of calling these scheme is configured in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of the calling timing.

The schemes of the ocean submodel is configured by the parameter (OCEAN_DYN_TYPE), (OCEAN_SFC_TYPE), (OCEAN_ICE_TYPE), (OCEAN_ALB_TYPE), and (OCEAN_RGN_TYPE) in [PARAM_OCEAN] in the configuration files:

```
&PARAM_OCEAN

OCEAN_DYN_TYPE = "SLAB", ; Select the ocean dynamics type shown in Table 4.4.9

OCEAN_SFC_TYPE = "FIXED-TEMP", ; Select the ocean surface type shown in Table 4.4.10

OCEAN_ICE_TYPE = "SIMPLE", ; Select the ocean ice physics type shown in Table 4.4.11

OCEAN_ALB_TYPE = "NAKAJIMA00", ; Select the ocean albedo type shown in Table 4.4.12

OCEAN_RGN_TYPE = "MOONO7", ; Select the ocean roughness type shown in Table 4.4.13
```


Table 4.4.9: Choices of subsurface ocean schemes (OCEAN_DYN_TYPE).

Table 1.1.0. Choledy of Bassariane Coolin Schemes (Colin Bin 11112).	
Values	Description of scheme
NONE or OFF	Disable the ocean submodel
INIT	Fixed to the initial condition
OFFILNE	Update by external data
SLAB	Slab ocean model

Table 4.4.10: Choices of ocean surface schemes (OCEAN_SFC_TYPE). There is one option in current version.

Values	Description of scheme
FIXED-TEMP	Calculate flux without diagnosing surface skin temperature

Table 4.4.11: Choices of sea ice schemes (OCEAN_ICE_TYPE).

Values	Description of scheme
NONE	Disable the sea ice model
INIT	Fixed to the initial condition
SIMPLE	Simple sea ice model

Table 4.4.12: Choices of ocean surface albedo schemes (OCEAN_ALB_TYPE).

Values	Description of scheme	reference
INIT	Fixed to the initial condition	
CONST	Use constant value	
NAKAJIMAOO	Calculate albedo for short-wave by solar zenith angle	Nakajima et al. (2000)

Table 4.4.13: Choices of ocean surface roughness schemes (OCEAN_RGN_TYPE).

Values	Description of scheme	reference
MOONO7	Based on empirical formula with time development	Moon et al. (2007)
INIT	Fixed to the initial condition	
CONST	Use constant value	
MILLER92	Based on empirical formula without time development	Miller et al. (1992)

4.4.7.1 Subsurface ocean scheme

The grid points, which have a ocean fraction (= land fraction is less than 1.0), must be calculated by the ocean submodel. The setting of land-ocean fraction is controlled by [PARAM_LANDUSE]. When (OCEAN_DYN_TYPE) is set to "NONE" or "OFF" although the grid points with the ocean fraction exist, the following error message is displayed to the log file:

```
ERROR [CPL_vars_setup] Ocean fraction exists, but ocean component has not been called. Please check this inconsistency. STOP.
```

If (OCEAN_DYN_TYPE) is set to "SLAB", the subsurface ocean is treated as a slab layer. The temperature of the slab layer changes over time by the heat flux from the surface. The depth of the slab layer, which controls the heat capacity of the slab ocean, can be specified (OCEAN_DYN_SLAB_DEPTH) in [PARAM_OCEAN_DYN_SLAB].

```
&PARAM_OCEAN_DYN_SLAB
OCEAN_DYN_SLAB_DEPTH = 10.0_RP, ; Water depth of slab ocean [m]
```

In the slab ocean model, you can apply SST relaxation (nudging) by using external data. The parameter of the nudging can be specified in [PARAM_OCEAN_DYN_SLAB].

```
&PARAM_OCEAN_DYN_SLAB
OCEAN_DYN_SLAB_nudging = .false.,
                                                              ; Use nudging for ocean vari-
                                                              ables?
OCEAN_DYN_SLAB_nudging_tau = 0.0_DP,
                                                              ; Relaxation time for nudging
OCEAN_DYN_SLAB_nudging_tau_unit = "SEC",
                                                              ; Relaxation time unit
OCEAN_DYN_SLAB_nudging_basename = "",
                                                              ; Base name of input data
                                                              ; Annually cyclic data?
OCEAN_DYN_SLAB_nudging_enable_periodic_year = .false.,
OCEAN_DYN_SLAB_nudging_enable_periodic_month = .false.,
                                                              ; Monthly cyclic data?
OCEAN_DYN_SLAB_nudging_enable_periodic_day = .false.,
                                                              ; Daily cyclic data?
OCEAN_DYN_SLAB_nudging_step_fixed = 0,
                                                              ; Option for using specific step
                                                              number of the data
OCEAN_DYN_SLAB_nudging_offset = 0.0_RP,
                                                              ; Offset value of the variables
OCEAN_DYN_SLAB_nudging_defval = UNDEF,
                                                              ; Default value of the variables
OCEAN_DYN_SLAB_nudging_check_coordinates = .true.,
                                                              ; Check coordinate of variables
OCEAN_DYN_SLAB_nudging_step_limit = 0,
                                                              ; Maximum limit of the time
                                                              steps of the data
```

When (OCEAN_DYN_SLAB_nudging_tau) is 0, the value of sea surface temperature is totally replaced by the external file. When (OCEAN_DYN_SLAB_nudging_step_fixed) is less than 1, the value of current time is calculated by temporal interpolation from the input data. When the specific step number is set for (OCEAN_DYN_SLAB_nudging_step_fixed), the data of that step is always used without temporal interpolation. When the number larger than 0 is set to (OCEAN_DYN_SLAB_nudging_step_limit), the data at the time step exceed this limit would not be read. The last read data is used for nudging. When (OCEAN_DYN_SLAB_nudging_step_limit) is 0, no limit is set.

If (OCEAN_DYN_TYPE) is set to "OFFLINE", no dynamical nor physical process of subsurface ocean are calculated. The temporal changes of sea surface temperature are provided by the external file. This is the same as $(OCEAN_TYPE) = "FILE"$ in the old version of SCALE, and also same as the case of $(OCEAN_DYN_SLAB_nudging_tau) = 0$ in the slab ocean scheme.


```
&PARAM_OCEAN_DYN_OFFLINE
OCEAN_DYN_OFFLINE_basename = "",
                                                          ; Base name of input data
OCEAN_DYN_OFFLINE_enable_periodic_year = .false.,
                                                          ; Annually cyclic data?
OCEAN_DYN_OFFLINE_enable_periodic_month = .false.,
                                                         ; Monthly cyclic data?
OCEAN_DYN_OFFLINE_enable_periodic_day = .false.,
                                                          ; Daily cyclic data?
                                                          ; Option for using specific step number
OCEAN_DYN_OFFLINE_step_fixed = 0,
                                                          of the data
OCEAN_DYN_OFFLINE_offset = 0.0_RP,
                                                          ; Offset value of the variables
OCEAN_DYN_OFFLINE_defval = UNDEF,
                                                          ; Default value of the variables
OCEAN_DYN_OFFLINE_check_coordinates = .true.,
                                                          ; Check coordinate of variables
OCEAN_DYN_OFFLINE_step_limit = 0,
                                                          ; Maximum limit of the time steps of
                                                          the data
```

Each parameter for the external file in offline mode follows the parameter for the nudging file in the slab ocean scheme.

4.4.7.2 Ocean surface process

The ocean surface process contains the following subprocess:

- Calculation of open ocean (ice-free) surface
 - Calculation of the ocean surface albedo
 - Calculation of the ocean surface roughness length
 - Calculation of the heat/evaporation/emission flux between the atmosphere and the ocean
- Calculation of sea ice surface
 - Calculation of the ice surface albedo
 - Calculation of the ice surface roughness length
 - Calculation of the thermal conductance between the sea ice and the subsurface ocean
 - Calculation of the heat/evaporation/emission flux between the atmosphere and the ice
 - Calculation of the heat and water flux between the ice and the subsurface ocean

The albedo of the open ocean surface is configured by the scheme selected by (OCEAN_ALB_TYPE). If (OCEAN_ALB_TYPE) is set to "CONST", the albedo values over the open ocean are constant and set by (PARAM_OCEAN_PHY_ALBEDO_const). If (OCEAN_ALB_TYPE) is set to "NAKAJIMAOO", the albedo for the short-wave is calculated from the solar zenith angle, while the albedo parameters set by (PARAM_OCEAN_PHY_ALBEDO_const) are used for the long-wave (IR).

```
&PARAM_OCEAN_PHY_ALBEDO_const
                                          ; Ocean surface albedo for the long-wave (IR), direct light
OCEAN_PHY_ALBEDO_IR_dir = 0.05D0,
OCEAN_PHY_ALBEDO_IR_dif = 0.05D0,
                                          ; Ocean surface albedo for the long-wave (IR), diffuse
OCEAN_PHY_ALBEDO_NIR_dir = 0.07D0,
                                          ; Ocean surface albedo for the short-wave (near-IR), di-
                                          rect light
OCEAN_PHY_ALBEDO_NIR_dif = 0.06D0,
                                          ; Ocean surface albedo for the short-wave (near-IR), dif-
                                          fuse light
OCEAN_PHY_ALBEDO_VIS_dir = 0.07D0,
                                          ; Ocean surface albedo for the short-wave (visible), direct
                                          light
OCEAN_PHY_ALBEDO_VIS_dif = 0.06D0,
                                          ; Ocean surface albedo for the short-wave (visible), diffuse
                                          light
```


The albedos over the sea ice surface are constant regardress of (OCEAN_ALB_TYPE). The values are set by (PARAM_OCEAN_PHY_ALBEDO_seaice).

```
&PARAM_OCEAN_PHY_ALBEDO_seaice
                                                  ; Sea ice surface albedo for the long-wave (IR),
OCEAN_PHY_ALBEDO_seaice_IR_dir = 0.05D0,
                                                  direct light
OCEAN_PHY_ALBEDO_seaice_IR_dif = 0.05D0,
                                                  ; Sea ice surface albedo for the long-wave (IR),
                                                  diffuse light
OCEAN_PHY_ALBEDO_seaice_NIR_dir = 0.60D0,
                                                  ; Sea ice surface albedo for the short-wave (near-
                                                  IR), direct light
OCEAN_PHY_ALBEDO_seaice_NIR_dif = 0.60D0,
                                                  ; Sea ice surface albedo for the short-wave (near-
                                                  IR), diffuse light
OCEAN_PHY_ALBEDO_seaice_VIS_dir = 0.80D0,
                                                  ; Sea ice surface albedo for the short-wave (visi-
                                                  ble), direct light
                                                  ; Sea ice surface albedo for the short-wave (visi-
OCEAN_PHY_ALBEDO_seaice_VIS_dif = 0.80D0,
                                                  ble), diffuse light
```

The roughness length of ocean surface is calculated by the scheme selected by (OCEAN_RGN_TYPE). If (OCEAN_RGN_TYPE) is set to "CONST", the parameters in (PARAM_OCEAN_PHY_ROUGHNESS_const) are used.

```
&PARAM_OCEAN_PHY_ROUGHNESS_const
OCEAN_PHY_ROUGHNESS_ZOM = 1.0D-5, ; Ocean surface roughness length for momentum [m]
OCEAN_PHY_ROUGHNESS_ZOH = 1.0D-5, ; Ocean surface roughness length for heat [m]
OCEAN_PHY_ROUGHNESS_ZOE = 1.0D-5, ; Ocean surface roughness length for moisture [m]
```

When (OCEAN_RGN_TYPE) is set to "MOONO7" or "MILLER92", the roughness length for momentum, heat, and water vapor are calculated in the selected scheme. You can specify some limiters by setting (PARAM_OCEAN_PHY_ROUGHNESS).

```
&PARAM_OCEAN_PHY_ROUGHNESS
OCEAN_PHY_ROUGHNESS_visck = 1.5D-5,
OCEAN_PHY_ROUGHNESS_Ustar_min = 1.0D-3,
OCEAN_PHY_ROUGHNESS_ZOM_min = 1.0D-5,
OCEAN_PHY_ROUGHNESS_ZOM_min = 1.0D-5,
OCEAN_PHY_ROUGHNESS_ZOH_min = 1.0D-5,
OCEAN_PHY_ROUGHNESS_ZOE_min = 1.0D-5,
OCEAN
```

The roughness lengths of the sea ice surface are constant regardress of (OCEAN_RGN_TYPE). The values are set by (PARAM_OCEAN_PHY_ROUGHNESS_seaice). The minimum limit of roughness lengths specified by (PARAM_OCEAN_PHY_ROUGHNESS) are also applied to the value over the sea ice surface.


```
&PARAM_OCEAN_PHY_ROUGHNESS_seaice

OCEAN_PHY_ROUGHNESS_seaice_ZOM = 2.0D-2, ; Sea ice surface roughness length for momentum [m]

OCEAN_PHY_ROUGHNESS_seaice_ZOH = 2.0D-3, ; Sea ice surface roughness length for heat [m]

OCEAN_PHY_ROUGHNESS_seaice_ZOE = 2.0D-3, ; Sea ice surface roughness length for moisture [m]
```

By using the albedo and the roughness length, the surface fluxes between atmosphere and ocean, and fluxes between atmosphere and ice are calculated by the scheme selected by (OCEAN_SFC_TYPE). The bulk scheme specified by (BULKFLUX_TYPE) in [PARAM_BULKFLUX] is used for this calculation. Refer to Section 4.4.6 for more detail of bulk scheme.

Ocean ice process

When (OCEAN_ICE_TYPE) is set to "SIMPLE", the ocean ice process comes to be considered. The thermal conductance between the sea ice and the subsurface ocean is calculated by using the parameter specified in [PARAM_OCEAN_PHY_TC_seaice].

The parameters of sea ice process is configured by [PARAM_OCEAN_PHY_ICE].

```
&PARAM_OCEAN_PHY_ICE
OCEAN_PHY_ICE_density = 1000.D0, ; Density of sea ice [kg/m3]
OCEAN_PHY_ICE_mass_critical = 1600.D0, ; Ice amount for fraction = 1 [kg/m2]
OCEAN_PHY_ICE_mass_limit = 50000.D0, ; Maximum limit of ice amount [kg/m2]
OCEAN_PHY_ICE_fraction_limit = 1.D0, ; Maximum limit of ice fraction [1]
```

In SCALE, the mass amount of the sea ice is the prognostic variable and the ice fraction diagnosed by following equation:

$${\tt ICE_fraction} = \sqrt{\frac{\tt ICE_mass}{\tt OCEAN_PHY_ICE_mass_critical}}.$$

4.4.8 Land Model

Similar to the ocean model, the land model consists of two main parts, i.e., an update of the state of the land surface, and calculation of flux at the interface of atmosphere and land. The timing of the calling of these scheme is configured in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of calling timing.

4.4.8.1 Land Dynamics and Surface Scheme

The land model scheme that updates the state of land, e.g., land surface temperature, soil temperature, and soil moisture, is configured as in (LAND_DYN_TYPE) and (LAND_SFC_TYPE) in [PARAM_LAND] in the files init.conf and run.conf:


```
&PARAM_LAND

LAND_DYN_TYPE = "BUCKET", ; Select the land dynamics type shown in Table 4.4.14

LAND_SFC_TYPE = "SKIN", ; Select the land surface type shown in Table 4.4.15

/
```

Table 4.4.14: Choices of land dynamics scheme

Values	Description of scheme
NONE or OFF	Do not use land dynamics model
BUCKET	Heat diffusion/bucket model
INIT	Fixed to the initial condition

Table 4.4.15: Choices of land surface scheme

Values	Description of scheme	
SKIN	Determine surface temperature in the scheme	
FIXED-TEMP	Assume surface temperature is the same as uppermost land soil temperature	

If the land type is included in the land use setup by [PARAM_LANDUSE], neither NONE nor OFF can be given to (LAND_DYN_TYPE). If this condition is not satisfied, the program immediately terminates without computation, outputting the following message to the LOG file:

```
ERROR [CPL_vars_setup] Land fraction exists, but land component has not been called. Please check this inconsistency. STOP.
```

If (LAND_DYN_TYPE) = "BUCKET", you can apply relaxation (nudging) of land variables by using external data. The parameter of the nudging can be specified in run.conf.

```
&PARAM_LAND_DYN_BUCKET
 LAND_DYN_BUCKET_nudging = .false.,
                                                                ; use nudging for land vari-
                                                                ables?
 LAND_DYN_BUCKET_nudging_tau = 0.0_DP,
                                                                ; relaxation time for nudging
 LAND_DYN_BUCKET_nudging_tau_unit = "SEC",
                                                                ; relaxation time unit
 LAND_DYN_BUCKET_nudging_basename = "",
                                                                ; base name of input data
 LAND_DYN_BUCKET_nudging_enable_periodic_year = .false.,
                                                                ; annually cyclic data?
                                                                ; monthly cyclic data?
 LAND_DYN_BUCKET_nudging_enable_periodic_month = .false.,
                                                                ; dayly cyclic data?
 LAND_DYN_BUCKET_nudging_enable_periodic_day = .false.,
                                                                ; Option for using specific step
 LAND_DYN_BUCKET_nudging_step_fixed = 0,
                                                                number of the data
 LAND_DYN_BUCKET_nudging_offset = 0.0_RP,
                                                                ; offset value of the variables
 LAND_DYN_BUCKET_nudging_defval = UNDEF,
                                                                ; default value of the variables
 LAND_DYN_BUCKET_nudging_check_coordinates = .true.,
                                                                ; check coordinate of variables
 LAND_DYN_BUCKET_nudging_step_limit = 0,
                                                                ; maximum limit of the time
                                                                steps of the data
```

When (LAND_DYN_BUCKET_nudging_tau) is 0, the value of land variables is totally replaced by the external file. This configuration is the same as (LAND_TYPE) = "FILE" in the old version. When (LAND_DYN_BUCKET_nudging_step_fixed) is less than 1, the certain time of the

input data is used and temporal interpolation is applied to calculate the value of current time. When the specific step number is set for (LAND_DYN_BUCKET_nudging_step_fixed), the data of that step is always used without interpolation. When the number larger than 0 is set to (LAND_DYN_BUCKET_nudging_step_limit), The data at the time step exceed this limit would not be read. When (LAND_DYN_BUCKET_nudging_step_limit) is 0, no limit is set.

If (LAND_DYN_TYPE) except "NONE" or "OFF" is specified, it is necessary to prepare parameter tables for the length of roughness and the input to the land-use distribution. A parameter table is provided in the file scale-rm/test/data/land/param.bucket.conf.

Flux in atmosphere and on land

The albedo and roughness length of land surface are provided by the parameter table. The surface flux between atmosphere and land is calculated by the scheme selected by (LAND_SFC_TYPE). The bulk scheme specified in (BULKFLUX_TYPE) in [PARAM_BULKFLUX] is used for this calculation. Refer to Section 4.4.6 for more detail of bulk scheme.

4.4.9 Urban model

The urban process consists of two main parts, that is updating the urban state and calculating fluxes at the interface between the atmosphere and the urban. The timing of calling these schemes is configured in [PARAM_TIME]. Refer to Section 4.2.7 for the detailed configuration of calling timing.

4.4.9.1 Flux in Atmosphere and Urban Area

The urban scheme that updates the urban surface state, e.g., urban surface temperature and moisture, and calculates fluxes at the interface between atmosphere and the urban environment is configured in (URBAN_DYN_TYPE) in [PARAM_URBAN] in init.conf and run.conf, as follows:

```
&PARAM_URBAN
URBAN_DYN_TYPE = "KUSAKA01", ; Select the urban type shown in Table 4.4.16
/
```

Table 4.4.16: Choices of urban scheme

	Table 4.4.10. Choices of urban seneme		
Value	Description of scheme	reference	
NONE or OFF	Do not use the urban scheme		
LAND	Urban area is calculated by a land model		
KUSAKA01	Single-layer canopy model	Kusaka et al. (2001)	

If the type of urban area is included in the land-use specified by [PARAM_LANDUSE], neither NONE nor OFF can be given to (URBAN_TYPE). If this condition is not satisfied, the program immediately stops without computation, outputting the following message to LOG file:

```
ERROR [CPL_vars_setup] Urban fraction exists, but urban component has not been called. Please check this inconsistency. STOP.
```

If LAND type is selected as (URBAN_DYN_TYPE), the land model is used to calculate the surface flux and soil variables for urban areas. In this case, parameters for the urban area should be provided in the land parameter table described in Section 4.4.8.

There are many parameters specifying urban morphology in the $\tt KUSAKAO1$ scheme. Regarding the urban parameters, please refer to description about namelist in Section 5.3.2.

Chapter 4.5

Common settings

4.5.1 Log File

4.5.1.1 Log File Output

SCALE-RM can output log files when you execute scale-rm, scale-rm_init, and scale-rm_pp. On a default setting, log messages from the process of number zero is written into "LOG.pe000000" for scale-rm_init", and pp_LOG.pe000000" for scale-rm_pp. Users can modify the settings of log file outputs by editing configuration files as follows:

```
&PARAM_IO

IO_LOG_BASENAME = 'LOG', ; Output name of log file

IO_LOG_ALLNODE = .false., ; Output log files for all processes?

IO_LOG_SUPPRESS = .false., ; If .true., log output is suppressed

IO_LOG_NML_SUPPRESS = .false., ; If .true., namelist parameter output is suppressed

; If specified, namelist parameter is output to specified file.

Otherwise to the log file.

; If positive, the time step information is output to standard output.
```

The name of the log file is controlled by (IO_LOG_BASENAME) in [PARAM_IO]. In the case of above default setting, the name of log file for the master process is "LOG.pe000000". (IO_LOG_ALLNODE) controls whether to output log files for all processes or not. When (IO_LOG_ALLNODE) is .true., log files for all processes will be created, otherwise the log file is output only from master process, namely rank 0.

If (IO_LOG_SUPPRESS) is set to .true., no log files are created and the almost all log messages are not output. Only the information about elapsed time is sent to the standard output (STDOUT), even if (IO_LOG_SUPPRESS) is set to .true..

The NAMELIST parameters are output unless (IO_LOG_NML_SUPPRESS) is set to .true.. The paremeters are output to the log file as default. They can be output different file by setting (IO_NML_FILENAME). Note that the file specified by (IO_NML_FILENAME) can be used as input configuration file for later runs.

The time step infomation is output to the log file. Details of the information is explained in the next section. If (IO_STEP_TO_STDOUT) is set as > 0, the time step information is output to the STDOUT, too. All the time step infomation is output to the log file. For the STDOUT, the step interval of output is specified by the number of (IO_STEP_TO_STDOUT).

4.5.1.2 Execution Time Information in Log File

You can find the lines with following format in the log file when you execute scale-rm:

```
+++++ TIME: 0000/01/01 00:06:36 + 0.600 STEP: 1984/ 432000 WCLOCK: 2000.2
```

This line presents messages about status of computation as follows:

- Now, carrying out 6m36.6s of time integration from the initial time of "0000/01/01 00:00:00 + 0.000".
- This is 1984th step in whole time steps of 432000.
- 2000.2s was taken in a wall clock time (cpu time).

Furthermore, the required time for this computation can be estimated from these information. In this case, 121 hours ($= 2000.2 \times 432000 \div 1984$) is the estimated elapsed time.

Messages in the log file are output in following format.

```
type [subroutine name] message
messages
...
```

type: message type that can take one of the following.

- INFO: General information about job execution
- WARN: Considerable event about job execution
- ERROR: Fatal error that involves stop of execution

subroutine name: the subroutine name writing the message.

message: the main body of the message.

The sample of error message is as follows.

4.5.2 Setting the monitor file

A monitor file and output variables are configured at [PARAM_MONITOR] and [MONITOR_ITEM] in run.conf. The default format of the monitor file is configured at [PARAM_MONITOR].

```
&PARAM_MONITOR

MONITOR_OUT_BASENAME = "monitor", ; Base name of the output file

MONITOR_USEDEVATION = .true., ; Use deviation from first step?

MONITOR_STEP_INTERVAL = 1, ; Step interval of monitor output
```


Monitor component outputs global domain total of physical quantity such as dry air mass, water vapor, total energy, surface precipitation flux, and so on. These output is useful to check mass and energy budget. The monitor file is ASCII format and the name of the file is set by (MONITOR_OUT_BASENAME) .pe000000. The time interval of monitor output is specified in the (MONITOR_STEP_INTERVAL) as the multiple of time step (Δt).

```
&MONITOR_ITEM

NAME = "ENGT", Variable name. List of variables is shown in Table 4.5.1

/
```

Table 4.5.1: Variables available for monitor output

Values	Description	Unit
DENS	Air mass	[kg]
MOMZ	Momentum in z-direction	[kg m/s]
MOMX	Momentum in x-direction	[kg m/s]
MOMY	Momentum in y-direction	[kg m/s]
RHOT	Potential temperature	[kg K]
TRACER*	Tracers in prognostic variable	$[\text{each unit} \times \text{kg}]$
QDRY	Dry air mass	[kg]
QTOT	Water mass	[kg]
EVAP	Evaporation at the surface	[kg]
PRCP	Precipitation	[kg]
ENGT	Total energy (ENGP + ENGK + ENGI)	[J]
ENGP	Potential energy $(\rho * g * z)$	[J]
ENGK	Kinetic energy $(\rho * (W^2 + U^2 + V^2)/2)$	[J]
ENGI	Internal energy $(\rho * C_v * T)$	[J]
ENGFLXT	Total energy flux convergenc	[J]
	(SH + LH + SFC_RD - TOA_RD)	
ENGSFC_SH	Surface sensible heat flux	[J]
ENGSFC_LH	Surface latent heat flux	[J]
ENGSFC_RD	Surface net radiation flux	[J]
	(SFC_LW_up + SFC_SW_up - SFC_LW_dn - SFC_SW_dn)	
ENGTOA_RD	Top-of-atmosphere net radiation flux	[J]
	(TOA_LW_up + TOA_SW_up - TOA_LW_dn - TOA_SW_dn)	
ENGSFC_LW_up	Surface longwave upward flux	[J]
ENGSFC_LW_dn	Surface longwave downward flux	[J]
ENGSFC_SW_up	Surface shortwave upward flux	[J]
ENGSFC_SW_dn	Surface shortwave downward flux	[J]
ENGTOA_LW_up	Top-of-atmosphere longwave upward flux	[J]
ENGTOA_LW_dn	Top-of-atmosphere longwave downward flux	[J]
ENGTOA_SW_up	Top-of-atmosphere shortwave upward flux	[J]
ENGTOA_SW_dn	Top-of-atmosphere shortwave downward flux	[J]

For example, let the below setting for [MONITOR_ITEM] be added with (MONITOR_STEP_INTERVAL) = 10 and (MONITOR_USEDEVATION) = .false.,

```
&MONITOR_ITEM NAME="ENGK" /
&MONITOR_ITEM NAME="ENGP" /
&MONITOR_ITEM NAME="ENGI" /
&MONITOR_ITEM NAME="ENGT" /
```


The monitor file is output as follows;

```
ENGT ENGP ENGK ENGI

STEP= 1 (MAIN) 1.18127707E+17 2.92701438E+16 2.40231436E+13 8.88335403E+16

STEP= 11 (MAIN) 1.18127712E+17 2.92701415E+16 2.40249223E+13 8.88335453E+16

STEP= 21 (MAIN) 1.18127711E+17 2.92701439E+16 2.40223566E+13 8.88335443E+16

STEP= 31 (MAIN) 1.18127710E+17 2.92701454E+16 2.40213480E+13 8.88335435E+16

STEP= 41 (MAIN) 1.18127710E+17 2.92701495E+16 2.40210662E+13 8.88335392E+16

STEP= 51 (MAIN) 1.18127710E+17 2.92701439E+16 2.40205575E+13 8.88335456E+16

STEP= 61 (MAIN) 1.18127711E+17 2.92701457E+16 2.40200252E+13 8.88335340E+16

STEP= 71 (MAIN) 1.18127711E+17 2.92701457E+16 2.40195927E+13 8.8833545E+16

STEP= 81 (MAIN) 1.18127710E+17 2.92701466E+16 2.40193679E+13 8.88335342E+16

STEP= 91 (MAIN) 1.18127710E+17 2.92701573E+16 2.40188095E+13 8.88335342E+16

STEP= 101 (MAIN) 1.18127710E+17 2.92701404E+16 2.40180752E+13 8.88335517E+16
```

4.5.3 Setting Physical Constants

The some physical constants are able to modify in [PARAM_CONST] in the configure file.

```
&PARAM_CONST
                                      ; Radius of the planet [m]
CONST_RADIUS = 6.37122D+6,
CONST_OHM = 7.2920D-5,
                                      ; Angular velocity of the planet [1/s]
CONST_GRAV = 9.80665D0,
                                      ; Standard acceleration of gravity [m/s2]
CONST_Rdry = 287.04D0,
                                      ; Specific gas constant (dry air) [J/kg/K]
CONST_CPdry = 1004.64D0,
                                      ; Specific heat (dry air, constant pressure) [J/kg/K]
CONST_LAPS = 6.5D-3,
                                      ; Lapse rate of ISA [K/m]
CONST_Pstd = 101325.D0,
                                      ; Standard pressure [Pa]
CONST_PREOO = 100000.D0,
                                      ; Pressure reference [Pa]
CONST_Tstd = 288.15D0,
                                      ; Standard temperature (15C) [K]
CONST_THERMODYN_TYPE = 'EXACT',
                                      ; Internal energy type
CONST_SmallPlanetFactor = 1.D0,
                                     ; Factor for small planet [1]
```

When (CONST_THERMODYN_TYPE) is 'EXACT', temperature dependencies of the latent heat are considered. When (CONST_THERMODYN_TYPE) is 'SIMPLE', specific heat of water categories are set to that of dry air, and temperature dependencies of the latent heat are ignored. The (CONST_RADIUS) is multiplied by the (CONST_SmallPlanetFactor). At the same time, (CONST_OHM) is multiplied by the inverse of the (CONST_SmallPlanetFactor).

4.5.4 Setting Calendar

The calendar type can be specified in [PARAM_CALENDAR] in the configure file. Gregorian calendar is used in default.

```
&PARAM_CALENDAR

CALENDAR_360DAYS = .false. ; Whether 12x30 days calendar is used?

CALENDAR_365DAYS = .false. ; Whether leap year is considered?

/
```


The setting of the calendar affects calculation of solar zenith angle. It is calculated so that length of one year and the full circle of the ecliptic match. Note that the external data in the different calendar should not be read.

When (CALENDAR_360DAYS) is .true., the calendar that one year is 12 months and one month is 30 days, is set. When (CALENDAR_365DAYS) is .true., the Gregorian calendar is used without leap year.

4.5.5 Setting Random Number Generator

A parameter of the random number generator is set in [PARAM_RANDOM] in the configure file.

```
&PARAM_RANDOM
RANDOM_FIX = .false. ; Random seed is fixed?
/
```

The intrinsic function of random number generator is used in the scale library. Note that the generated number is pseudorandom. The seed of the random number is determined by current datetime, cpu time, and the process id. When (RANDOM_FIX) is .true., the seed is fixed by specific number. This option is useful to reproduce the simulation results, which use the random perturbation for the initial field.

4.5.6 Setting Performance Profiler

Parameters of the performance profiler are set in [PARAM_PROF] in the configure file.

```
&PARAM_PROF
PROF_rap_level = 2 ; Rap output level
PROF_mpi_barrier = .false. ; Add barrier command of MPI in every rap?
/
```

To measure the elapse time, utility functions (PROF_rapstart,PROF_rapend) are inserted in the source code. These measurement sections are also used for detailed performance profiling. The results of the rap time are displayed at the end of the log file. If (IO_LOG_ALLNODE) in [PARAM_IO] is .true., the result of each process is reported to each log file individually. If (IO_LOG_SUPPRESS) in [PARAM_IO] is .true., the result is sent to the standard output. Each measurement section has the output level. The section, which has the output level larger than the (PROF_rap_level) are not measured.

When (PROF_mpi_barrier) is .true., barrier command of MPI is called before and after getting current time. This option is useful to separate the computation time and communication time. The computation time often shows large imbalance among the processes.

4.5.7 Setting Statistics Monitor

Parameters of the statistics monitor are set in [PARAM_STATISTICS] in the configure file.


```
&PARAM_STATISTICS
STATISTICS_checktotal = .false. ; Calculate and report variable totals to logfile?
STATISTICS_use_globalcomm = .false. ; Calculate total with global communication?
/
```

When (STATISTICS_checktotal) is .true., domain total of some variables are calculated and reported to the log file, for debugging. When (STATISTICS_use_globalcomm) is .true., global domain total is calculated by using global communication. This option can slow the simulation time. When the option is .false., the total is calculated in the spatial region allocated for each process.

Chapter 4.6

Post-processing

4.6.1 netcdf2grads (net2g)

net2g has two roles; 1) to combine history files history.***.nc divided by process into one file and 2) to convert from the netCDF format to binary format that is readable in GrADS . net2g can also be executed as an MPI parallel program. In addition, the following functions are also available

- Interpolate data from the model level to arbitrary height levels or pressure levels.
- Output the mean, maximum, and minimum values of the vertical integration of 3D variables.
- Output multiple files for 3D variables, layer by layer.
- Output multiple files, time-step by time-step.

Refer to Section 2.3.1 for a guide to installing net2g. Note that the current version of net2g has the following limitations:

- The number of MPI processes in net2g must be a divisor of the number of MPI processes of executing SCALE-RM .
- The history files in SCALE-RM must be output with option of (FILE_HISTORY_CARTESC_BOUNDARY) = .false. in [PARAM_FILE_HISTORY_CARTESC].
- Two- and three-dimensional data cannot be simultaneously converted.
- Only history data can be converted.

Beware that if too large a number of MPI processes is set, computational performance is affected. If MPI parallel is used, net2g is executed as follows:

\$ mpirun -n [number of process] ./net2g net2g.conf

The last argument net2g.conf is the configuration file for net2g. On the contrary, if net2g is compiled as a single process version,

\$./net2g net2g.conf

If only the following message without error can be found, the execution is concluded normally:

+++ MPI COMM: Corrective Finalize

The following explains how to describe the configuration files in the case of 2D or 3D variables by using sample files net2g.3d.conf and net2g.2d.conf in the directory scale-5.3.6/scale-rm/util/netcdf2grads_h/. In this section, only the major settings are treated. Regarding to other options, refer to the explanation files README.net2g.conf in scale-5.3.6/scale-rm/util/netcdf2grads_h/.

The sample configuration file: Conversion of 3D variables

```
&LOGOUT
LOG_BASENAME = "LOG_dO1_3d",
LOG_ALL_OUTPUT = .false.,

&INFO

TIME_STARTDATE = 2000, 1, 1, 0, 0, 0,
START_TSTEP = 1,
END_TSTEP = 25,
DOMAIN_NUM = 1,
CONFFILE = "../run/run.d01.conf",
IDIR = "../run",
Z_LEV_TYPE = "plev",
MAPPROJ_ct1 = .true.

&VARI
VNAME = "PT","U","V","W","QHYD",
TARGET_ZLEV = 850,500,200,
```

The above example shows a configuration in the case where 3D variables in a domain are converted into pressure and/or height coordinates. The setting items are as follows:

- [LOGOUT] (The following items are not required.)
 - (LOG_BASENAME): If the default LOG file name LOG is changed, this item is specified.
 - (LOG_ALL_OUTPUT): If processes other than the 0th process are output in the LOG files,
 ".true." is assigned to this item. The default value is ."false".

• [INFO]

- (TIME_STARTDATE): The start date and time of converted netCDF data are specified.
- (START_TSTEP): The start time step of converted netCDF data is specified. If several first steps are skipped, the appropriate values are assigned to this item. The default value is 1.
- (END_TSTEP): The end of the time step of converted netCDF data is specified. It is required in all cases.
- (DOMAIN_NUM): The domain number is specified. The default value is 1.
- (CONFFILE): The path of run.***.conf at the execution of SCALE-RM is specified, including the file name.
- (IDIR): The path of history files is specified.
- (Z_LEV_TYPE): The type of vertical data conversion is specified. "original" represents the model surface, "plev" the interpolation to the pressure surface, and "zlev" that to the height surface. If "anal" is specified, the result with a simple analysis is output. The details for "anal" is explained subsequently. The default value is "plev".
- (MAPPROJ_ctl): It indicates whether the "ctl" file corresponding to the map projection using pdef is output. Currently, this option is available only for LC coordinate.

• [VARI]

- (VNAME): The variables converted are specified. As default, "PT", "PRES", "U", "V", "W", "QHYD" are given.

- (TARGET_ZLEV): The heights corresponding to (Z_LEV_TYPE) are specified. In the case of "plev", the unit is [hPa], in the case of "zlev", the unit is [m], and in the case of "original", the grid numbers are specified. As default, 14 layers (1000 hPa, 975 hPa, 950 hPa, 925 hPa, 900 hPa, 850 hPa, 800 hPa, 700 hPa, 600 hPa, 500 hPa, 400 hPa, 300 hPa, 250 hPa, and 200 hPa) are given.

Example of configuration file: Vertical integration of 3D variable data

The description below presents an excerpt of a configuration file along with a simple analysis. The other item settings are the same as in the previous configuration.

```
&INFO
...

Z_LEV_TYPE = "anal",

ZCOUNT = 1,

/

&ANAL
ANALYSIS = "sum",

/

&VARI
VNAME = "QC","QI","QG",
```

If (Z_LEV_TYPE)="anal", simple analysis is applied to the 3D variable. This setting enables [ANAL]. The specification of (TARGET_ZLEV) in [VARI] is disabled, and (ZCOUNT) in [INFO] is necessarily given as "1" because of the output of 2D data.

• [ANAL]

- (ANALYSIS): The type of vertical simple analysis is specified. "max" and "min" represent the maximum and minimum value outputs in the vertical column, respectively, whereas "sum" and "ave" represent the vertical integration and the vertical average outputs, respectively. The default value is "ave".

Example of configuration file: Conversion of 2D variables

The example below shows a configuration in the case where 2D variables are converted. Because of the output of 2D data, (ZCOUNT) in [INFO] is necessarily given as "1."

```
&LOGOUT
LOG_BASENAME = "LOG_dO1_2d",

&INFO

TIME_STARTDATE = 2000, 1, 1, 0, 0, 0,

START_TSTEP = 1,

END_TSTEP = 25,

DOMAIN_NUM = 1,

CONFFILE = "../run/run.d01.conf",

IDIR = "../run",

ZCOUNT = 1,

MAPPROJ_ctl = .true.

&VARI

VNAME = "T2", "MSLP", "PREC"
```


Example of configuration file change: Conversion of irregular data in time

As described in Section 4.2.8, although the output interval is basically defined by (FILE_HISTORY_DEFAULT_TINTERVAL), it is possible to change the output interval of particular variables by giving a value different from (FILE_HISTORY_DEFAULT_TINTERVAL) to (TINTERVAL) in [HISTORY_ITEM]. net2g supports the data conversion of these variables with different output interval by setting [EXTRA]. The below example shows the namelists, which should be added or modified for the case described in the last paragraph of Section 4.2.8 (only 2D data "RAIN" are output at a time interval of 600 s).

The history file can handle data with multiple different time intervals. Since net2g does not support the simultaneous conversion of variables with different output intervals, it is required to execute net2g separately for these variables.

```
&EXTRA

EXTRA_TINTERVAL = 600.0,

EXTRA_TUNIT = "SEC",

/

&VARI

VNAME = "RAIN",
```

Note for longitude and latitude

The variable names of longitude and latitude in SCALE-RM are "lon" and "lat", respectively. These names are used as reserved words in GrADS, so variable names in output from net2g are replaced to "long" for longitude and "lati" for latitude.

Note for execution on supercomputer

When a simulation is conducted on a supercomputer such as the K Computer, many output files are generated, where the size of each file is large. In such cases, the local disk space is often not large enough to store them, and post-processing may take a long time. In this case, both a simulation by SCALE-RM and its post-processing on the same supercomputer are recommended. On the K Computer, net2g can be compiled by the "make" command if the environmental variable is appropriately set as described in Section 2.2.1.

4.6.2 SCALE NetCDF Operator (SNO)

In default, the output file of SCALE-RM (called as SCALE-netCDF file) is divided according to the horizontal domain decomposition by the multiple processes. This style is efficient to the throughput of the file I/O during the model simulation. However, it is hard to handle a lot of files. The number of the file increases with increasing the number process, and we cannot use these files for the next simulation, with changing only the number of the MPI processes. Furthermore, many analytical and visualization tools do not support such distributed files. One solution to these problems is the aggregation of the output file. We can use the Parallel netCDF (PnetCDF). Please refer to Section 5.1.1.5. The other solution is usage of the post process tool SNO . SNO has the feature as follows:

• Combine the divided multiple files into a single file or multiple files

- Divide a single file or multiple files into multiple files
- Generate *.ctl file for reading the single NetCDF file by GrADS
- Convert to GrADS format file
- Average multiple steps in the output data
- Regrid to geodesic (latitude-longitude) grid system

By using SNO, you can manipulate the history, topography, boundary, and initial/restart data whether the files have the halo grids or not.

Limitations

SNO is available for the SCALE-netCDF file generated by the SCALE version 5.3 or newer. Because of the less information in the global attributes and the attributes of the axis data, older SCALE-netCDF files are not available. SNO is executable with multiple processes. However, a maximum number of the available process is limited by the number of output files from SNO . For example, if you want to convert the hundreds of SCALE-netCDF file to a single file, you can use only one MPI process for that operation. For GrADS format, it is difficult to contain the plural variables with the different vertical layer. Thus each variable is output to the individual aggregated file.

Rearrange of the multiple file is still limited. Each file must have the same size of the horizontal grid (without considering halo grid). An example is described in the configuration sample below.

Usage

The executable binary of SNO is not compiled together with the main program of SCALE-RM . SNO uses the SCALE library libscale.a, which will be located under the scale-5.3.6/lib directory. This library is generated at the time of compilation of SCALE-RM . So we recommend to execute the following command after the compilation of SCALE-RM :

- \$ cd scale-5.3.6/scale-rm/util/sno
- \$ make

If the compilation succeeds, the executable binary file is generated under the scale-5.3.6/bin directory. The execution sample of SNO is as follows:

\$ mpirun -n 2 ./sno sno.conf

In this sample, SNO is executed with two MPI processes by using "mpirun" command. The last argument is the configuration file. Any name is available for this file.

4.6.2.1 Samples of configuration: basic usage

Common configurations

SNO shares some components with SCALE-RM. You can configure following namelist parameters:

- [PARAM_IO]: Log file 4.5.1
- [PARAM_PROF]: Performance Profiler 4.5.6
- [PARAM_CONST]: Physical Constants, 4.5.3
- [PARAM_CALENDAR]: Calendar, 4.5.4

If no options are specified for [PARAM_IO], the progress log is output to standard output from a master process.

Multiple SCALE-netCDF files to a single NetCDF file

```
&PARAM_SNO

basename_in = 'input/history_d02',
dirpath_out = 'output',
basename_out = 'history_d02_new',
output_gradsctl = .true.,
```

This example converts history file named history_d02.pe#####.nc in the directory ./input directory, where ##### represents the MPI process number. The information of the divided files, such as the total number of files and the 2-D topology, is read from the first file (in this case, history_d02.pe000000.nc). The converted file is output to ./output directory with the new name history_d02_new.pe######.nc. Options about the number of output file and variables are not not specified in this example. In this case, input files are combined to a single file and all variables are kept.

When (output_gradsctl) is .true., SNO outputs a control file for GrADS . This file is generated only when the output file is single. A sample of detail of the control file is as follows:

```
SET ^history_d02.pe000000.nc
TITLE SCALE-RM data output
DTYPE netcdf
UNDEF -0.99999E+31
XDEF 88 LINEAR 134.12 0.027
YDEF 80 LINEAR 33.76 0.027
ZDEF 35 LEVELS
80.841 248.821 429.882 625.045 835.409 1062.158 1306.565 1570.008 1853.969
2160.047 2489.963 2845.574 3228.882 3642.044 4087.384 4567.409 5084.820 5642.530
6243.676 6891.642 7590.075 8342.904 9154.367 10029.028 10971.815 11988.030 13083.390
14264.060 15536.685 16908.430 18387.010 19980.750 21698.615 23550.275 25546.155
TDEF 25 LINEAR 00:00Z01MAY2010 1HR
PDEF 80 80 LCC 34.65 135.22 40 40 30.00 40.00 135.22 2500.00 2500.00
VARS 3
U=>U 35 t,z,y,x velocity u
PREC=>PREC 0 t,y,x surface precipitation flux
OCEAN_SFC_TEMP=>OCEAN_SFC_TEMP 0 t,y,x ocean surface skin temperature
ENDVARS
```

Generally, a single netCDF file is readable by GrADS without any extrnal metadata file. However, GrADS interface is limited and cannot understand the SCALE-netCDF format, which contains the assosiated coordinates and the map projections. That is because we need the control file.

Multiple SCALE-netCDF files to GrADS file

```
&PARAM_SNO
basename_in = 'input/history_d02',
dirpath_out = 'output',
output_grads = .true.,
vars = "U", "PRCP", "LAND_TEMP",
/
```


If (output_grads) is .true., SNO outputs GrADS format file instead of the SCALE-netCDF format. All of the decomposed data is combined spatially. Each variable is output individual file. Each file name is set to be the same as a variable name. The converted file is output to ./output directory. Note that the output path will not be set if you specify (basename_out). The control files are also generated. In this example, the conversion is applied only for the variables specified by (vars).

Multiple SCALE-NETCDF files to multiple NetCDF file

```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',
nprocs_x_out = 4,
nprocs_y_out = 6,
/
```

In this example, the number of input file is 4([x,y]=[2,2]) and each file has 30 grids (without halo) for x- and y-direction. The number of output file is 24([x,y]=[4,6]). As mentioned above, every file must have same size of grid after the redistribution. In this case, output file have 15 and 10 grids for x- and y- direction, respectively. You cannot set $nprocs_yout$ to 7 because 30x2=60 is indivisible by 7.

You can get the informations for redistribution by checking the global attribute in SCALEnetCDF file. For example, you can display the header informations by using "ncdump" command as follows:

\$ ncdump -h history_d02.pe000000.nc

You will find the global attributes at the end of dumped information.

```
.....
// global attributes:
.....
:scale_cartesC_prc_rank_x = 0;
:scale_cartesC_prc_rank_y = 0;
:scale_cartesC_prc_num_x = 2;
:scale_cartesC_prc_num_y = 2;
.....
:scale_atmos_grid_cartesC_index_imaxg = 60;
:scale_atmos_grid_cartesC_index_jmaxg = 60;
.....
```

scale_cartesC_prc_num_x and scale_cartesC_prc_num_y are the sizes of x- and y-direction in the 2-D file topology, respectively. scale_cartesC_prc_rank_x and scale_cartesC_prc_rank_y are the x- and y-positions of this file in the 2-D map, respectively. The rank number starts from 0. scale_atmos_grid_cartesC_index_imaxg and scale_atmos_grid_cartesC_index_jmaxg are the sizes of x- and y-grids in domain total, respectively. These numbers do not contain halo grid. Thus, you can use the divisor of these sizes for the division number of x- and y-directions.

Summary

Here we describe the detail of options in [PARAM_SNO].


```
&PARAM_SNO
basename_in = "",
                                 ; path and basename of the input file(s)
                                 ; output path
dirpath_out = "",
basename_out = "",
                                ; basename of the output file
                                 ; division number of file in x-direction
nprocs_x_out = 1,
                                 ; division number of file in y-direction
nprocs_y_out = 1,
vars = "",
                                 ; name of variables to operate
output_grads = .false.,
                                 ; output with grads format?
                                 ; output grads control file for the single SCALE-netCDF file?
output_gradsctl = .false.,
debug = .false.,
                                 ; output verbose log for debugging?
```

(basename_in) is always required. If (dirpath_out) is empty, the path for output is set to the current directory. (basename_out) is used for SCALE-netCDF file. If (output_grads) is set to .true., output name is same as the name of each variable and (basename_out) is ignored.

The default value of (nprocs_x_out) and (nprocs_y_out) is 1. It means that multiple files are combined to a single file. Note that the number of MPI processes for SNO must be same as, or less than the total number of output files (= (nprocs_x_out) x (nprocs_y_out)).

If (vars) is not specified, all of variables in the input file are processed.

4.6.2.2 Samples of configuration: plugin functions

Some features of SNO is provided as the plugin. You can apply the operators, such as time averaging and horizontal remapping, before outputting the combined/divided files.

Monthly averaging

```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',
nprocs_x_out = 2,
nprocs_y_out = 2,
/

&PARAM_SNOPLGIN_TIMEAVE
SNOPLGIN_timeave_type = 'NUMBER',
SNOPLGIN_timeave_interval = 4,
/
```

In this sample, the number of input file is 4, too. So the number of the files does not change by this conversion. When (SNOPLGIN_timeave_type) in [PARAM_SNOPLGIN_TIMEAVE] is set to 'NUMBER', the data is averaged in time axis. The averaging interval is specified by (SNOPLGIN_timeave_interval). In this case, the variables is averaged by every 4 output-steps.

The other sample is as follows:


```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',
/

&PARAM_SNOPLGIN_TIMEAVE
SNOPLGIN_timeave_type = 'MONTHLY',
/
```

Both the file aggregation and the time averaging are applied in this sample.

When (SNOPLGIN_timeave_type) is set to 'DAILY', 'MONTHLY', or 'ANNUAL', SNO try to daily,

monthly, annual average of the variables. The date and time of the data are read from the file. If you used ideal calendar for the simulation, you have to add same setting of [PARAM_CALENDAR] for the config file of SNO.

Regrid to 0.5 degree

```
&PARAM_SNO
basename_in = 'input/history_d02',
basename_out = 'output/history_d02',

/

&PARAM_SNOPLGIN_HGRIDOPE
SNOPLGIN_hgridope_type = 'LATLON',
SNOPLGIN_hgridope_lat_start = 30.0,
SNOPLGIN_hgridope_lat_end = 40.0,
SNOPLGIN_hgridope_dlat = 0.5,
SNOPLGIN_hgridope_lon_start = 130.0,
SNOPLGIN_hgridope_lon_end = 140.0,
SNOPLGIN_hgridope_lon_end = 0.5,
//
```

When (SNOPLGIN_hgridope_type) in [PARAM_SNOPLGIN_HGRIDOPE] is set to 'LATLON', horizontal remapping to the latitude-longitude grid system is applied. This plugin operator is available only when the output file is single. The other options in [PARAM_SNOPLGIN_HGRIDOPE] set the boundary of the output domain and the number of grid points. The size of longitude grid point nlon is calculated as follows:

```
{\tt nlon} = \frac{{\tt SNOPLGIN\_hgridope\_lon\_end-SNOPLGIN\_hgridope\_lon\_start}}{{\tt SNOPLGIN\_hgridope\_dlon}}.
```

The result of this calculation is rounded to an integer. Thus, the longitude of the easternmost grid point may become smaller than (SNOPLGIN_hgridope_lon_end). The size of latitude grid point is calculated in the same manner as that of longitude.

You can set the lat-lon domain larger than the original domain size used in the simulation. In remapping process, extrapolation is not allowed. An missing value is filled to the grid, which has no interpolated value.

Part 5

Detailed explanation for advanced use

Chapter 5.1

File IO of SCALE

5.1.1 What is SCALE-netCDF File?

In this section, SCALE-netCDF file, which SCALE directly reads from and writes in, is explained. SCALE employs netCDF (network Common Data Format) as data file format. NetCDF is a software developed by Unidata (http://www.unidata.ucar.edu/), and it enables us to generate files with self-describing and machine-independent data format; for example, the former has a merit to describe variables along with their axis variables in a file and the latter has a merit to treat data without worry which endian is used. Based on the above virtue, SCALE has particular conversion (SCALE-netCDF convention). It is mostly following the CF conventions (http://cfconventions.org).

5.1.1.1 Global Attributes

SCALE-netCDF file contains information about data contained in the file, such as those with regards to spatial decomposition as "Global Attributes" (Table 5.1.1).

5.1.1.2 Data in the Halo Region

Whether the file contains the data in the halo region depends on the type of file and its configuration. Note that the halo region that we define here means the halo in the whole calculation region, not the halo in each of local regions.

For the initial (or restart) and boundary data files, the halo data is contained if the lateral boundary conditions are not periodic ((PRC_PERIODIC_X), (PRC_PERIODIC_Y) = .false. in [PARAM_PRC_CARTESC]) or the single file I/O (Section 5.1.1.5) is used ((FILE_AGGREGATE)=.true. in [PARAM_FILE]), otherwise it is not.

On the other hand, for the history data file, the halo data is contained only when the lateral boundary conditions are not periodic ((PRC_PERIODIC_X), (PRC_PERIODIC_Y) = .false. in [PARAM_PRC_CARTESC]) and (FILE_HISTORY_CARTESC_BOUNDARY)=.true. in [PARAM_FILE_HISTORY_CARTESC], otherwise it is not. Refer Section 4.2.8 for detail.

5.1.1.3 Axis Variables

SCALE-netCDF file contains axis data. All the axis variables have "long_name" and "units" attributes, which describe description and unit of the variable, respectively. In addition, x, y, xh, and yh variables have attributes for the total number of grids in the whole domain ("size_global"), the start index in the total grid of data in the file ("start_global"), the number of the halo grids at the begin and end in the whole data ("halo_global"), and the number of the halo grids of data in the file ("halo_local").

Table 5.1.2 shows list of the axis data. The coordinate variables have their own dimension; their variable names are the same as their dimension names. The variables with lower-case name are

Name	Global attributes in SCALE-ne Description	Remarks	
title	Brief description of data	Value of	
		(FILE_History_TITLE)	
		<pre>in [PARAM_FILE_HISTORY]</pre>	
source	Name of the source software	Value of	
		(FILE_History_SOURCE) in	
		[PARAM_FILE_HISTORY] for	
		history files and (H_SOURCE)	
		in [PARAM_IO] for other files	
institution	Data author	Value of	
		(FILE_History_INSTITUTIO	
		in [PARAM_FILE_HISTORY]	
		for history files and	
		(H_INSTITUTE) for other	
		files	
rankid	Rank id of MPI process	PRC_myrank in the model	
Conventions	CF convention version	"CF-1.6" for version 5.3	
grid_name	Grid type	"cartesC" for SCALE-RM	
scale_cartesC_prc_rank_[xy]	Mapping index of the 2D de-	Equal to	
	composition	PRC_2Drank(PRC_myrank, i	
		variable in the model (i=1	
		for x and x for y	
$scale_cartesC_prc_num_[xy]$	Number of the 2D decompo-	(PRC_NUM_X), (PRC_NUM_Y)	
	sition	in the model	
$scale_cartesC_prc_periodic_[zxy]$	Whether the boundary con-	.false. and .true.	
	dition is periodic	They correspond to	
		(PRC_PERIODIC_X),	
		(PRC_PERIODIC_Y) in	
		the model	
$scale_atmos_grid_cartesC\setminus$	Number of the grids in the	$(IMAX) \times (PRC_NUM_X),$	
index[ij]maxg	global domain	$(JMAX) \times (PRC_NUM_Y)$ in	
		the model	
$scale_atmos_grid_cartesC\setminus$	Number of the vertical layer	(KMAX) in the model	
_index_kmax	for the atmospheric model		
$scale_ocean_grid_cartesC\setminus$	Number of the vertical layer	(OKMAX) in the model	
_index_kmax	for the ocean model		
$scale_land_grid_cartesC\setminus$	Number of the vertical layer	(LKMAX) in the model	
_index_kmax	for the land model		
$scale_urban_grid_cartesC\setminus$	Number of the vertical layer	(UKMAX) in the model	
_index_kmax	for the urban model		
$scale_atmos_grid_cartesC\setminus$	Number of halo grids	(KHALO), (IHALO), (JHALO)	
index[kij]halo		in the model	
Calendar	Calendar type	(PARAM_CALENDAR) in the	
	77. 1	model	
time_units	Unit of time		
time_start	Start time		
Refer Section 4.2.8 for (History			
Section 4.2.3 for (PRC_NUM_X, Pl		PRC_PERIODIC_Y),	
(KMAX, IMAX, JMAX), and $4.5.4$	tor (PARAM_CALENDAR).		

mainly used in the file, while those with the upper-case name describe axes in simulation. Figure 5.1.1 and 5.1.2 show the horizontal and vertical locations of coordinate variables, respectively. Refer to them with Table 5.1.2 at the same time.

The area and volume data of the grids are also in the file as "cell_area**" and "cell_volume**", respectively. The "cell_measures" attribute of each variables specifies the corresponding area or volume data.

The map projection data is contained as a non-dimensional variable whose name is specified by "grid_mapping" attribute of the variables.

The information of relationship the staggered grids, an attribute and a non-dimensional variable are contained as follows SGRID conventions (https://github.com/sgrid/sgrid). The non-dimensional variable's name is specified by the "grid" attribute of each variable.

In the file, there are also the surface elevation data and land mask data as "topo" and "lsmask", respectively.

Table 5.1.2: Axis data in SCALE-netCDF .

Coordinate	variables				
name	description				
Common: Horizontal axis & time					
X	full level position in x-direction of the data in the file				
x_b nds	full level cell boundary in x-direction of the data in the file				
xh	half level position in x-direction of the data in the file				
xh_bnds	half level cell boundary in x-direction of the data in the file				
У	full level position in y-direction of the data in the file				
y_bnds	full level cell boundary in y-direction of the data in the file				
yh	half level position in y-direction of the data in the file				
yh_bnds	half level cell boundary in y-direction of the data in the file				
time	time information				
time_bnds	time boundary information				
CX	full level grid position in x-direction for the local region (inc. halo grids)				
FX	half level grid position in x-direction for the local region (inc. halo grids)				
CDX	full level grid spacing in x-direction (inc. halo grids)				
FDX	half level grid spacing in x-direction (inc. halo grids)				
CY	full level grid position in y-direction for the local region (inc. halo grids)				
FY	half level grid position in y-direction for the local region (inc. halo grids)				
CDY	full level grid spacing in y-direction (inc. halo grids)				
FDY	half level grid spacing in y-direction (inc. halo grids)				
CXG	full level grid position in x-direction for the whole region (inc. halo grids)				
FXG	half level grid position in x-direction for the whole region (inc. halo grids)				
CYG	full level grid position in y-direction for the whole region (inc. halo grids)				
FYG	half level grid position in y-direction for the whole region (inc. halo grids)				
	Vertical axis: Atmosphere				
Z	full level position in z-direction in the file				
z_bnds	full level cell boundary in z-direction in the file				
zh	half level position in z-direction in the file				
zh_bnds	half level cell boundary in z-direction in the file				
CZ	full level grid position in z-direction (inc. halo grids)				
FZ	half level grid position in z-direction (inc. halo grids)				
CDZ	full level grid spacing in z-direction (inc. halo grids)				
FDZ	half level grid spacing in z-direction (inc. halo grids)				
	Vertical axis: Land				
OZ	full level position in z-direction of the ocean data in the file				
oz_bnds	full level cell boundary in z-direction of the ocean data in the file				
ozh	half level position in z-direction of the ocean data in the file				
ozh_bnds	half level cell boundary in z-direction of the ocean data in the file				

Cont.				
OCZ	full level grid position in z-direction of the ocean model			
OFZ	half level grid position in z-direction of the ocean model			
OCDZ	full level grid spacing in z-direction of the ocean model			
	Vertical axis : Land			
lz	full level position in z-direction of the land data in the file			
lz_bnds	full level cell boundary in z-direction of the land data in the file			
lzh	half level position in z-direction of the land data in the file			
lzh_bnds	half level cell boundary in z-direction of the land data in the file			
LCZ	full level grid position in z-direction of the land model			
LFZ	half level grid position in z-direction of the land model			
LCDZ	full level grid spacing in z-direction of the land model			
	Vertical axis: Urban canopy			
uz	full level position in z-direction in the file			
uz_bnds	full level cell boundary in z-direction in the file			
uzh	half level position in z-direction in the file			
uzh_bnds	half level cell boundary in z-direction in the file			
UCZ	full level grid position in z-direction			
UFZ	half level grid position in z-direction			
UCDZ	full level grid spacing in z-direction			
Other axis v	rariables (1D)			
name	description			
CBFZ	buffer factor at CZ			
FBFZ	buffer factor at FZ			
CBFX	buffer factor at CX for the local region			
FBFX	buffer factor at FX for the local region			
CBFY	buffer factor at CY for the local region			
FBFY	buffer factor at FY for the local region			
CBFXG	buffer factor at CXG for the whole region			
FBFXG	buffer factor at FXG for the whole region			
CBFYG	buffer factor at CYG for the whole region			
FBFYG	buffer factor at FYG for the whole region			
Other axis v	variables (2D)			
name	description			
lon	longitude at (y, x)			
lon_uy	longitude at (y, xh)			
lon_xv	longitude at (yh, x)			
lon_uv	longitude at (yh, xh)			
lat	latitude at (y, x)			
lat_uy	latitude at (y, xh)			
lat_xv	latitude at (yh, x)			
lat_uv	latitude at (yh, xh)			
-	variables (3D)			
name	description			
height	heigth at (z, y, x) in history file or at (y, x, z) in restart/initial file			
height_xyw	height at (zh, y, x) in history file or at (y, x, zh) in restart/initial file			
height_xvz	height at (z, yh, x) in history file or at (yh, x, z) in restart/initial file			
$height_uyz$	height at (z, yh, xh) in history file or at (hy, x, z) in restart/initial file			
height_xvw	height at (zh, yh, x) in history file or at (yh, x, zh) in restart/initial file			
height_uyw	height at (zh, y, xh) in history file or at (y, xh, zh) in restart/initial file			
$height_uvz$	height at (z, yh, xh) in history file or at (yh, xh, z) in restart/initial file			
height_uvw	height at (zh, yh, xh) in history file or at (yh, xh, zh) in restart/initial file			

Table 5.1.3: Functionality of each netCDF versions.

multiple			Read	Read	Read
	time interval	Compression	netCDF 3 file	netCDF 4 file	single file
netCDF 3	NG	NG	OK	NG	NG*
netCDF 4	OK	OK	OK	OK	NG^*
pnetCDF	\overline{NG}	\overline{NG}	NG^*	\overline{NG}	OK

^(*) it is OK if the number of total processes is 1.

5.1.1.4 Data Variables

Data variables have attributes of the undefined value "FillValue" and the missing value "missing_value" as well as "long_name" and "untis". Data structure in the initial (restart) data and boundary data files is identical to the array in the model, that is the z-x-y order. On the other hand, it in the history data file is the x-y-z order. This is true for 3D axis variables. See also Table 5.1.2.

5.1.1.5 Single File I/O

As default, all the data files are output by each process, namely separate file I/O. If SCALE-RM is compiled with pnetCDF (environmental variable SCALE_ENABLE_PNETCDF=T), the data from all processes can be combined into a single file (See Section 2.2.1). To do this, set (FILE_AGGREGATE) in [PARAM_FILE]) .true.. The all the data files become single file. In stead, you can switch on/off of the single I/O for individual file types, i.e., history, init/restart, topography, and land use files. Set (FILE_HISTORY_AGGREGATE)=.true. in [PARAM_FILE_HISTORY] for the history file. For init/restart files, set (RESTART_(IN|OUT)_AGGREGATE)=.true. in [PARAM_(MODELNAME)_VARS]. Here, (MODELNAME) are "ATMOS", "OCEAN", "LAND", or "URBAN". For topography and land use files, set (TOPO_(IN|OUT)_AGGREGATE)=.true. in [PARAM_TOPO] and (LANDUSE_(IN|OUT)_AGGREGATE)=.true. in [PARAM_LANDUSE], respectively.

5.1.1.6 Restrictions with NetCDF 3

If SCALE is compiled with netCDF version 3, the following restrictions exist.

- Variables with different time intervals cannot stored in the same file.
- Compression of data cannot be used.
- File of netCDF 4 format cannot be read.

If you want to output variables with different time intervals, set (BASENAME) in [HISTORY_ITEM] to output them to different files.

Note that the restrictions of the multiple time interval and compression are placed when the single file I/O is used, because pnetCDF is based on netCDF 3 file format.

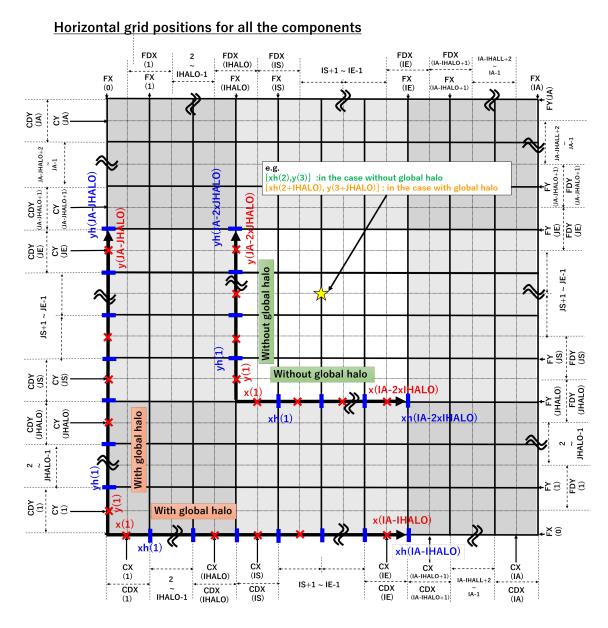


Figure 5.1.1: Horizontal coordinate in SCALE-netCDF $\,$ file

Vertical grid positions for each component and physical meanings

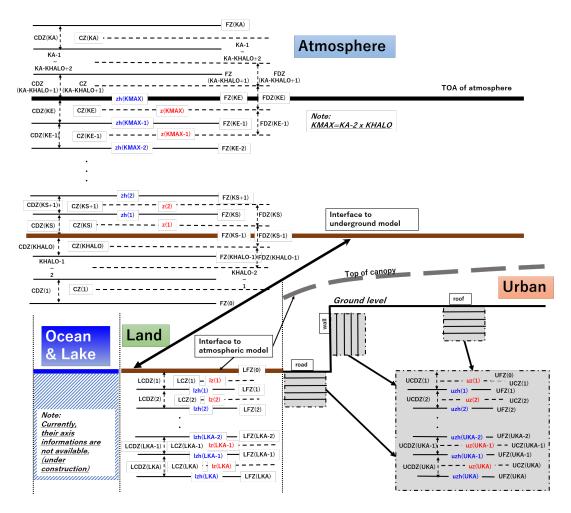


Figure 5.1.2: Horizontal coordinate in SCALE-netCDF $\,$ file

Chapter 5.2

How to use user defined program

5.2.1 Module for user defined settings

SCALE-RM prepares many options, which users can specify as namelist parameters, to meet users' demand for their calculations. However, when there is no option you desire, you can modify model variables directly as you want by programming using the module for users, namely mod_user. This section describes what is mod_user module and how to use it.

5.2.1.1 What is mod_user module?

The default mod_user module is provided in scale-5.3.6/scale/scale-rm/src/user/mod_user.F90. Prepare your own mod_user.F90 and then compile it instead of the default one.

The module must contain the following subroutines:

```
subroutine USER_tracer_setup
subroutine USER_setup
subroutine USER_mkinit
subroutine USER_update
subroutine USER_calc_tendency
```

This is the sequence of execution of the scale-rm.

```
Initial setup
  IO setup
  MPI setup
  Grid settings
  Setup of administrator for dynamics and physics schemes
  Tracer setup
  USER tracer setup
  Setup topography, land
  Setup of vars and drivers for dynamics and physics schemes
  USER setup
Main routine
  Time advance
  Ocean/Land/Urban/Atmos update
  User update
  Output restart
  Calculation of tendency in Atmos/Ocean/Land/Urban
  Calculation of tendency
  History output
```

The timings for calling individual subroutines of the mod_user are indicated by blue color. The USER_mkinit is called in the init program scale-rm_init.

Since the subroutines in mod_user are basically called after handling each process, you can replace any settings and variables as you need. You can also add several tracers, such as passive tracers, in USER_tracer_setup. There are several examples of mod_user.F90 in the test cases (scale-5.3.6/scale-rm/test/case).

5.2.1.2 Compile

To compile SCALE-RM with your mod_user.F90, you can use the Makefile in the test cases as follows.

- \$ cd scale-5.3.6/scale-rm/test/case
- \$ mkdir -p your_dir/exp_name
- \$ cd your_dir/exp_name
- \$ cp ../../advection/500m/Makefile .

Copy your mod_user.F90 to this directory.

\$ make

Chapter 5.3

How to use scale library

5.3.1 User Program Using SCALE

SCALE is a collection of subroutines. The subroutines can be used in an arbitrary program. The library file is created as "scalelib.a" under scale-5.3.6/lib/ after compiling.

The following is a template when you use SCALE in your program.

```
program template
use scalelib
implicit none

call SCALE_init
! user instractions

call SCALE_finalize

stop
end program template
```

The following is a pseudo program calculating convective available potential energy (CAPE) from atmospheric quantities read from a file. You needs to use necessary modules and prepare required input variables before main part. Note that this is only a part of the program.


```
use scale_const, only: &
Rdry => CONST_Rdry, Rvap => CONST_Rvap, CPdry => CONST_CPdry
use scale_atmos_hydrometeor, only: &
CPvap => CP_VAPOR, CL => CP_WATER
use scale_file, only: &
FILE_open, FILE_read, FILE_close
use scale_atmos_adiabat, only: &
ATMOS_ADIABAT_setup, ATMOS_ADIABAT_cape
real(8) :: z(kmax,imax,jmax), zh(0:kmax,imax,jmax)
real(8) :: temp(kmax,imax,jmax), pres(kmax,imax,jmax), dens(kmax,imax,jmax)
real(8) :: qv(kmax,imax,jmax), qc(kmax,imax,jmax), qdry(kmax,imax,jmax)
real(8) :: rtot(kmax,imax,jmax), cptot(kmax,imax,jmax)
real(8) :: cape(imax,jmax), cin(imax,jmax)
real(8) :: lcl(imax,jmax), lfc(imax,jmax), lnb(imax,jmax)
call FILE_open( basename, fid ) ! open file
call FILE_read( fid, 'height', z(:,:,:) ) ! read full-level height data
call FILE_read( fid, 'height_xyw', zh(:,:,:) ) ! read half-level height data
call FILE_read( fid, 'T', temp(:,:,:) ) ! read temperature data
: ! read PRES, DENS, QV, QC
call FILE_close( fid )
! calculate some variables required to calculate CAPE
qdry(:,:,:) = 1.0D0 - qv(:,:,:) - qc(:,:,:) ! mass ratio of dry air
rtot(:,:,:) = qdry(:,:,:) * Rdry + qv(:,:,:) * Rvap ! gas constant
cptot(:,:,:) = qdry(:,:,:) * CPdry + qv(:,:,:) * CPvap + ql(:,:,:) * CL ! heat capacity
call ATMOS_ADIABAT_setup
call ATMOS_ADIABAT_cape( kmax, 1, kmax, imax, 1, imax, jmax, 1, jmax, & ! array size
                        k0, & ! percel initial layer
                        dens(:,:,:), temp(:,:,:), pres(:,:,:), & ! input
                        qv(:,:,:), qc(:,:,:), qdry(:,:,:), & ! input
                        rtot(:,:,:), cptot(:,:,:), & ! input
                        z(:,:,:), zh(:,:,:), & ! input
                        cape(:,:), cin(:,:), lcl(:,:), lfc(:,:), lnb(:,:)) ! output
```

In the reference manual (see Section 5.3.2), you can find list of the subroutine which is available and details of the subroutines. There are sample programs for analysis of SCALE-RM history file at the scale-5.3.6/scalelib/test/analysis directory.

5.3.1.1 Compile

Before compiling your program using SCALE , you need to compile SCALE .

```
$ cd scale-5.3.6/scalelib/src
```

\$ make

To compile your program, you need to link libscale.a located at scale-5.3.6/lib. You also have to tell the path of the module files to the compiler. The module path is scale-5.3.6/include. The option to specify the module path depends on compiler. You can find the option in the sysdep file as MODDIROPT variable (refer Section 2.2.1).


```
$ cd your_dir
$ cp ../horizontal_mean/Makefile .
Copy your program file to this directory.
Edit Makefile (BINNAME = your_program_name).
$ make
```

5.3.2 Reference manual

Reference manual for the SCALE subroutines is available on https://scale.aics.riken.jp/doc/5.3.6/index.html. This reference manual is generated by doxgen (http://www.doxygen.org/).

The reference has the following information:

- Subroutines
- NAMELIST parameters
- History variables

5.3.2.1 Subroutines

The subroutine information contains the description, arguments, and call graph. The source code of the subroutine can be also seen. Users can find subroutins through "Module List" or "File List", which are linked at the top page or the top menu. The module list has brief description of each module.

The prefix of module name is "scale_" for SCALE and "mod_" for SCALE-RM , respectively. The file name is the module name with suffix of ".F90". The name of the subroutines consists of a module name except the prefix and the name explaining function.

For example, the subroutine of ATMOS_ADIABAT_cape is contained in the module of scale_atmos_adiabat in the file of scale_atmos_adiabat.F90.

5.3.2.2 NAMELIST Parameters

You can see the NAMELIST parameter list throught the link at the top page of the reference manual, or the directly at https://scale.aics.riken.jp/doc/5.3.6/namelist.html. The list has the parameter name, NAMELIST group name, and module name where the variable is defined. The parameters are sorted by the variable name. The detail information of parameters can be see by clicking the NAMELIST group name or module name.

5.3.2.3 History Variables

You can see the History variable list throught the link at the top page of the reference manual, or the directly at https://scale.aics.riken.jp/doc/5.3.6/history.html. The list has the

variable name, brief description, and module name where the variable is registered for the history data. The variables are sorted by the module name. The detail information of variables can be see by clicking the module name.

Chapter 5.4

How to Conduct Bulk Job

5.4.1 What's Bulk Job

SCALE-RM has a functionality for bulk jobs that allows simultaneous multiple execution of independent runs. This function is useful for the parameter-sweep experiment, the ensemble experiment in different initial conditions, the time-slice climate simulation, and so on.

The bulk job function can be used not only for model simulation (scale-rm), but also for the generation of topographical data, land-use data, and initial/boundary data. Note that the generation of topographical/land-use data by this function is limited to the case without a topography copy function (See 4.2.10.1).

In the following explanation, an independent execution in the bulk job is called a "sub-job." Three two-domain nesting experiments are taken up as an example. This set of experiments is imaged as three sub-jobs with different integration periods and centers of calculation domain. (NUM_DOMAIN, PRC_DOMAINS, CONF_FILES) in [PARAM_LAUNCHER] in the file launch.conf (refer to Section 4.2.10.3) must be the same in all configurations. The other settings, such as integration time, the scheme used, and the number of grids per MPI process, do not need to be the same among the sub-jobs.

5.4.2 Settings for Bulk Job

Since the bulk job function is an extension of the division and redistribution of MPI processes used in online nesting, file launch.conf is required to launch the job. Even in case online nesting and bulk job functions are used together, only one file launch.conf is prepared. Below is an example of such a case.

```
&PARAM_LAUNCHER
NUM_BULKJOB = 3
                                               number of sub-jobs
NUM_DOMAIN = 2,
                                               number of nesting domains
PRC_DOMAINS = 9, 36,
                                               number of total process in each domain
CONF_FILES = run.d01.conf, run.d02.conf,
                                               name of configulation files
LOG_SPLIT = .false.,
                                               log-output for mpi splitting?
COLOR_REORDER = .true.,
                                               coloring reorder for mpi splitting?
FAILURE_PRC_MANAGE = .false.,
                                               use failure process management?
NUM_FAIL_TOLERANCE = 1,
                                               tolerance number of failure processes
FREQ_FAIL_CHECK = 5,
                                               FPM polling frequency per DT
```

It is sufficient to add item (NUM_BULKJOB) to the launch.conf. The other configurations are similar to those in Section 4.2.10.3. In case of a single-domain experiment (no nesting), specify $(NUM_DOMAIN) = 1$ and assign a file name to $(CONF_FILES)$.

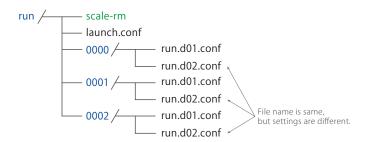


Figure 5.4.1: Structure of directories at the bulk job execution of SCALE-RM . Numbers such as "0000" are the directory names corresponding to job number, and called the job directory. All necessary configuration files must be prepared in each job directory.

Log of MPI communicator splitting will output, when (LOG_SPLIT) is .true.. The default value of (LOG_SPLIT) is .false..

Option of (COLOR_REORDER) is the switch fo job rearrangement in MPI communicator groups following the process size of the job. The job which has the largest process size is arranged at the front row; this would be reasonable to gain the efficient inter-node communication.

5.4.3 Failure Process Management

In the SCALE-RM bulk job system, a failure process management (FPM) tool is available. FPM watches the job groups with a polling interval. If some jobs are unfortunately aborted, all other jobs are not aborted until the number of failure jobs reacheas to the limit number. (FAILURE_PRC_MANAGE) is a switch for use FPM tool. (NUM_FAIL_TOLERANCE) and (FREQ_FAIL_CHECK) are setting parameters for limit number of failure jobs and interval of checking failure job, respectively. Note, this version of FPM tool is available only for single domain calculation, not available of full system for online-nesting calculation. If you want to use FPM tool even in online-nesting calculation, (NUM_FAIL_TOLERANCE) must be equal to the number of all jobs.

5.4.4 Preparation for Bulk Job

Prior to the execution of bulk jobs, prepare as many directories as the number of jobs, which are called "sub-directories." As in Fig. 5.4.1, these correspond to 0000/ 0001/ 0002/. The directory name is assigned as a four-digit number starting from zero. In each directory, all the necessary files (configuration files, input files, and output directories) must be prepared. Note than the path to directoies or files specified in the configuration files must be correctly set up as explained below. An excerpt of run.dol.conf for job 0000 are as follows:

As shown in Fig. 5.4.1, job directories exist in the same hierarchy as the directory of the executable binary. That is, a configuration file exists under each job directory, whereas the input files and the output directories must be described as relative paths from the location of the executable binary. The output directory in the 0000 experiment is 0000/ and the name of output files are as 0000/***. Note that when the file name is common to all experiments without job directory settings, the output is written to the same file, and the data disappear as a result.

5.4.5 Execution of Bulk Job

At the execution of bulk jobs, the total number of MPI processes is specified as

```
$ mpirun -n 135 ./scale-rm launch.conf
```

In this example, the number of processes per sub-job is 45 = 9 + 36 and the total number of processes used for three sub-jobs is 135. The message providing information regarding the division of MPI processes is written to the LOG files after the SCALE logo. The following example is the log output for process 0 of Domain 1:


```
+++++ start MPI
*** UNIVERSAL_COMM_WORLD : 0
                                       ; different by execution environment
*** total process [UNIVERSAL] : 135
*** my process ID [UNIVERSAL] : 36
*** master rank? [UNIVERSAL] : F
*** GLOBAL_COMM_WORLD : 3
                                       ; different by execution environment
*** total process [GLOBAL] : 45
*** my process ID [GLOBAL] : 36
*** master rank? [GLOBAL] : F
                                       ; different by execution environment
*** LOCAL_COMM_WORLD : 4
*** total process [LOCAL] : 9
*** my process ID [LOCAL] : 0
*** master rank? [LOCAL] : T
*** ABORT_COMM_WORLD : 0
*** master rank ID [each world] : 0
```

The items belonging to [LOCAL], [GLOBAL], and [UNIVERSAL] are the descriptions, respectively, of the process group in the domain, the nesting group, and the job group. The UNIVERSAL group includes the GLOBAL group and the GLOBAL group includes the LOCAL group. total process represents the total number of processes in each group and my process ID the ID of the process in the group.

It can be confirmed in this case that 1) since total process [UNIVERSAL] is 135, all these processes are completed executed; 2) since total process [GLOBAL] is 45, these 45 processes are used in a sub-job; 3) since this example is the log file for Domain 1, total process [LOCAL] is correctly described as 9. If you see the log message for Domain 2, it is 39. my process ID [UNIVERSAL] is the process number corresponding to the LOG and history files. Since this notation is the same as in the abnormal completion of execution, you can immediately recognize the processes in which errors occur during the execution of the sub-jobs. Note that in the current version, all jobs are forcibly terminated if a job is abnormally finished.

Bibliography

- A. C. M. Beljaars and A. A. M. Holtslag. Flux parameterization over land surfaces for atmospheric models. *J. Appl. Meteor.*, 30:327341, 1991.
- A. R. Brown, S. H. Derbyshire, and P. J. Mason. Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quarterly Journal of the Royal Meteorological Society, 120:1485–1512, 1994.
- Committee on Space Research; NASA National Space Science Data Center. Cospar international reference atmosphere (cira-86): Global climatology of atmospheric parameters, 2006.
- J. W. Deardorff. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorology, 18:495–527, 1980.
- A. M. Golovin. The solution of the coagulation equation for cloud droplets in a rising air current. *Izv. Geophys. Ser*, 5:482–487, 1963.
- J. S. Kain. The kain-fritsch convective parameterization: An update. J. Appl. Meteor., 43:170–181, 2004.
- J. S. Kain and J. M. Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization. *Journal of the Atmospheric Sciences*, 47:2784–2802, 1990.
- E. Kessler. On the distribution and continuity of water substance in atmospheric circulation. *Meteorological Monograph*, 10:1–84, 1969.
- Barry Koren. A robust upwind discretization method for advection, diffusion and source terms. Centrum voor Wiskunde en Informatica Amsterdam, 1993.
- H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. *Boundary-Layer Meteorol.*, 101:329–358, 2001.
- D. K. Lilly. On the numerical simulation of buoyant convection. Tellus, 14:148–171, 1962.
- A. Long. Solutions to the droplet collection equation for polynomial kernels. *Journal of the Atmospheric Sciences*, 31:1041–1052, 1974.
- G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. *Rev. Geophys. Space Phys.*, 20:851–875, 1982.
- M. J. Miller, A. C. M. Beljaars, and T. N. Palmer. The sensitivity of the ecmwf model to the parameterization of evaporation from the tropical oceans. *Journal of Climate*, 5(5):418–434, 1992.
- I.-J. Moon, I. Ginis, T. Hara, and B. Thomas. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. *Mon. Weather Rev.*, 135:2869–2878, 2007. doi: 10.1175/MWR3432.1.

- T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura. Modeling of the radiative process in an atmospheric general circulation model. *Applied Optics*, 39:4869–4878, 2000. doi: 10.1364/AO.39.004869.
- M. Nakanishi and H. Niino. An improved mellor-yamada level-3 model with condensation physics: Its design and verification. *Bound-Lay. Meteorol.*, 112:1–31, 2004.
- M. Narita and S. Ohmori. Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the kain-fritsch convective parameterization and cloud microphysics. 12th Conference on Mesoscale Processes, 6-9 August 2007, Waterville Valley conference & event center:available from https://ams.confex.com/ams/12meso/techprogram/paper_126017.htm, 2007.
- S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. *Geosci. Model Dev.*, 8(10): 3393–3419, 2015. doi: 10.5194/gmd-8-3393-2015.
- Y. Ogura and H.-R. Cho. Diagnostic determination of cumulus cloud populations from observed large-scale variables. *Journal of the atmospheric sciences*, 30(15):1276–1286, 1973.
- Katsuyuki V Ooyama. A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. *Journal of the atmospheric sciences*, 58(15):2073–2102, 2001.
- J-L Redelsperger, PRA Brown, F Guichard, C How, M Kawasima, S Lang, Th Montmerle, K Nakamura, K Saito, C Seman, et al. A gcss model intercomparison for a tropical squall line observed during toga-coare. i: Cloud-resolving models. Quarterly Journal of the Royal Meteorological Society, 126(564):823–863, 2000.
- J. J. Remedios, R. J. Leigh, A. M. Waterfall, D. P. Moore, H. Sembhi, I. Parkes, J. Greenhough, M. P. Chipperfield, and D. Hauglustaine. Mipas reference atmospheres and comparisons to v4.61/v4.62 mipas level 2 geophysical data sets. Atmos. Chem. Phys. Discuss., 7:9973–10017, 2007. doi: doi:10.5194/acpd-7-9973-2007.
- Y. Sato, S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa, and H. Tomita. Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation? *Progress in Earth and Planetary Science*, 2(1):1–16, 2015. doi: 10.1186/s40645-015-0053-6.
- A. Scotti, C. Meneveau, and D. K. Lilly. Generalized smagorinsky model for anisotropic grids. *Physics of Fluids A*, 5:2306–2308, 1993.
- T. Seiki and T. Nakajima. Aerosol effects of the condensation process on a convective cloud simulation. *Journal of the Atmospheric Sciences*, 71:833–853, 2014.
- M. Sekiguchi and T. Nakajima. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. *J. of Quantitative Spectroscopy and Radiative Transfer*, 109:2779–2793, 2008.
- J. Smagorinsky. General circulation experiments with the primitive equations. *Mon. Weather Rev.*, 91:99–164, 1963.
- K. Suzuki, T. Nakajima, T. Y. Nakajima, and A. P. Khain. A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. *Journal of the Atmospheric Sciences*, 67(4):1126–1141, 2010.
- Team SCALE. The detail formulation of SCALE-RM. RIKEN/AICS, 2015.
- H. Tomita. New microphysical schemes with five and six categories by diagnostic generation of cloud ice (¡special issue; the international workshop on high-resolution and cloud modeling, 2006). Journal of the Meteorological Society of Japan. Ser. II, 86:121–142, 2008.

- I Uno, X-M Cai, DG Steyn, and S Emori. A simple extension of the louis method for rough surface layer modelling. *Boundary-Layer Meteorology*, 76(4):395–409, 1995.
- Louis J Wicker and William C Skamarock. Time-splitting methods for elastic models using forward time schemes. *Monthly Weather Review*, 130(8):2088–2097, 2002.
- D. K. Wilson. An alternative function for the wind and temperature gradients in unstable surface layers. *Bound-Lay. Meteorol.*, 99:151–158, 2001.
- S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. *J. Comput. Phys.*, 31:335-362, 1979. doi: 10.1016/0021-9991(79)90051-2.

Part 6 Appendix

Appendix A

Frequently asked questions

In this chapter, frequently asked questions are shown as specific exercises, and answers to them are provided.

Questions

1. How is the number of MPIs parallel changed while maintaining the computational domain?

Change the MPI process number from 4-MPI parallel to 6-MPI parallel for the tutorial case of the real atmospheric experiment in Chap. 3.2. (Reference: Section 4.2.3.1 and 4.2.3.2).

2. How is the computational domain altered while maintaining the number of MPIs parallel?

Extend the computational domain to four-thirds of its original size along the x direction and shrink it to two-thirds along the y direction for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference:Section 4.2.3.2).

3. How is horizontal grid interval changed while maintaining the computational domain?

Change the horizontal grid interval from the default value to 5 km for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference :Section 4.2.3.2, 4.2.3.3, 4.2.3.5, and 4.2.7).

4. How is the location of computational domain altered?

Change the domain center from the default value to a longitude of 135°45.4′ and a latitude of 35°41.3′ while maintaining the domain size for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference:Section 4.2.4).

5. How is the integration time changed?

Change the integration period from six hours to 12 hours for the tutorial case of the real atmospheric experiment in Chap. 3.2 (Reference:Section 4.2.7).

6. How are output variables added and their output interval changed?

Change the output interval from the default to 30 min, and add the downward and upward shortwave radiations at the surface as output variables for the tutorial case of the real atmospheric experiment in Chap. 3.2. (Reference:Section 4.2.8, Section 5.3.2).

7. How does the model restart?

Using the tutorial of the real atmospheric experiment in Chap. 3.2, execute three-hour integration. Then execute another 3 hours of integration using the restart files created in the first integration. (Reference: Section 4.2.9 and 4.1.1).

Answer

1. How is the number of MPIs parallel changed while maintaining the computational domain?

(IMAX, JMAX) in [PARAM_ATMOS_GRID_CARTESC_INDEX] and (PRC_NUM_X, PRC_NUM_Y) in [PARAM_PRC] are changed. If the below conditions are satisfied, your answer is correct:

```
Number of MPIs parallel = (PRC_NUM_X) \times (PRC_NUM_Y) = 6

Number of grid cells along the X direction = (IMAX \times PRC_NUM_X) = 90

Number of grid cells along the X direction = (JMAX \times PRC_NUM_Y) = 90
```

2. How is the computational domain altered while maintaining the number of MPIs parallel?

If the number of grid cells per MPI process increases n times, the total number of grid cells also increases n times. Thus, only (IMAX, JMAX) in [PARAM_ATMOS_GRID_CARTESC_INDEX] are changed. The red parts indicate the answer below:

```
&PARAM_ATMOS_GRID_CARTESC_INDEX

KMAX = 36,

IMAX = 60,

JMAX = 30,

(IMAX = 45 in the original settings)

//
```

3. How is horizontal grid interval changed while maintaining the computational domain?

When the number of MPIs parallel is not changed, (DX, DY) in [PARAM_ATMOS_GRID_CARTESC] and (IMAX, JMAX) in [PARAM_ATMOS_GRID_CARTESC_INDEX] should be changed.

```
&PARAM_PRC_CARTESC

PRC_NUM_X = 2,

PRC_NUM_Y = 2,

&PARAM_ATMOS_GRID_CARTESC_INDEX

KMAX = 36,

IMAX = 180,

JMAX = 180,

(IMAX = 45 in the original settings)

(JMAX = 45 in the original settings)

/

&PARAM_ATMOS_GRID_CARTESC

DX = 5000.D0,

DY = 5000.D0,

(DX = 20000.D0 in the original settings)

/

(DY = 20000.D0 in the original settings)
```

In case the number of MPIs parallel are also changed, if the below conditions are satisfied in addition to &PARAM_ATMOS_GRID_CARTESC, your answer is correct:

```
Number of grids along the X direction = (IMAX \times PRC_NUM_X) = 360
Number of grids along the Y direction = (JMAX \times PRC_NUM_Y) = 360
```

Moreover, it is necessary to suitably change the time interval for the dynamics, i.e., (TIME_DT_ATMOS_DYN) and (ATMOS_DYN_TINTEG_SHORT_TYPE) (refer to Section 4.2.7). The width of the buffer region should be set between 20 and 40 times of the grid spacing. Below is an example of the answer, indicating the case where the buffer region was set to 20 times the grid spacing.

```
&PARAM_PRC_CARTESC

BUFFER_DX = 100000.D0, (BUFFER_DX = 400000.D0, in the original settings)

BUFFER_DY = 100000.D0, (BUFFER_DY = 400000.D0, in the original settings)

/
```


4. How is the location of the computational domain changed?

The coordinates of the center of the computational domain are changed as follows. Note that the unit is degrees. For example, 139 degrees 45.4 min = 139 + 45.4/60 degrees.

```
&PARAM_MAPPROJECTION

MAPPROJECTION_basepoint_lon = 139.7567D0, (135.220404D0, in the original setting)

MPRPROJECTION_basepoint_lat = 35.6883D0, (34.653396D0, in the original setting)

MAPPROJECTION_type = 'LC',

MAPPROJECTION_LC_lat1 = 30.00D0,

MAPPROJECTION_LC_lat2 = 40.00D0,
```

5. How is the integration time changed?

```
&PARAM_TIME

TIME_STARTDATE = 2007, 7, 14, 18, 0, 0,

TIME_STARTMS = 0.D0,

TIME_DURATION = 12.0D0,

TIME_DURATION_UNIT = "HOUR",
```

Furthermore, it is necessary to prepare a boundary condition of more than 12 hours by scale-rm_init. Referring to Section 4.1.1, (NUMBER_OF_FILES) must be set greater than 3.

6. How are output variables added and their output interval changed?

The output interval is set to (FILE_HISTORY_DEFAULT_TINTERVAL) in [PARAM_FILE_HISTORY] as below. The output variables are specified at (ITEM) in [HISTORY_ITEM]. The list of the history variables is in the reference manual. See Section 5.3.2 for the reference manual.

```
&PARAM_FILE_HISTORY

FILE_HISTORY_DEFAULT_BASENAME = "history_d01",

FILE_HISTORY_DEFAULT_TINTERVAL = 1800.D0, (3600.D0, in the original settings)

FILE_HISTORY_DEFAULT_TUNIT = "SEC",

/

&HISTORY_ITEM NAME="SFLX_SW_up" / added
&HISTORY_ITEM NAME="SFLX_SW_dn" / added
```

7. How does the model restart?

The first integration for three hours is configured in run.conf as below. Once the three hours for integration have elapsed, the restart file is created.


```
&PARAM_TIME
 TIME_STARTDATE = 2007, 7, 14, 18, 0, 0,
 TIME_STARTMS = 0.D0,
 TIME_DURATION = 3.0D0,
                             necessary for more than 3 hours
 TIME_DURATION_UNIT = "HOUR",
 TIME_DT_ATMOS_RESTART = 10800.D0,
 TIME_DT_ATMOS_RESTART_UNIT = "SEC",
 TIME_DT_OCEAN_RESTART = 10800.D0,
 TIME_DT_OCEAN_RESTART_UNIT = "SEC",
 TIME_DT_LAND_RESTART = 10800.D0,
 TIME_DT_LAND_RESTART_UNIT = "SEC",
 TIME_DT_URBAN_RESTART = 10800.D0,
 TIME_DT_URBAN_RESTART_UNIT = "SEC",
&PARAM_RESTART
RESTART_OUTPUT = .true.,
                                 (.false., in the original setting)
RESTART_IN_BASENAME = "../init/init_d01_20070714-180000.000",
RESTART_OUT_BASENAME = "restart_d01",
                                                 (added)
&PARAM_ATMOS_BOUNDARY
 ATMOS_BOUNDARY_TYPE = "REAL",
 ATMOS_BOUNDARY_IN_BASENAME = "../init/output/boundary_d01",
 ATMOS_BOUNDARY_START_DATE = 2010, 7, 14, 18, 0, 0, (added, but is not necessary.)
 ATMOS_BOUNDARY_UPDATE_DT = 21600.D0,
```

When (TIME_DURATION) is set to three hours and (RESTART_OUTPUT) is .true., the restart file is created at the end of the integration. Therefore, (TIME_DT_ATMOS_RESTART), (TIME_DT_OCEAN_RESTART), (TIME_DT_LAND_RESTART), and (TIME_DT_URBAN_RESTART) are not necessary.

When (TIME_DURATION) is set to more than three hours, it is necessary to specify (TIME_DT_ATMOS_RESTART), (TIME_DT_OCEAN_RESTART), (TIME_DT_LAND_RESTART), and (TIME_DT_URBAN_RESTART). The values for (TIME_DT_ATMOS_RESTART), (TIME_DT_OCEAN_RESTART), (TIME_DT_LAND_RESTART), and (TIME_DT_URBAN_RESTART) must be a divisor of three hours (10800 s) and a multiple of (TIME_DT).

The configuration for the restart calculation from three to six hours in integration time is as follows:

```
&PARAM_TIME
 TIME_STARTDATE = 2007, 7, 14, 21, 0, 0,
 TIME_STARTMS = 0.D0,
 TIME_DURATION = 3.0D0,
                                                                       set for longer than 3 hours
TIME_DURATION_UNIT = "HOUR",
&PARAM_RESTART
                                                                       (not always necessary)
RESTART_OUTPUT = .true.,
 RESTART_IN_BASENAME = "restart_d01_20070714-210000.000",
                                                                       (necessary)
RESTART_OUT_BASENAME = "restart2_d01",
                                                                       (not alway necessary)
&PARAM_ATMOS_BOUNDARY
 ATMOS_BOUNDARY_TYPE = "REAL",
 ATMOS_BOUNDARY_IN_BASENAME = "../init/output/boundary_d01",
ATMOS_BOUNDARY_START_DATE = 2010, 7, 14, 18, 0, 0,
                                                                       (necessary)
 ATMOS_BOUNDARY_UPDATE_DT = 21600.D0,
```

SCALE-RM USERS GUIDE

Author & Editor	
-----------------	--

Team SCALE User's guide working group

If you have any questions or concerns, please contact developer team (scale@ml.riken.jp).

Copyright ©Team SCALE, RIKEN AICS, 2016, 2017, 2018. All rights reserved.