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Chapter 1

Introduction

1.1 What is SCALE

SCALE (Scalable Computing for Advanced Library and Environment)is a basic
library of weather and climate models of the earth and planets intended for
widespread use. The SCALE library was co-designed by computational science
and computer science researchers.



Chapter 2

Governing equations

Correnspoinding author : Hirofumi Tomita

2.1 Continuity equations
The continuity equations for each material can be described as the flux form:

Ipqa

5 + V- (pgau) = DIFF [¢q4] (2.1)
9pgu

gg +V - (pgou) = S, + DIFF [q,] (2.2)
dpq Ipquwy
W + \% (pqlu) + Oz = Sl + DIFF [ql] (23)
dpgs Ipgsws _

o + V- (pgsu) + 9 Ss + DIFF [qg,] (2.4)

The summation of the mass concentrations should be unit:
qa+aqv+a+gqgs =1 (2.5)
The source terms of water substances should satisfy the following relation:
Sy + S+ 5s=0. (2.6)
The summation of Eqgs.(2.1)-(2.4) gives the continuity equation of total density:

dp Ipquwr | Ipgsws
+ V- (pu)+ 9% + 9%

= —0, (2.7)

For this derivation, we assume that the operator DIFF [] is distributive. Using
Eq.(2.5),

DIFF [qq) + DIFF [¢,] + DIFF [q] + DIFF [g,]
= DIFF (g4 + ¢ + @ + ¢s] = DIFF [1] = 0 (2.8)



2.2 Momentum equations

The momentum equations for the gas, liquid, and solid material are described
as

Ip(ga+ qu)u

En +V-[p(ga+q)u®ul (2.9)
= —Vp—lp(ga+aq)g+(fi+[fs)les

+uS, + DIFF (g1 + g,)u] (2.10)
dpgqiu dpqruw; _ _

D + V- (pgu®u) + 0, (pqug — fi) ez
+uS; + DIFF [gu] (2.11)
dpgsu opgsuws B _

o TV (pgsu@u)+ = = —(pgsg — fs) e
+uS; + DIFF [g,u] (2.12)

The pressure is derived from the equation of state as
p=p(gaRa+ qRy) T. (2.13)
The summation of Egs.(2.10)-(2.12) gives the total momentum equation as

Odpu dpqrwy | Opqsws
ot V- (pueu)+ ( 0z * 0z Cz
= —Vp— pge, + DIFF [u] (2.14)

Note that the drag forces by water loading does not appear in Eq.(2.14), because
those term are cancelled out through the summation.

2.3 Thermodynamics equations

The equations of the internal energies are described as

8 eq + vEv
Oelaiea ¥ 4u2) | 5. [p(geq + gueuul

ot
= —pV-u+Qq+ Qy+ DIFF [(qq + q,)T™] (2.15)
0 0
paqfl + V- (pgre) + % — Q, + DIFF [qT*]  (2.16)
8 s 8 sCsWg *
”gf + V- (pgsesu) + % = Q, + DIFF [¢,T*]  (2.17)

where T™ is some kind of potential temperature, discussed later. The internal
energies are defined as

eq = Cpal (2.18)
€y = CyoT (2.19)
e =T (2.20)
es = csT), (2.21)



The summation of Egs.(2.15)-(2.17) gives the following internal energy equa-
tions:

dpe Opqiepw; — Opgsesws
Ty Chhed AV
5 TV (pew) + ——— + ——~—+pV u
— Q-+ DIFF [T"] (2.22)
where
€ = gqed + gvey + qier + gses, (2.23)

and the total diabatic heating is described as

Q = Qd+Qv+Ql +Qs- (224)

2.4 Conseptual seperation for solving the set of
equations

Eqgs.(2.2)-(2.4),(2.7),(2.14), and (2.13) with Eq.(2.22) are the complete set of
equations. For solving them easily, we seperate the set of equations conceptually

as
0p _ (9¢ 99
ot a < ot >dynamics " < ot >physics (225)

The falling proccess of liquid and solid waters, the source and sink process of
water vapor, and the diabatic heating process for energy equations are treated
as physical process, the others are treated as dynamical proccess.

According to this scheme, the dynamical process can be written as

%0 19 - (pgem) = 0 (2:26)
U4 5 (par) = 0 (227)
%0 1 (pgo) = 0 (228)
% +V.(pu)=0 (2:29)
%u + V- (pu®@u) =—-Vp— pge, (2.30)
%+V-(peu)+pv~u:0 (2.31)



On the other hand, the physical processes are as follows:

8537) — S, + DIFF [g,] (2.32)
Opar, OPAVL _ g, 4 DIFF [g) (2.33)
85215 N % = S, + DIFF [g,] (2.34)
% 8p@q;wz 8pgszws —0 (2.35)
55;;1 8pcg:wz + ap‘g;ws — DIFF [u] (2.36)
% 3pqazzzwz . 3ﬁqusws = Q + DIFF [T*] (2.37)

2.5 Conservation of thermodynamics in the dy-
namical process

Equation (2.31) is not a complete flux form, because the internal energy itself
is not conserved both in the Euler sense and in the Lagrangian sense. In this
section, we consider the conservative quantity for thermodynamics equation.

In the dry atmosphere, the potential temperature for dry air, which is defined
as

p Rd/cpd
0, = T(?) , (2.38)

is used as a conserved quantity it is conserved along the Lagrange trajectory
cpd Rq are the specific heats at constant pressure and However, it is no longer
satisfied when the water substances are included.

Sinece Eq.(2.29) is equivallent to

dp
— 4+ pV-u=0 2.39
g TPV u=0, (2.39)
Equation (2.31) is
de pdp
— —=—=0. 2.40
Pat ~ pdt (2:40)

Dividing by p, this equation can be written as

de d (1
Cipt(2) =0 2.41
dt+pdt<p> 0 (241)

Substiting Eq.(2.13) into Eq.(2.41),

dgacydT d R,T dgyco T d [qR,T
4dCvd +p|:qdd:|+qc + [q }

dt at | p a Pa | p
dgaT  dgscsT

845G _ 2.42
a a7 (242)



Since Egs.(2.26)-(2.29) give

dga _ dgy, _ dq _ dgs
Hd = = _ =8 2.43
dt e dt dt ’ (243)
Equation (2.42) gives the following form:
dcygT d [RqT L dcy, T d [R,T
L PR T I il VTR T
de;T desT
ta— s (2.44)
Dividing this equation by T,
gy TP\ p T rorar TP a \p )
1dT 1dT
- Cs—— =0 2.45
+QzCszt +chdt (2.45)
dinT Ry d ! 1 n dinT R, d -1 1
4acpd dt Cpa dt . P Tpo dt Cpy dt . P
dInT dInT
sCs =0 2.46
taaT g sy (246)
dlnb, dlnd, dinT dlnT
v v sCs == 0 247
Gatpd =g T WO T AT FaG Ty (247)
d c .
p [In (0P gdvere a0 )] = 0 (2.48)
Thus,
4 rgaucrgguen paeiace] = g 2.49
@ [ d v ] - ( . )
Thus, the following quantity is conserved along the flow trajectory;
0= ngc”d GLvepo PN IsCs (2.50)
where 6, is the potential temperature for water vapor, defined as
Ry /cpo
9, = T <p0°) (2.51)
p
The equation of state has the following expression using ©.
D qaRa D qv Ry
(—) — TQded <OO> Tqvcpv (OO> qucl _|_T¢IsCs (252)
p p
qiRa+qv Ry
—  T94CpatavCputaici+qscs (pw) (2.53)
p
R
- T% (7’00> : (2.54)
p
where
C;; = {4dCpd + GvCpu + qici + gscs 255)
R* = R4+ qR, 2.56)



We define a new potential temperature
R* /cy,
g=0Y% = T (poo) (2.57)
p

The pressure expression is derived diagnostically as follows:

R*

p = p(gala+quRy)0 (p> ' (2.58)
Poo
o 1\ =
Pt = pR0 <) ' (2.59)
Poo
OR*\
P = DPoo (p ) (2.60)
Poo
Note that
e 1 d
B _leua®@ (2.61)

dt a dt

Therefore, pf can be employed for the prognostic varaiable!

Figure 2.1(a) gives the vertical profile of the temperature in the U.S.standard
atmosphere and Fig.2.1(b) shows the vetical profiles of /6, under this temper-
ature condition when we assume that g, is mass concentration of water vapor
at the saturation, q; + g5 gives 0.0, 0.01, 0.02, and 0.04. The differnce between
f and 0, becomes larger with the height and it may not be negligible.

2.6 Diabatic heating in the physical process

If the prognostic variable for thermodynamics is changed from the internal
energy to the newly defined potential temperature 6, the diabatic heating in
Eq.(2.37) should be modified. Through the manupulation from Eq.(2.40) to
Eq.(2.48), Eq.(2.37) without turbulence term can be written as

din® Q

= — 2.62
dt oL ( )
On the other hand, Eq.(2.61) gives
do 1 dln©
— = _—Ql/—= 2.63
dt ¢ dt (2.63)
Substituting Eq.(2.62) into Eq.(2.63),
o 1 G
@ _ L <p> P Q (2.64)
dt ¢ \poo p



2.7 Summary of equations in the dynamical pro-

cess and physical process

2.7.1 The dynamical process

0pqy _ (9pqv
at +V (pQUu) - ( at physics

Opqy _ (9pa
6t +v (pqlu)( at physics

0pgs _ ( 9pgs
ot v (pqSU) ( ot physics

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

dp op
v = ()
ot ot physics
0 0
PRV - (puwu) = —Vp—pge, + [ 2n
ot ot physics
0pb 0pb
— + V- (pbu) = <)
ot ot physics
( pOR* ) TR
P = Poo
Poo
where
C;; = (4dCpd + GvCpu + qic + qsCs
R* = qiRq+ qR,
2.7.2 The physical process
(8?)"”) — S, + DIFF [g,]
t physics
0 0
(gfl) = —% + S, + DIFF [g]
physics z
(8,0(]5) __ 8pq$ws + S, + DIFF [qs]
ot physics 0z
( 3,0) __Opqrwy  9pgsws
t ) physics 0z 0z
< Jdpu ) __Opgraw; _ Opgsuw, -+ DIFF [u]
ot physics 0z 0z
5/)9) 1 < P >}‘?§ { Opqreqw;  Opgsesws
— =—|— — — + DIF 9
< t physics ¢\ Poo Q 0z 0z K¥T9)
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Chapter 3

Discretization of dynamics

Corresponding author : Seiya Nishizawa

3.1 Temporal integration scheme

3.1.1 Runge-Kutta schemes

For the time integration of Egs.(2.68)-(2.40), we adopt the full explicit scheme
with the p step Runge-Kutta scheme.

¢ =9 (3.1)

ki = f(¢")

k2 = f((bt + klAtal) (33)

kp = f(¢t + ]Cp_1AtOép_1) (34)

PTA =o' + ALY Bk, (3.5)
p

The 3 and 4 step Runge-Kutta scheme are implemented.

The Heun’s three step scheme

ki = f(o"), (3.6)
ks = f (w + ;At/ﬁ) , (3.7)
ks=f <¢n + ?)Atkg) , (3.8)
P = " + iAt(kl + 3k3). (3.9)

12



The Kutta’s three step scheme

ki = f(9"),
ko = f <¢" + ;Atkl) ;
ks = [ (6" — Athy + 2Atks) |

1
¢”+1::¢”+76At@44k4k2+k3)

The Wicker and Skamarock (2002)’s three step scheme

k1 = f(¢n)a
ke = f <¢" + ;At/ﬁ) )
]fg == f <¢n + ;Atkz) 5
¢n+1 = ¢n + Atkg
The four step scheme

kl = f(d)n)v

ko = f (Cb" + ;Aﬁﬁ) )

kg = f <¢n + ;Atk2> y

ky=f(¢" + Atks),

1
¢n+1 = ¢n —+ éAt(kl —+ 2](12 —+ 2]€3 + k4)

The forward-backward scheme

(3.10)
(3.11)
(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)

In the short time step, the momentums are updated first and then density is

updated with the updated momentums.

puitt = puit + At fou,(p"),
P = o + Atf,(pulth).

13



3.1.2 Numerical stability

A fully compressive equations of a acoustic mode is considered. The continuous
and momentum equations is the followings:

dp  Opu;
% oz, (3.25)
Opu;  Op
o~ on (3.26)
Rp0\ '
P = Do ('O> , (3.27)
Po

here the potential temperature 6 is assumed to be constant.
In order to analize the numerical stability of equation, the equation of the
state is linearized.
prp+ 2y, (3.28)
where c¢ is the sound speed: ¢? = %
We descritize the governing equation with the 2th order central difference.

dp Uipap =Uicayp Vigrp=Vicis Wigayo = Wioayo
ot ik N Ax Ay Az
(3.29)
oUu i+1 — Pi
= — _ 2Pl TP (3.30)
ot i+1/2 Az
v S L= (3.31)
0t ljs1/2 Ay
W1 2Pk =Pk (3.32)
ot i+1/2 Az

where U, V, and W is the momentum at the stagared grid point in x,y, and z
direction, respectively.
The error of the spatial differenece of a wavenumber k£ component quSk is
{exp(ikAz) — 1} ¢, and the error of 2-grid mode is the largest: exp(im)—1 = —2.
The temporal differential of the 2-grid mode is

% _ 1 fezp;fiﬂ')U_ 1 ezpy(m)v_ 1 fezpz(fiw)w (3.33)

%ftf _ _Cz% (3.34)

%‘; _ _szﬂzz—l (3.35)

5@%’ _ e eXP(ZTT) iy (3.36)

The mode of which the U,V and W has the same phase is the most unstable:
% _ _31—62711(—”)U (3.37)

%IZ _ _czwﬁ) (3.38)

14



Writing matrix form,

9 p
(§)-2(2)
t
where
0 -5
D— (2 OM). (3.40)
Az
The Euler scheme
With the Euler scheme,
@™ = ¢ + Atf(4") (3.41)
The A is the matrix representing the time step, then
A=1+4dtD, (3.42)
1 64t
- <202At 1Az> . (3.43)
Az

The eigen value of A is larger than 1, and the Euler scheme is instable for any
At.

The second step Runge-Kutta scheme

The Heun’s second step Runge-Kutta scheme is

ki = f(e"), (3.44)
ko = f((bn + Atk‘1), (345)
At
o =" 4 7(kl + k). (3.46)
At
AZI—&-?(Kl —|—K2), (347)
K, =D, (3.48)
Ky = D(I + AtK;). (3.49)
After all,
1-62 -5t
A= ( zift ) —%fﬂ) , (3.50)

where v is the Courant number for the sound speed: CAA;. The eigen value of A

is larger than 1, and the Euler scheme is instable for any At.

The third step Runge-Kutta scheme

With the Heun’s third step Runge-Kutta scheme, the matrix A is written by

At
A =T+ =5 (K +4K3), (3.51)
1 _61/2 _GAt(l _2y2)
= A 52
<2i§t(1 —2?)  1-61° ) ’ (3.52)

15



where

K, =D, (3.53)
At

Ky = D(I + 5 K1), (3.54)
2A

Ky =D(I + TtKZ)' (3.55)

The condition that all the eigen values are less than or equal to 1 is

1
v< 3 (3.56)
In the Kutta’s three step Runge-Kutta scheme, the matrix A is
A:I+%(K1 + 4K + K3), (3.57)
where

K, =D, (3.58)
Ko =D (I + A;Kl) , (3.59)
K3 =D (I — AtK; + 2AtK,). (3.60)

It is the idential as that in the Heun’s scheme (eq. 3.52). Thus, the stable
condition is the same (eq. 3.56).
The Wicker and Skamarock (2002)’s Runge-Kutta scheme is described as

A =T+ AtKs, (3.61)

K, =D, (3.62)
A

Ky=D (1 T ;Kl) : (3.63)
At

K3;=D <I + 2K2) : (3.64)

The A and the consequent stable condition are the identical as the above two
schemes.

The four step Runge-Kutta scheme

The matrix A is

At
A:I+€(K1+2K2+2K3+K4), (365)

_ <1 — 612+ 604 —58(1 - 2u2)>

20801 —2%) 160+ 6

(3.66)

16



where

K, =D, (3.67)
At

Ky=D <I + 2K1) : (3.68)
At

K3 =D (1 + 2K2) : (3.69)

Ky = D(I + AtK3). (3.70)

The condition for stability is

v< —. (3.71)

“|S

The number of floating opint operations with the four step Runge-Kutta
scheme is about 4/3 times larger than that with the three step scheme. Howere,
the time step can be 2\/6/ 3 larger than that in the three step scheme. Since
2v/6/3 > 4/3, the four step Runge-Kutta scheme is more cost effective than the
three step scheme in terms of numerical stability.

The forward-backward scheme

The stabitlity condition is
1
v< —. 3.72
<75 (3.72)
The forward-backward scheme can be used in each step in the Runge-Kutta
schemes. The stability conditions are the followings:

The second step RK scheme

1
v< —. 3.73
<75 (3.73)
The Heun’s three step RK scheme
- (3.74)
<3 .
The Kutta’s three step RK scheme
<1 (3.75)
Vg .
TheWicker and Skamarock (2002)’s three step RK scheme
6
,< V6 (3.76)
4
The four step RK scheme
v < 0.66 (3.77)

Corresponding author : Hirofumi Tomita
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3.2 Spatial descretization

We employ the Arakawa-C staggered grid with the 3-dimensional momentum
(pu, pv, pw), density (p) and mass-weighted potentail temperature(pf) as the
prognostic variables. Figure 3.1(a) shows the structure of the control volume for
the mass, indicating the location of each of prognostic variables. Conceptually,
we use the 4th order central difference scheme for the advection or convection
terms and the 2nd order central difference scheme for the other terms. Before
the descretization of differential equations, we should diagnose several quantities
from the prognostic variables.

Full-level pressure and potential temperature

o*

0); ;1 R*| 5
Di,j,k = Poo [(p Jis } (3.78)
Poo
0);.;
;0 = Pk (3.79)
Pi,j.k
(3.80)
Half-level density
_ Pi+1,5.k T Pijk
Puvg g = LEELEE L Pith (3.81)
_ Pij+1,k t Pi gk
Pij+ik = % (3.82)
_ Azppijk+1 + D2pt1pi gk
kel = 2 = 3.83
pz,j,k-&-% AZk +A2k+1 ( )
Half-level velocity
_ (P)it 15k
Ui jh = "= (3.84)
Pit}.j.k
_ (P”)i,j+l,k
Y (3.85)
1,j+35,k
(pw); jrs1
Ty = (3.86)
pl,],k+%
Full-level velocity
(pt)ig 1 jn+ (Pu)iy
Uik = +27j§ i S (3.87)
Pi,jk
(Pv)i 1+ (PV)i5-1
Ty = —— ik (3.88)
Pij,k
(pw); jrs 1t + (pw); 51
Wijk = 7]7k+22 i e (3.89)
Pi,jk

18



3.2.1 Continuity equation

(6;)) _ (PU)H%,M - (pu)ifé,j,k
)i Az
B (pv)i,j-i-%,k - (Pv)i,j—ék
Ay
_ (Pw)i,j,k-s-% - (pw)i,j,k—% (3.90)
Az '

3.2.2 Momentum equations

Figure 3.1(a) shows the structure of the control volume for the momentum in
the x direction. The momentum equation is descretized as

(ap“> - _ (P 41,50 Tit 1,5,k = (P 5Tk
ot i+3,5.k A
Py ey 4T gk~ (P o3 Vi d bk
Ay
_ (PU)ig g gkt 3 Wit gkt d ~ (P k4Pt gkt
Az
_W (3.91)
where
pu)i,j,k
— pu)i+%7j7k + 7(pu)i+%,j,k + 7(pu)i—%,j7k - Um)i_%vj:k
_ (3.92)
12
()4 1,11
_ —(pw)ir 1 jyon +T(PWiy s jian T 7(P0)ir s ji — (pu)”%’j*l’kfi’) 93)
= \ ’

12
(P01 gt
=(Pw)ir 1 gy T 7Pyt jrrr + 70wy e — (PU)ig 1 ik

= 5 (3.94)

and the velocities at the cell wall for the staggered control volume to x direction
are defined as

Uip Lk T Uiml 5k

Uijk = 5 (3.95)
Uy il g+ U0 ial
_ J+ 5k i+1,j+35.k
Vitgitgk = - 9 : (3.96)
@i k4L + w; 5 1
_ - 2Jik+ 3 i+1,7,k+3
Wil jhts = 5 (3.97)

In this form, the 4th order accuracy is guaranteed on the condition of the con-
stant velocity.
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The momentum equations in the y and z directions are descretized in the
same way:

<8pv> iy g w T g g sk~ (P)ing g kT d
Ot Jij+sk A
(PV); j1 6 Vi5+1.6 — (PU); ;4 Vijik
Ay
(PV)ia g ey Vi s — (PV)igrt o 1T g kg
Az
Pij+1.k — Pijk 308
(8pw> ey k1T gk s — (PW)is g ey 3 Tiodkrd
Ot Jijk+t Az
(Pt e 3 i g e — (PW)i 1 1 Wi g ket
Ay
B (pw); k41 Wije+1 — (PW),; kWi gk
Az
Pijk+1 — Pijk
T A, Piak+id (3.99)
Pressure

Since the pressure pertubation is much smaller than the absolute value of the
pressure, truncation error of floating point value is relatively large and its preci-
sion could become smaller. Therefore, the pressure gradient terms are calculated
from the deviation from reference pressure field satisfing the hydrostatic balance.
Additionally, the calculation of the pressure (eq. 2.60) is linearlized avoiding a
power calculation, which numerically costs expensive.

-
_ c, POR*\ <5 —
AP+ = ( > 0 — pf
p=p R*C: Poo {p po}
ct
—p+ 2L 9y (3.100)
Cy pb
ct
D — Pref =P — Pref + %i(p@/ (3101)
cy, po
3.2.3 Energy equation
% _ (pu)i+%,j,k§i+%,j,k - (pu)i—%,j,kai—%,j,k
o). in Az
B (pv)i,j—&-%,kgi,j—i-%,k - (pv)i,j—%,kgi,j—%,k
Ay
_ (pw)i,j,k+%§i,j,k+% - (pw)i,j,k—%gi,j,k—%
Az

(3.102)
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where

3 —Oiv2k +T0iv1 ik + 705k —Oion ik

Bt i = - (3.103)
= —0; 426+ 705 j1.6 + 70 50 — i -1k
Oijrae=—" ey J (3.104)
_ 0, 70, 0550 — Oy

97;,]‘7]@4,_% — ,3, k42 + aJ7kJ’;I-12+ .95k k=1 (3105)

3.2.4 Tracer advection

The tracer advection process is done after the time integration of the dynamical
variables (p, pu, pv, pw, and pd). We impose two constraints to tracer advection:

Consistency With Continuity ( CWC ) On the condition without any source/sink,
the mass concentration in the advection process should be conserved along
the trajectory. It is, at least, necessary that the spatially constant mass
concentration should be kept in any motion of fluid. In order to satisfy
this condition, we use the same mass flux at the last Runge-Kutta process
of Egs.() and () for integration of tracers:

(PQ)?;FJIC —(P9); .1 B (PWis 1 ki s gk — (PUi— 1 5 kTim 1t ok
At - Az
(P)i gt kgt — (PV)ij— 2 kT 1k
_ &
(PW); 5k 1T gyt — (PW)i k- 1T h—d
B Az
(3.106)

Monotonicity In order to satisfy the monotonicity of tracer advection, we
employ the Flux Corrected Trasport scheme, which is a hybrid scheme
with the 4th order central difference scheme and 1st order upwind scheme.
If The 4th order central difference is applied, G is descritized as

_high _ —Gi+2,5k T G146 + 1G5k — Gi—1,4.k

Qs g, = 15 (3.107)

_high _ —Qig+ok 11k + TGk — Qij—1k

7, = . (3.108)

ik _ — Qi k42 + i g k+1 + TGk — k=1 (3.109)
1,5,k+35 12

On the other hand, in the 1st order upwind scheme q is described as

Ql.owl o qij.k ((pu)i-s-%,j,k >0) (3.110)
it g0k gi+1,5k (otherwise)

gow | = )Gk ((pu)i i1, > 0) (3.111)
btk ¢ij+1,x (otherwise)

gow = JGan ((PWijaey >0) (3.112)
6Jk+g ¢ jk+1 (otherwise)
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The actual q is described as

_ o —high _ —low
Giryor = Cirdirliyy nt (1 Ci+%,j,k> %1 g (3113)
_ o —high —low
Gijrin = CijrinGirin™ (1 - Ci,j+§,k> Ti 1y (3.114)
_ _ —high _ —low
Gjrrt = CigredTjprs T (1 Cm‘,k+%) @iy (3.115)

See the appedix for the method to determine the flux limter.

3.3 boundary condition

The boundary condition only for the vertical velocity at the top and bottom
boundaries is needed:

0 (3.116)
(3.117)

Wi g kmant+s =

.. I
wz7]1k7nin -3

o

This leads to the boundary condition of the prognostic variable as

(PW)ij kot =0 (3.118)
(PW0); j ki1 =0 (3.119)

3.4 Numerical filters

We impose an explicit numerical filter using the numerical viscosity and diffu-
sion. Although the filter is necessary for numerical stability, too strong a filter
could dampen any physically meaningful variability. In this subsection, we de-
scribe the numerical filters used in this model, and discuss the strength of the
filter.

In order to damp the higher wavenumber component selectively, we adopt
the hyperviscosity and diffusion in the traditional way. The hyperviscosity and
diffusion of the nth order is defined as

o an—lf
- [”pax"—l} 7 (3.120)

where f is an arbitrary variable (f € p,u,v,w,8, q).
The Laplacian of f is discretized as

1 1 1 1 1
Af; = —— fix1 — i+ —fic1], (3.121
f Al‘i A.%‘Pr% f'+1 <Ami+; + Amlé> f + A,rk%f 1‘| ( )
and
1 1 1 1
An/Q = An/2—1 ; _ An/Z—l .
o= e | Be o=\ Royy T 4
1
——A"2Lf 3.122
+Aa:i_% fi1 ( )
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Here we consider spatially dependent grid interval in calculating the Laplacian.
If it is calculated with constant Ax; as

1
Afi= N (fix1 —2fi + fic1), (3.123)
1
An/Zfz — @ <An/271fi+1 - 2An/271fi + A”/271f¢_1) , (3124)

K2

non-negligible numerical noise appears where the grid spacing varies (e.g., stretch-
ing layer near the top boundary).
The hyperviscosity and diffusion can be discretized as

0 an—lf Fi+% — Fi—%

* ~ 3.125

Oz [V'Oanlx} Ax; ’ ( )

where
Vi 1P 1
Halits n/2—1g  _ Am/2-1p
Pt Ko (A2 fiy — A1) (3.126)
The coefficient, v, is written as

Vipy = (—1)/y e (3.127)
va 2nAt '

where v is a non-dimensional coefficient. One-dimensional sinusoidal two-grid
noise will decay to 1/e with 1/+ time steps. Note that the theoretical e-folding

time is i—z% However, it is % with the fourth-order central scheme used in
this model.

For the numerical stability of the numerical filter itself, it should satisfy
v<1 (3.128)

for the one-dimensional two-grid noise, and

1
v<z (3.129)
3
for the three-dimensional two-grid noise. The conditions might be stricter for
other types of noise.
The flux, F, for the numerical filter is added to the advective flux as

(puf)]y s = (puf)iyy + Fiey, (3.130)

where the first term of the right-hand side is the flux calculated by the advection
scheme. In the present model, the advection scheme is the fourth-order central
difference scheme. This concept is very important for the CWC condition in
the tracer equations. The modified mass flux of the numerical filter should be
used in the tracer advection, otherwise the CWC condition is violated.

The numerical viscosity and diffusion in the y and z directions are formulated
in the same way as in the x direction, although a special treatment for the
z direction is needed. At the top and bottom boundaries, the flux must be

zero, Fy . 1= F, = 0. In order to calculate the F}, 1 and Fj__ . 1

o1 1
min — 3 3
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values beyond the boundaries, fx . +1 and fr_, —1, are required, then the mirror
boundary condition is assumed; fr .. +1 = —frne 0 flp—1 = — fp, - Lhis
condition is appropriate to cause the decay the vertical two-grid noise.

Vertical profiles of density, potential temperature, and water vapor usually
have significant (e.g., logarithmic) dependencies on height. Eq. (3.125) has
a non-zero value even for the steady state, and the numerical filter produces
artificial motion. To reduce this artificial motion, we introduce a reference
profile which is a function of height, and deviation from the reference is used as
f instead of p, 8, and ¢y in calculating the numerical filter. The reference profile
can be chosen arbitrarily, but a profile under hydrostatic balance is usually
chosen.
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Chapter 4

Terrain-following
Coordinates

Corresponding author : Hisashi Yashiro

4.1 Geometry and Definitions

We introduce a terrain following coordinate system with a new vertical coor-
dinate £. &-coordinate system is not deformable system. We use the relation
between z and & as

_ Ztoa(z - Zsfc)7 (41)
Ztoa — Rsfc

Where 20, is the top of the model domain and z,¢. is the surface height, which

depends on the horizontal location.

The metrics are defined as

0z

G: = e (4.2)
A () -
J5s = (gi)Z = —jzz (4.4)
=G = (45)
where
7= (5:). (1.6
Ty = (g;)g (4.7)
J3 =G3 (4.8)



If we use the Eqgs.(4.1)-(4.5), we obtain following equations:

. les 0J5.G2 | . les 0J5.G3
G:V¢ = ( axd)) + lgg e, + < 8y¢> + 2g§ ¢ é,
0J5.G3| .
i’gig”’ (4.9)
, oG oG IG3 ¢
G2V.(¢u)=< 8;[5“) +< 8;”) + a§¢€ (4.10)
3 3

where {&,,é,, é.} are unit vectors in Cartesian coordinate, and f is the vertical
velocity component in the terrain following coordinate, giving by

. d
¢ zdé = JSu+ J5v + J5yw. (4.11)

4.2 Summary of modified equations in the dy-
namical process

Prognostic variables by multiplying G % are defined as

(PQu)ijk = Gij,k(PQU)i,j,k, (4.12)
(Q0)i e = G, (P (4.13)
(PQs)i gk = Gij,k(l)qs)i,j,k, (4.14)
Rijw = GZ, pijik (4.15)
(PU)ig1 = G§+%7j7k(pu>i+%,j,kv (4.16)
(OV)igiye =Gy 1 (P0)igiy (4.17)
(W) jaes = G2y (P0)i s b (4.18)
(PO)ijh = Gij,k(W)i,mv (4.19)
Pojk = G2, pijh (4.20)

Eqs.(2.67)-(2.72) are modified using Egs.(4.9)-(4.11),
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(4.21)
(4.22)
(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

where Einstein summation has been used to implicitly sum over repeated indices,

and ($1,$2,$3) = (xayvg)v (Ul,'LLQ,Ug) = ('I.L,’U,g).

4.3 Spatial descretization
4.3.1 Continuity equation

(@)
ot )ik

(pU)iJr%,j,k - (pU)ifé,j,k
Ax

(pv)i,j+%,k - (PV)i,jf

Ay

1
3,k

+

~Z

x

z

1
2

n (J1£3)i,j,k+%(pU> igk+L T (J163)¢,j,k7%(PU) i, k—

A

yZ

igk+s T (Jgg)i,j,kfé (V)

Y

,9,k—

1
2

n (J§3)i,j,k+%(pv)
Ag

" (J§3)i,j,k+%(PW)i,j,k+% - (J§3)i,j,k+%(pw)i,j,k7%

Ag
where
(). (pu),
57 1 PU); g1+ (PU); ik
(pU) igk+i = Giz,jykﬂL% 2 ’
. (P0); 5 a1 + (p0);
— 1 PY)i 5 k+1 PY)ijk
(pV) igk+t = Giz,jykﬂL% 2 7

(pu)zjyk and (pv)f_wC are obtained by same manner in eq.(3.20)
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4.3.2 Momentum equations

(5 )"
T N

—~— T —~— T
(PU) ;11 j 81,56 — (PU); 125,k
Ax

—y B —y _
(PD) i1 it bgr sk — (PU) a1 3 0ind i1k

+ =
Ay
J o), T JE U, T
( 13)i+%7j,k+%(p )i+%,j,k+%ui+%,j,k+% —( 13)i+%,j7k7§(p )i+%,j,k7%ui+%,j,k7%
AL
'3 z =gz B 3 z =gz
(st)i+é,j,k+§(PU)¢+%J,k+%” i+3,0:k+3 (J23)i+%,j,k7%(pU)i-i-%,j,k—%v i+3.5,k—%
A¢
JE U), T JE ), T
( 33)i+%,j,k+%(l) )i+%,j,k+%wi+%,j,k+% —( 33)i+%,j7k—%(p )i+%,j,k7%wi+%,j,k—%
Ag
4 Bk = Pijk
Az
E Iz - § Tz
(J13)i+é,j,k+%Pi+é,j,k+% (JIS)iJr%yj,k*%PiJr%,jyk*%

A¢ ’
(4.32)
where (;)\ﬁ)zj’k, (;)\ﬁ)Z%JJF%’k and (/p\U/);%’j’kJr% is obtained according to
the method of eq(3.20)-(3.22). The velocities at the cell wall for the staggered

control volume to x direction are defined by eq(3.23)-(3.25). @ and 77 are
defined as

— _ Uit g gkt T ULk 433

Yird jkt+d = 9 ’ (4.33)
—y —y —y —y

=52 Uikt Uk T 0051 T Vi 4.34

Vot L k+1t = 4 ‘ (4.34)

P is defined as

e —ar Pi+1,4k+1 T Pit1,4k T Pijk+1 + Pijk
i3kt T ikl ikt 4 :

(4.35)

The momentum equations in the y and z directions are descretized in the
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same way:

— T

(OV)ig g g+ g it 3 gtk ~

opV

(OV)im gy i3 .543

( >i,j+;,k

ot Az
—y _ ——y
N (PV )i i1k Vii+1k — (PV); 1k Pijok
Ay
—ZYz z Yz
N (J53)ij+ b L (oV); FIRGUELLATE WIS (Jls)u+2,k—f(PV) PSR T
Ag
(J5)s 141 pa1 (BV): Tt pns — ()i ot ot (PV): I
23)i+ 3. k+3\PV )i Lk LY+ L k4] 23)i5+5. k= 3PV )i L - 21Vi5+3 k-4
Ag
3 =y ¢ i
(J33)ij+3 k41 (PV) ij+3 k3 ,a+%,k+% B (‘]33)i7j+%7k—%(pv)m+ k’—lw Litgh—g
A¢
n Pijiik — Pijk
Ay

¢
(J53)ije 2 2 Pyt s

(J2£3)i,j+%,k ;P’L‘]+ kf—

3

Ag
(4.36)

—

(pW)H'zJ,’H‘j i+5.0.k+3 7(pW)t—§7J,k+* i—3.5.k+3

_|_

Ax
i —
(pW)”+ bt 3T ey — Oy ki dTig 1kt
Ay
()i (OW) T 1 = (T5)i (OW) 00
AL
(J58)iattt (PW) e = (I5)ii (W),
AL
z
(S8t (W) s s = ()i (W), 07
AL
'3 £
(J33)ig,k+1Pijk1 — (J33)i5.k Pigok (4.37)

A
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4.3.3 Energy equation

().
ot ),

i—1.5k%i- 15k

(pU)i-&-%,j,kgi-&-%,j,k — (pU)
Az

100i5-1k

(PV)i sz ki1 e — (PV )i
Ay

(pU) z’,j,k—%gi,j,kf%

(J1§3)i,j,k+%(pU) i,j,k+%§i,j,k+% - (J1£3)i,j,k7%
Ag
¢ 3 ¢ R
(JQS)i,j,kJr%(pV) i7j7k+%9i,j,k+% - (J23)i,j,k7%(pv) i,j,k—%gi,j,kf%
Ag

(J§3)i,j,k+% (pW)i,j,k+%§i,j,k+% (J§3)i,j,k+% (pW)i,j,kfééi,j,kfé

Ag
(4.38)

where @#%’j,k, gi,j+%,k and ?i’j,,ﬁé are obtained according to the method of

eq(3.29)-(3.31).

31



Chapter 5

Map factor

Corresponding author : Seiya Nishizawa

5.1 Coordinate transform

A orthogonal rectangular coordinate (z,y,z). A orthogonal curvilinear coordi-

nate (&, 7, ().
The transform is defined by
ox . y .. 0z
P + e + Ze,, 5.1
e 6§e +a§ey+3€e (5.1)
ox . dy .. 0z
e, =€+ —é,+—é&,, (5.2)
n on on
ox . y .. 0z
e = a—cex + 8—Cey + a—cez. (5.3)
Reverse transform is
. 0¢ on ¢
€x = 5 e + 5267 + 926 (5.4)
. On on ¢
€, ayeg + By e, + By ec, (5.5)
. OC n ¢
€ % .§+&En+&e< (5 6)

k
The Jacobian matrix is { gii }.

The reverse transform after the transform of the transform after the reverse
transform make a vector to the original vector;

ok ozt
ozt 6‘51 - 617 (57)
ozt ogk
6% 907 = 7 (5.8)

where index which appares upper and lower suffix in a single term implies sum-
mation of the term over set 1,2, 3 (Einstein notation).
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Spatial parial derivative is tranformed with the Jacobian matrix (covariant
transform);

0 ozt 0
ek~ 0k Dt (5.9)
o otk 9

927~ Dat 2% (5.10)

Velocity is transformed with the inverse of the Jacobian matrix (cotravariant
transform);

agk .
k _ 7
¢t = e dz’, (5.11)
i 0ty
dz' = 85kd§ . (5.12)
The metric tensor, g; is defined by
oo = (0T (2
gkl = € - € = 06 i ¢, j
Ozt Ozt
= . 5.13
96, 06 (513)

For orthogonal curvilinear coordinates, the matrix gy; is diagonal. Metric
factor, hy is defined as

9 i\’
hkzgkkzz(afk) | (5.14)

%

Here we define the matrix, E¢ is

_ oz’ _
E:=(ece ec) H 1:Ex-{a£k}-H L (5.15)
where F, = (&, &, é.), and
hy 0 O
H=| 0 h 0o |. (5.16)
0 0 hs

The vector iek is unit vector and orthogonal each other, so the inverse of the
E¢is EY.
ox’ N\ oz’ N\
(oo {eep#) = (e {Gf )
3 -1 oy foa ! T
H'{axk}'E’” =H oy P
¢! L (0" .
= 12!\ .ET.E,
e} - (o)
Oz*
=H?. 5 5.17
15 (47
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That is )
¢k _ 1o
oxt hi ogk”

5.2 Governing equations

5.2.1 Continuous equiation

Divergence of pu is

o . 0k (o
oz P17) = 5 e (p Dl d5>

o0&k 02' 0
— G g e el + e

lagk 62
Dt DEFDE
0 9zt 9%
= aigk(pdg )+Zh7ipd§ agkw

A
3€k (pde®) *Zth o (ask)

- erlote A a1 g

(pde®) +Z pdfl—ln h2

0
T ook ¢

d
= a—gk(pdf + pdfka—gk In( th

_, 0 _
= {J 8€k(pd§)+pd£k8€k 1}

0
= J o (J7 pde"
where J is the Jacobian of the Jacobian matrix and

1
J =

I 1 b '
The continuous equation is
8p d pdek
—+J—= =0.
¢ "o g

5.2.2 Momentum equation

Opder _ o0E* dpdx’
ot ozt ot
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(5.19)

(5.20)

(5.21)
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Advection term
o&*F dpdxtdr?
ort  OxJ
ok Opdx’ ;Odx?
= - | dx? - ¢ -
ox! ( o - pde ox7

— afk (Wd€l> %li ( agk Oz 3 9 n
" 021 \ 00" ) 97 Dem \"oen ) <3£l 5)865<a@€>

a0 (o L0 0 .
~ie e () + 56Ja£m<a§"§>

ok (ox' 0 0%x! o™ (0xI OdE™ 0%l
l el n n k n
faxz {Gev o0 04+ 8" i | + 6 515 (G e 4 g
8€k 82 i 6dfm 6fm ang
v k n k kgen9s
agl (pdé™) + ot dglaen T PIE e TP G Semaen
0 & 06k 92t kg l@f 0?2’
= o (pd*dg') + pdg'dg Dt DETDET + pd&™dg o7 DEToEm
o J—l agk 82 i
= J3 J ' —(pdcFd ™
{ oel (pdgdg') + pde®de’ oe } 97 DEOET
0
= J g pdetde! + pdg'dg T, (5.23)
where I' is the Christoffel symbols of the second kind, and
P 875}6 an'i
lm ot aglaf'rn
_ 1 kn 6gmn agln 6glm
—2f ( oer " oem e
1 Ohy, Ohy, 5hl
_ < Gt Do i SOt — W%), (5.24)
where {gF"} is inverse matrix of {gx,}.
Coriolis term
agk 1]p J p _ kim l m
o flpdz?P =€ hkhlh Fdem, (5.25)
where € is the Levi-Civita symbol, and
R agl .
L_ 25 ¢j
f 8x-7f . (5.26)
Pressure gradient term
sk ap ek (0 dp
Ozt dxt  Qxt \ Ozt OE!
_Losiog op
~ h2 Otk Ozt OE!
1 0p
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After all, momentum equation is

9
d§ +J e

1

(I~ pdetdg’) + pdg!de™ Ty, + M

Jp

g ogk

5.3 Map factor

» 08"

Oxp’

We introduce Map factor m,n.

1la
m
la

n

+z
a
+z
a

hihihm

where is a is radius of the planet. Assuming shallow atmospher,

m

n

Normalized velocity is defined as

a

>
Il
D‘

hs

w

= hl—l
=hyt.

df 1
dt m

dg

E7

dn 1dn
dt  ndt’

¢ d¢

Sdt — dt

The continuous equation becomes

ot

+

9 pi
"o T

The momentum equations are

dpi”

ot

+

a0 puak
8§ n

+ mmy, puu

— mamy,pii>

I

0& my,

9 0
ek m

+mn—

0
an

k0
+ nmypoi” — —
— — nmypd

+ pgosk.
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0

L0
m  0C

1
on my,

2 0 1,
ackn T °

klm

mlflpﬁm

flpd

gm

(5.28)

(5.29)

(5.30)
(5.31)

(5.34)
(5.35)

(5.36)

(5.37)

(5.38)



This equation can also be written as

Opu O pu 0w O
at 9 n an m " ac’
— fpv —mnpv Uﬁ 1 —u2 1 ——m@
P P 06 \ n om\m)[| o€’
opv d puv 0 p 0
ot + na€ + P +a<pvw
+ fpu + mnpu vi 1 fug 1 *—n@
P P 0 \ n on\m)/)|  “on
Opw g dPew 0w O 0P
o T Ty m Tact T Tac Y

The thermodynamical and tracer equations

dpg . 0 pud d pdp  Opwd
— +mn —— =

ot % n e m o %
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Chapter 6

Horizontal explicit virtical
implicit

Corresponding author : Seiya Nishizawa

6.1 Equations

where
Gz S, =
G2S,, =

G289 =

000 _OWGirw  gig, (6.1)

ot 0¢
0Gzpw  AJGip 1
= — — G2 GQS W 6.2
ot o€ Pg+GEop (6.2)
G ph 0J33G2pwd 1
=— G2S 6.3
ot 85 + 05 ( )
Rp9 cp/Co
= P —_— .4
p 00 (Poo ) ) (6.4)
1 0pu 1 0pv
“or Ty
_aG%pu B GG%pv B aJlgG%pu—I— JggG%,ov (6.5)
ox* Ay* ¢ ’ '
1 dupw 1 dvpw 1 dwpw
¢ ox ¢ Jy ¢ 0z

_aGéupw 8G%va 0

—G3

— — —(J1gG%upw + J23G%’UP’LU + J;),;gG'%’wp’w)7

ox* dy* o€
(6.6)
1 Qupl 1 Ovpl
— G2
or dy
C0GEup)  0GEuvpf 013G Eupd + Jy3Gruph 6.7)

ox*

dy* o0&
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6.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave in vertical direction.

n+l _ n 1 a 1 N N
% = *Gfgaf{J:BGQ (pw)" '} + 57, (6.8)
n+1

pw — (pw a n n n
( ) At ( ) -G~ 2 5&<J33G2p +1) gp + + Sp'wa (69)
et U B R (6.10)

At cn (p9) ot’ '

% _ —G—*f{Jgge 0" (pw)™ 1} + 87, (6.11)

Note that the potential temperature at previous step, 8", is used.
Eliminating p"*1, (p§)" !, and p"*!, the Helmholtz equation for (pw)"*! is
obtained:

At2g 0 At? 9 mpt 9J53G 20" (pw)n
n+l J G J P
N i A A Bz T T T
At 8 AtC p9
= " — — Atg(p™ + AtST) + AtS” .
(6.12)
Vertical differencials are discritized as follows:
n At?g 1oon
(pw)k_ﬁ/Q 1 {J33G2 (Pw)k::__;/g — J33G2 (Pw)k+}/2}
(A2k+1 + Azk)Gk+1/2
3 At? {<J33 CpD ) J33G% (pw) k1 3/20k13/2 — J33G 2 (pw)k 11205112
Azk+1/2Glf+1/2 P/ ki Az
CpP J33G'2 (Pw)k+1/2ék+l/2 - J33G%(pw)k71/2ék71/2
— | J33
copl Az,
= (Pw)ZH/z

A . A ) A
- —t; {J33G2pk+1 (1 + tcPSM) — J33GZpy (1 + tCPSP@> }
k+1 k

Azpi1/2Giiy o copl cpl
Atg
(p+ AtS,)k41 + (p+ ALS,) i} + AtS,y, (6.13)
where )
9k+1/2 = ﬁ (*9k+2 + 70k 1 + 70, — ak—l) . (6.14)
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Finally we obtained

1 0,
_ : {AZ+3/2 Ak+1 + Bk+1/2} (pw)z_—:__ém (6.15)
Gk+1/2 k+1/2
0
+{1+ B (Apr + Ax) p (o) (6.16)
AZk+1/2Gk2;+1/2
1 ék7 n
_ % {AZ 1/2 Ak — Bk+1/2} (p’l,U)kii'/2 (617)
Gk:+1/2 k+1/2
= Ck+1/2; (618)
where
AL‘QJggG% Cpp
A = Jg5—L 6.19
o= S () (6.19)
At2gJ33G2
B = —J7o0 2
k+1/2 Acros + Azp’ (6.20)

Cry1/2 = (Pw)Z+1/2

JisGlpen (1+ A2 = TGl (14 A1)

At o -
Azp1/2Gi 402
 ArgP ALk + (0 + ALS) S (6.21)

2
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Chapter 7

Horizontally and virtically
implicit

Corresponding author : Seiya Nishizawa

7.1 Equations
The governing equation is the followings:

1

0Gzp/ B 78G%pu B G2 pv B 0J33G2 pw

ai or oy oc o
BG;tpu = _ag:;p’ + G328,
aG;t”“ — _ag;*p L Gis,.,
86:;;)9 _ _3%5;/)(9 B 86;/1:;)9 B 8J33§§wp0 . G%Sﬂe,
p = Poo (%)CI’/CU ;
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where

Gis, = — 8‘]13@”“82 JQSG%””7 (7.7)
G%Spu =— acj;;:pu — aG;;ipu aaf(JlgG?upu + J23G2vpu + J33G2 wpu)
- (%(JBG%Z?'% (7.8)
G%Spv =— 86;;:/)1} — ac;izpv aag(JlgGﬂlpv + J23G2 vpv + J33G2wpv)
- %(J%G%pm (7.9)
GES,y = — 8G;;p v aG;ylip < gé(‘]l?)G Supw + JosGEvpw + Ja3GEwpw),
(7.10)
i,y = 913G Euph + ngc;%vpo. (7.11)

23

Prime describes deviation from a reference state, and the reference state depends
only z and satisfies in hydrostatic barance:

p =p—Dp 7.12
p'=p—p, (7.13)
W) _ e (7.14)

7.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave.

m+1 _ In

Pl G5 R AGH ()
—GZ—L@G@MM%+S (7.15)
(pu)nﬂAt_ (pu)™ o (Gf ety +5m, (7.16)
o~ o) _ -3 3‘9* (@) + 5, (747
e G — g 4 (718)
Z%;pm . (;:())m Hn(pg)nﬁnq% o (;’9’;”%’;9, (7.19)
O G (G ()} - G (G o))

~-G3 —{Jggaz 0" (pw)" Y + (7.20)

n
P>
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where k = ¢,/c,. Note that the potential temperature at previous step, 6", is
used.

In order to obtain Helmholtz equation, a linearlized equation for the density
is used instead of Eq. 7.15.

1 p
m+1 / /m+41 /
P~ — o { nH_pm}. (7.21)

Here we assume that the potential temperature does not change during a tem-
poral step due to acoustic wave.

Eliminating (pu)”*, (pv)" 1 (pw)?*t,, and p™*!, the Helmholtz equation
for p'*1 is obtained.

% m—+1 % m+1 % m—+1
0 ( gn9GHp L0 [gn0Ghp L0 gn0T5sGhp
ox* ox* ay* oy* 85 o€

0 (J?,gG z260™p /”+1> B G%anm—’_l

I5¢ Cc2n AR2C2n
1 [0GE0" {(pu)" + AtS u} dGzO™ {(pv)™ + ALST Y 0J33GE0" { (pw)" + AtS?, }
= Al 6x* oy + ag
o | J3Gzompm sl GES,  GROTpT

+ ga§ { an J33G (p 9) + Al AtQCSQ" s (722)

where
c? = kL. 7.23
; (7.23)
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Spatial differentials are descritized.

1 0 (G%p/n+1)i+1 _ G%pmﬂ _a G%p/nJrl _ (G%p,nﬂ)i_l
7A$i i+1/2 AZii1)2 i—1/2 Az 1/
N 1 é o (G%p/n+l)j+1 _ G%p/n—&-l B é 1 2G%p/n+l _ (G%p/n—i-l)j_l
Ay; j+1/ Byj+1/2 j—1/ ayj_1/2
1 m+1 1 n+1 L ongl 1 a1
n 1 (s )isrjoliss o J3sGrply — JasGrp™ T (o)l 12 J33G2p J33G2pi,
Azk AZk+1/2 Azk'—l/Q
n 1 J33G%9p;2:_11 B J33G%9p;€”j'11 B G%ep/n-&-l
gAk“/Q + Az Ol Coh At2CE

1 Gf+1/2éi+1/2 {(pw)it1/2 + At(Spu)iz1/2} — Gfil/Qéi_l/Q {(pw)i—1/2 + At(Spu)i—1/2}

At Az
+ Gl iajabiniye {(0v)je1s2 + At(Sp0) i1 /2} = GFypliy2 {(pv)j1y2 + AYSp)m1/2}
Ay;
+J3SG%9’€+1/2 {(pw)is1/2 + At(Spw)ks1/2} — JBSG%9k71/2 {(pw)—1/2 + At(Spw)k—1/2}
Azk
1 TssGROp JaaGROpy A
- — J33G2{(p'0) 1 — ('O)1—
+gAZk+1/2+AZk—1/2 { CZein cy s3G{(PO)rsr — (P01}
G2S,0  G2Op™
T AL T AcE (7.24)
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Chapter 8

Physical parameterization

8.1 Turbulence

Corresponding author : Seiya Nishizawa

8.1.1 Spatial filter

The governing equations are the following:

% + %ﬁf =0 (8.1)
i 5%592% __ gﬁi + gpois (8.2)
% + ag;fe -Q (8.3)
Spatially filtering the continuity equation yields:
% + aa?ip =0, (8.4)

where ¢ indicates the spatially filtered quantity of an arbitrary variable ¢. Favre
filtering (Favre, 1983), defined by:

= pd
$= % (8.5)
renders the equation (8.4):
dp | Ouip
% o 0 (8.6)
The momentum equations become:
dpu; | Oujpu; op | _
=— 05 8.7
opi; dwpE 9 9
—_— = — (Si — — (uy i — U PU; 8.8
ot Oz Ox; T pois Oz (wipti; = wpis) (88)
Opu; ~ Ou; pu; op _ o _, —
= — (51' - Ui — U iU ) . 8.9
at axj 81'2 + gpoq3 axj P (u U’] U’]u ) ( )
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As the same matter, the thermal equation becomes:

op)  oiipd

=Q -

8ip (Ja - ﬁﬁ) . (8.10)

The govering equations for the prognostic variables (p, pu;, and pd) are:

dp  Ouip
el = 11
8t 61), 0’ (8 )
dpu; | Oujpu; aop | _ IpTij

ot 8xj 81'1 + 9poss a’Ej ( )

opd  dupd . dprP
o o 9T am (8.13)

where:

Tij :Ufﬁt/j *ﬁiﬁja (8-14)

Hereafter, we omit the overline and tilde representing the spatial and Favre
filters.

8.1.2 SGS model
Smagorinsky-Lilly model

The eddy momentum flux is:

1 1
Tij — ngk(sij = 72VSGS (SZJ — 3Skk5ij> s (816)

where S;; is the strain tensor:

o 1 8ul 8Uj
Sy =1 ( e axi) , (8.17)
and:
vsas = (CsA)? S| (8.18)

C; is the Smagorinsky constant, X is a characteristic SGS length scale, and |5]

is scale of the tensor S,
|S| = 1/25:;Si;. (8.19)

The eddy momentum flux is then:

1 2
Tij = —2I/SGS (S” — SSkkéw) + gTKEém, (820)
where: ,
TKE = Lr, — (V565 (8.21)
2 Ci\ ’

where C}, is a SGS constant and assumed to be 0.1, following Deardorfl (1980)
and Moeng and Wyngaard (1988).
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The eddy heat flux is:

00
D
P —_D 8.22
T SGS g (8.22)
where: 1

Dscs = Py VsGs: (8.23)

Pr is the turbulent Prandtl number. For other scalar constants such as water
vapor, Dggs is also used as their diffusivity.

To include buoyancy effects, the extension of the basic Smagorinsky constant
developed by Brown et al. (1994) is used.

vsas = (CsA)?|S|V/1 — Rf, (8.24)

where Rf is the flux Richardson number (Rf = Ri/Pr). Ri is the local (point-
wise) gradient Richardson number,

. N?
and N? is the Brunt-Visala frequency,
g 00

The Prandt]l number is an unknown parameter that depends on the Richardson
number, though it is often assumed to have a constant value. For unstable
conditions (Ri < 0),

vsas = (CsA)* |S|V1 — cRi, (8.27)
1
Dsas =~ (C.A\)?|S|V1 = bRi, (8.28)

where Pry is the Prandt]l number for neutral condtions. The values of ¢, b, Pry
are set to 16, 40, and 0.7, respectively. The Prandtl number is then:

/1 —cRi

For stable conditions, when the Richardson number is smaller than the critical
Richardson number, Ri.(= 0.25),

Ri\*
vsas = (CsA)* S| (1 ~ ) ; (8.30)
1 Ri\* ,
Dsgs = Pra (Cs)\>2 |S] (1 — Riz ) (1—gRi). (8.31)

The constant ¢ is determined as the Prandtl number becomes 1 in the limit of
Ri — Ric and is then (1 — Pry)/Ri.. The Prandtl number is

. —1
Pr = Pry {1 —(1- PrN)IJ:Z } . (8.32)
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For strongly stable conditions (Ri > Ri.), eddy viscosity and diffusivity for
scalars are 0;

vsas = 0, (8.33)
Dsas = 0. (8.34)

The Prandtl number is Pr = 1.

Scotti et al. (1993) suggested that the length scale should depend on the
grid aspect ratio. Under equilibrium conditions with the universal Kolmogorov
spectrum, energy cascaded to the SGS turbulence, which is equal to SGS dissi-
pation, must not depend on the grid aspect ratio. The energy flux or dissipation
can be written as function of S;; and the length scale, A. The S;; depends on
the grid aspect ratio, so the length scale should have dependency on the aspect
ratio, cancelling the dependency of S;;. With some approximations, the authors
obtained an approximate function of the length scale ' :

A= fla)A, (8.35)
where f(a) is a function of grid aspect ratio, a, and

fa) = 1.736a/3{
4Py (by)a"® 4 0.222P5(b1)a~>/® + 0.077Ps(by )a~1/?
— 3by + 4Py (by) + 0.222P5(by) 4 0.077Ps(by) — 3by
}3/4, (8.36)

Here b; = arctan(1/a), by = arctan(a) = 7/2 — by, and

Pi(z) = 2.5P5(z) — 1.5(cos(2))?/® sin(z), (8.37)
Py(z) = 0.982 + 0.0732% — 0.4182% + 0.1202%, (8.38)
Ps(2) = 0.9762 + 0.18822 + 1.1692% + 0.7552* — 0.1512°. (8.39)

For instance, f(2) = 1.036, f(5) = 1.231, f(10) = 1.469, and f(20) = 1.790. A
is the filter length, and is here defined to be proportional to (AzAyAz)Y/3. In
this model, we introduce a numerical filter to reduce two-grid noise discussed
above. This filter also reduces two-grid scale physical variability. This means
that two-grid scale would be preferred for the filter length in this model rather
than grid spacing itself; that is:

A = 2(AzAyAz)/3, (8.40)

IThey considered two grid aspect ratios, while we consider only one, i.e. Az = Ay.
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Terrain-following coordinates

Tendencies representing effect of sub-grid scale turbulence with terrain-following

coordinates are as follows: ;

dG pu _ _8G%P7'11 _ 9G2 pris _ 813G priy + Joz G2 prig + J33G2 prig

ot ox* oy* o0&
(8.41)
dGz pu _ _3G%P7'21 _ 9G2 pros _ 0J13G pTog + Ja3G pTog + Ja3G7 pTog
ot Ox* oy* ¢ ’
(8.42)
8G%pw _ _8G%p7'31 o 8G%p7-32 _ 8J13G%p7'31 + JggGépng + JggGépng
ot Ox* oy* ¢ ’
(8.43)
0Gipd)  OGiprP  9GEprP  0J13GEprP + JpsGEprd + J33GEprd
ot or* oy* 0&
(8.44)
1 8G%u 8J13G%u
2 = 4
G251, ppe + BT , (8.45)
1 8G%’U 3J23G%v
G285 = 8.46
22 oy + PTa (8.46)
1 8J33G%w
3 =20 7 4
G2 S33 9 (8.47)
f 1(8G2u  0G2v  8Jy3Gru+ Ji3G2v
3 [ 4
ohsm (2510, 000 oaaGluscle)
1 - 1 8G%w angG%U + J23G%w
ohoam (e Shhvamoie)
1 o 1 3G%w 8]13G%w+J33G%u
G283 = 5 < pe + € ) , (8.50)
. 0Gz20  0.J13G20
P =D = 51
G>my SGS( prraies o€ ; (8.51)
1 0G=0  8.Jy3G20
G2 D _ —D 8.52
TS 5GS ( oy + BTz ) ) ( )
GirP = _DSG578J33G§97 (8.53)
3
. 8.J33G20
GiN? = 9973800 8.54
FRrT: (8.54)

2Equationsthat are not changed in the terrain-following coordinates are ommited.
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8.1.3 Discretization
Spatial discretization

We use the 4th order difference scheme for the advection term, as mentioned
in the chapter 3. The 7;; and 7P are proportional to the square of the grid
spacing (A?%). Due to consistency with the advection term in terms of order for
spatial difference, the second order central difference scheme is used for terms
of sub-grid scale turbulence. In the following part of this sub-section, overline,
and ¢, j, k have the same meaning as in the chapter 3.

Momentum equation The tendencies in the momentum equation related to
the sub-grid scale mode are:

0G* pu _ (@CEprnign — (G2 o)k
Ot it+l,5k Az
1_ 1__
_(G2Pm2)iv g grge — (G2PT2)ig g ik
Ay
{G2p(Ji3mi1 + JasTia + J33T13) by d et — {G*p(J13mu1 + Jagmia + J33Tis)isd je-g
Az ’
(8.55)
1_ 1__
8G%pv _ (GQPT21)i+%,j+%,k - (G2p7-21)i—%,j+%,k
ot ijrik Az
(@2 pran)igin — (G2 pan)ign
Ay
{GEp(Jrsmar + JasTos + J33728) bi s 1 ks — {G2D(J1aTar + JasToo + JasTas) by 1
Az ’
(8.56)
1_ 1__
BG%pw _ (G2p7-31)i+%,j,k+% - (G297—31)i—%,j,k+%
Ot ijk+1i N Ax
1_ 1__
_ (G2p7-32)i,j+%,k+% - (G2p7—32)i,j7%7k+%
Ay
_ {(G2 p(J13731 + Jo3 T30 + J33733) Vi g k1 — ((G3 p(J13731 + JazTss + J33733) }i gk
Az '
(8.57)
The p is:
_ Pij+1,k+1 T Pij+1k T Pijk+1 T Pijk
Pisepiry = 2 btk £ Pk TPk (g gg)
_ Pit1jk+1 + Pistgk + Pijr1 + Pijk
Pitljk+i = - ! ]4 = L (8.59)
_ Pi+1,5+1,k T Pit+1,5.k T Pij+1,k + Pijk
Pisdrih = R Lik (8.60)
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Thermal equation The tendency in the thermal equation related to the sub-
grid scale model is:

G p o (G%ﬁTlD)i+%,j,k - (GéiTlD)i—%,j,k
ot ik Ax
_ (G%ET2D)7, j+ik T (G%ET2D)7, j—3.k
Ay
B {G2p(J1s7P + Jasd + J3sm)}ijar s — (G2 P(Tism + Tos7d + Js378) Y, j
Az
(8.61)
The p at half-level is eq.(3.81)-(3.83).
The eddy diffusion flux, 72, at half-level is:
(@ 1P)s = Dasgnns o d COitrin = (C40is | 1G 0iryspy = (N13G20)iry sy
1 Jit+35,5,k SGS,i+35,7,k Ax Az )
(8.62)
1= 1=
(G27P); i1 p = —Dgggi i (@301 = (CH0)igi | PG Oiipars = (2aC30)isr oy
2 Ji,j+3.k SGS,i,j+35,k Ay Az ’
(8.63)
1 J33G20; j i1 — J33G20, 1
(GQTBD)Lj,kJr% = —Dsasijrsl ’ +Az e (8.64)

Strain tensor All the strain tensors, eq.(8.17), have to be calculated at full-
level (grid cell center), and some are at cell edges.
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e cell center (i,7,k)

1_ 1__
(G20)iy 1 50 = (G2W)ig i

(J13G%ﬂ)i+%,j,k+% - (‘]13G%ﬂ)i+%vja’f—%

1 .. — 2
(G2 S11)i 5k Ax Az 7
(8.65)
(G2 Sa2)i i = (G20); 010 — (Go0) 1 p (Jo3G20), vt — (J23G20); o1 gos
22)i,j,k = Ay Az 7
(8.66)
JggGéwi gl — JBBG%wi jk—1
GLS P IR 5 RT3 8.67
(G 533)i5,k Az ’ (8.67)
1 1_ 1_ 1__
PRV i el (LT N A TS B el AL TRV B
12)ijk = 5 Ay Ax

_’_(JQSG%E)Z’,J}M—% — (J23G20); gy + (J1aG70); gy — (J13G70), 5y }
)

Az

ol
Nl

w); 5410 — (G
Ay

@)i,jfé,k

) 1[G
(G28523)i .k = 3 {

1 1_ 1__
J33G2 Ui jhtd = J33G2vi7j),€_% + (J23G2w)i,j7k+%

(8.68)

Az

L 1 G%w qrl i — G%@ i—L1 4
(G2831)ijk = = ( Jivg ik~ ( )i-gi
> 9 Az

1 1_ 1__
Ja3G2 Uijrtl — J33G2ui,j7k_% + (J13G2w)i,j,k+%

)

- (J23G%w)i,j7k—% }

(8.69)

Az

e zedge (i+ 3,5+ 1,k)

- (JISG%w)i,j,k—% }

(8.70)

1__ 1__
(G20)ip1 5436 = (G20)i1 1k

1_ 1__
1 {(Ggu)i-&-i,j-&-Lk — (G2 Wiy ik +

1
(G=812)iy 1 410 = 2 Ay

1_
(J23G2W);i 11 i1 kst

Ax

1_ 1_
— (J2sGE0) iy g kg + (J13G20)ig g 511 ke

— (JldG%@)

o zedge (i,j+3.k+3)

1_ 1__
1 {(sz)i,jﬂ,m; - (G2w)i,j,k+%

1
(G2 523)i,j+%,k+% D) Ay

Az
(8.71)

1 1_ 1 1__
J33G20; 11 ppr = J33G20; o1 g+ (J3GPW); s iy — (J3GPW); 501 }

Az
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o yedge (i+ 35,7, k+3)

1__ 1__
1 {(G“’w)i+1,j,k+; - (sz)i,j,k—&-%

(G2 S31)i41 jrrs = 2 Az

1__ 1__ 1__ 1__
J33G 201 g1 — J33G2 U1 g+ (J13G2W) 41 g1 — (J13G2W) 41 54
Az ’

(8.73)

velocity Calculation of the strain tensor requires velocity value at cell center,
plane center, edge center, and vertex. The velocities at cell center (full-level)
are eq.(3.87-3.89):

e z-y plane center (i,j,k+ 1)

Wi g k+1 + Wik

ai,qu-ﬁ-% == 45 (8.74)

_ Vi g k+1 T Uik

Vigk+i = %» (8.75)

_ (Pw)i.j,k+l

W, j ot = _— 2, (8.76)
Pig k41

e y-z plane center (i + 3,j,k)

(PU)H%,J‘,}C

Ut jh=—"""", (8.77)
Pitl ik

= Vit1,4,k T Vigk

Vit l gk = - 9 (8.78)

_ Wit1,5,k + Wi, jk

Wit gk =" o - (8.79)

e z-x plane center (i,j + 3, k)

— Uij+1,k + Uik
Ty gy i = LHRET L, (8.80)

(pv)i,j+%,k

= ; (8.81)
Pij+3.k

Vij+ik =

_ Wi j+1,k + Wik
R (8.82)

e x edge center (i,j + %, k+ %)

- Wikl Wik + Wigk + Uik

Uit htd = 1 , (8.83)
D1 +T. .1

_ Jtg.kt1 1,0+ 5.k

Vil el = 5 ) (8.84)

_ Wikt T Wikt

Wij+3k+d = 2 : (8.85)
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e y edge center (i + %,j, k+ %)

Uit d k1 T Uigl

Uit L ghty = 2 ) (8.86)
_ _ Vit1,5,k+1 T Vit1 5k + Vijk+1 + Uik (8.87)
vi+%,j,k+% — 4 3 .

_ Wit1j e+t T Wijetd

wi+%,j7k+% = D) . (8.88)

e 2 edge center (i + %,j + %’/{)

Uit g1,k T Uit d ik

Uiyl jrdk = 5 ; (8.89)
Vig1,j41 e TV 401k

— _ ) 25 s 25

Uitd bk = 5 ) (8.90)

_  Wig1,j41,k T Wit1 5,k + Wi j+1,k + Wijk 8.91

Witlj+3.k = 4 : (8.91)

o vertex (i + 3,5+ 3,k + 3)

Uit d i1kt T Uil 16 T Wit d a1 T Uig L 5k

Yitdj+3.h+s = 4 ,
(8.92)

_ Uitk T 01k T Vi L k1 T Vi Lk

Vit lj+3k+3 = 1 :
(8.93)

_ Wit ikt T Wi el T Wikt T W5l

Witl j+3.k+3 = 1 :
(8.94)

Eddy viscosity/diffusion coefficient The eddy viscosity/diffusion coeffi-
cient, vsgs / Dsas, is calculated at full-level with S and Ri at full-level; at
half-level, it is interpolated to full-level.

Brunt-Visala frequency The Brunt-Visala frequency, N2 is required to cal-
culate the Richardson number at full-level.

g J33G%91',j,k'+1 - J33G%91‘,j,k—1

GIN?), 0 =
( ) Jk Gm-,k 2Az

(8.95)

8.2 Boundary layer turbulence model

Corresponding author : Seiya Nishizawa

8.2.1 Mellor-Yamada Nakanishi-Niino model
level 2.5
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%L: _ —%pW, (8.96)
% _ _%pm7 (8.97)
% _ _%pw7 (8.98)
agff = —%pm, (8.99)
%p(f = -2 (pu’w’gz + pv’w’gD + 29%pW - %W —2pe,  (8.100)

where:
Ga = Qv+ Qe+ Gr + 6 + qs + g, (8.101)

and ¢2 is doubled turbulence kinetic energy:
¢ =u?+ v+ (8.102)

The higher order moments and the dissipation term are parameterized as
follows:

— ou
"W = —LqSy— 8.103
u'w aSn 5 (8.103)
ov
W = —LqSy — 8.104
v'w aSn 5 (8.104)
—_— 06,
b’ = ~LqSu . (8.105)
—— 9qa
rw' = —LgSy—2 8.106
qq,Ww qoH 82’ ( )
9¢?
2w = —3LqSy —— 8.107
¢*w 95m 3 - ( )
0w’ = Bolw + Byg, (8.108)
q3
= 1
=B (8.109)
where:
®; — 3C,®
Sur = acAlw, (8.110)
Dy 5
®s + 3C, D
Si = Ay 22105 (8.111)
Dy 5
Bp =1+ 0.61q, — 1.61Q, — Rabe, (8.112)
B, = 0.616 + Rac. (8.113)
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Dy5 = P29y + P53, (

®; =1-302A3B5(1 — C3)Gyy, (

Py =1-9a2A;A5(1 — C)Gy, (
B3 = &) +902A2(1 — Cy)(1 — C5)Gy, (8.117

by =D — 12024, A5(1 — Co)Gy, (

5 = 602 A3G )y, (

(

_Jd/e 9<q
o = { v > 8.120)
L2 [ (ou\? ov\>
N R —
2
Gy = —%NQ, (8.122)
_ 1
R= 3 {1+erf (\/§>}, (8.123)
- Q 1 ai
R= %0 Vi ex ( 5 | (8.124)
1 i
Q= 205 {RQl + N exp (—2) } , (8.125)
a
Q1= 5. (90 — Qs1): (8.126)
2_ Loy 9qa 061 ’
oL = 4a L°a.BsSy P baz , (8.127)
Qs
0Qq = ; (8.128)
T |p_qg,
L -1
a= <1 + 5Qsl) , (8.129)
CP
b= %5@(31, (8.130)
— (14 0.61gs — 1.61Q) 212 ~ 1610 (8.131)
Cc = 01lq, . 1 TCp . s .

and Qg is the saturation-specific humidity at temperature T;(= 6,7/9).
The buoyancy flux term, which is the third term on the left hand side of eq.
8.100 is:

g g 00, 0¢a
220w =2 ( —BgLqSy— — B,L
o =25 (~oLasuGE - pulasu’ye )
__ 9 (5,20 5 0%
= 2LqSH00 (50 62’ +Bq az>
g 900,
= —2LqSy——~
QSHao 0z
= —2LgSyN?, (8.132)
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where N? is the square of the Brunt-Vaisala frequency.

8 o ou\® o)
5P 2quSM{<8z> +((‘3z> }

3
—2pLqgSyN? + 9 SquSng2
0z 0z

q

_9pd 8.133
PBI ( )

Swma2, SH2, and go are for level 2 schemes corresponding to Sy, Sy, and g,
respectively:

A1Fy Rp1 — Rf
Surs = - 8.134
M2 Ry~ RfOM2 ( )
_ Rfe—Rf
Swa = 3A2(71 + 72) 1—Rf (8.135)
o\  [ov\’
q% = BlLZSMQ(l - Rf) { ((;:) + (az> } . (8136)

Rf and Rf. are the flux Richardson number and the critical flux Richardson
number, respectively. The gradient Richardson number, Ri, is:

S
Ri = Rf SZ; (8.137)

Rf is then:

1 AyF. AF. AF A F 2
Rf=-"22{Ri+ ! lRfl—\/Rz’2+2 ! 1(Rf1—2Rf2)Ri+( ! IRﬂ) :

2 A Fy Ao Fy Ao Fy Ao Fy
(8.138)
Al
Rfc = 7 8.139
fe Y1+ 72 ( )
(8.140)
where:
—-C
Ry =By AL (8.141)
')
Ry =B 2. (8.142)
Fy

The turbulent length scale, L, is determined by the smallest length scale

among three scales:

L1t 1 o1
L Ly Ly Lg '

the surface layer scale, Lg, the boundary layer scale, L1, and buoyancy length
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scale, T'g:

kz/3.7, (>1
Ls =< kz/(14+2.7C), 0<¢<1 | (8.144)
kz(1—100¢)%2, ¢<0
< qzd
Ly = 0.23M, (8.145)
Jo adz
q/N, 00,/0z>0and ¢ >0
Lg =< {1+5(q./LrN)"/?}q/N, 86,/0z>0and <0 |, (8.146)
0, 89@/82 S 0
where ( is the dimensionless height:
z
= —. 8.147
=y (5.147)
Ly is the Monin-Obukhov length:
0 3
Ly = — % (8.148)
kgt w',

where u, is the friction velocity, and the subscript g denotes the ground surface.
q. is a velocity scale defined in a similar manner to convective velocity w,, except
that the depth z; of the convective boundary layer is replaced by L;:

p 1/3
4. = {%egw'gLT} (8.149)
]_ _
A =B 6371, (8.150)
1
Ag=m —— (8.151)
3B Pry
By = 24.0, (8.152)
Bs = 15.0, (8.153)
1
Cr=y— ——, (8.154)
34,B)*
Cy = 0.75, (8.155)
Cy = 0.352, (8.156)
Cs = 0.2, (8.157)
v1 = 0.235, (8.158)
241 (3 — 2C3) + By(1 — C-

Ny = 1( 2)31 2( 5)7 (8.159)
Fy = Bi(y1 — C1) + 241(3 — 2C2) + 345(1 — Co)(1 — C5), (8.160)
Fy = Bl(')/l + ’}/2) — 3A1(1 — Cg), (8161)
Pry = 0.74. (8.162)

58



Discretization

The diffusion equations for ¢g%a are solved implicitly:

()"t = (g)"

ou\ ov\?
=2p | (L — — LqSyN?
Pk A7 pr | ( qSM)k{<8Z> +<6z> }+( qSH )k‘|
1 (@)™ = (@)™
+ Aor {(3PLq5M)k+; Aury — (3pLqSn)p—1
209k |, 2\ni1
- . 1
BiLy (a5) (8.163)
ap (o)™ 0k(gR)" + erl(gi_)" = dy, (8.164)
where:
At
Qg AZkJr%AZkPk (3p qSM)k:—‘r%? (8 65)
2A¢
by = —ap — cp + 14 Blzk, (8.166)
At
ck = (3pLaSn)p—1, (8.167)

B AzkAzk_%pk

di. = (gi)" + 2At

LqSyy { (gj)z + (gg)Q} — LqSHNﬂ (8.168)

(@)™ = ex(giy )™ + fr (8.169)
where:
ag
=0, 8.170
o bk + crep_1 ( )
dy, — cx fr—1
= 8.171
fk br + crer—1 ( )

Vertical fluxes for pu, pv, pd, pq, are also solved implicitly. For instance, the
flux for pu, F, is calculated by:

n+1 n+1

uptl —u
kbl = (PL(ISM)H%M- (8.172)

F,
Azpys

u

u™t! is calculated as the same way with ¢2, but:

At

=———(pLqS 8.173
ag A2k+%A2kPk (pLq M)k+%a ( )
by = —ar — ¢ + 1, (8.174)

At

=———(pLgS 8.175
Ck AzkAzk,%pk (pLq M)k—%a ( )
di. = uy,. (8.176)
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8.3 Microphysics

Corresponding author : Yousuke Sato

SCALE-RM has three types of cloud microphysics models. We provide a de-
scription of these models below.

8.3.1 Kessler Parameterization

SCALE implements a one-moment bulk microphysical scheme, which treats only
warm clouds (cloud and rain). This scheme predicts the mixing ratio of cloud
(Qeloud) and rain (Qrqin ). Cloud microphysical processes treated in this scheme
are saturation adjustment (corresponding to nucleation, evaporation, and cloud
condensation), evaporation, auto-conversion, accretion, and sedimentation. The
tendency of Qcioud, Qrain, and @, (vapor mixing ratio) is as follows:

% = dQ‘sat - dQ‘auto — dQ|acc (8177)
8 rain
% = dQlauto + dQlace — dQlevap — Fo, |sea (8.178)
0Qy
8% = dQlevap = dQlsar (8.179)

where dQ|sat, dQ|auto, dQlace, and dQ|evap represent the mixing ratio ten-
dency by saturation adjustment, auto-conversion, accretion, and evaporation,
respectively. Fg |seq represents flux of @, by sedimentation.
dQ|autos AQ|ace, and dQ|evqp are given as:

cloud * 1073 cloud > 1073
Qoo = { (Gt = 1075 (5.150)
ancc = 22x choud X 25725 (8181)

qsp 5,4X105+%

, o) (8.182)

_ 10.525
Foent 2 Qcloud _ (P*Qrain) (s > Qetoud)
dQevap =

where f,ent is the ventilation factor (fyens = 1.6 + 124.9(pQ;qin )°-2%46), and
the unit of dQ..x is [kg/keg/s]. p, ¢s, and p are pressure, saturation vapor mixing
ratio, and total density, respectively.
dQ|saqt i given as:

dQ‘sat = Q’U — (s- (8183)

Terminal velocities of cloud (V;.) and rain (V;,) are given as:

Vie = 0 (8.184)
Vir = 36.34(pQrain)"***[m/s] (8.185)
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8.3.2 Spectral Bin Model(SBM)

The Spectral Bin Model (SBM) was developed by Suzuki (2006) and Suzuki
et al. (2010). The model forecasts the Size Distribution Function (SDF) of seven
types of hydrometeors (liquid, plate-ice, columnar-ice, dendritic-ice, snow, grau-
pel, and hail).

The SBM calculates mass density of the seven types of hydrometeor and one
type of aerosol as their SDFs. The SDF of aerosol can be changed by advec-
tion and activation (i.e., nucleation from aerosol to cloud) processes. The SDF
of hydrometeors can be changed by several growth processes (i.e., activation
from aerosol to cloud, condensation/evaporation, collision/coagulation, freez-
ing/melting, ice nucleation, riming, aggregation, advection, and gravitational
falling).

The time evolution of SDF (number density) of aerosol (f,(m,t)) and SDF
(number density) of hydrometeor (f.(m,t)) are shown as:

afM (m,t) af (m, 1)

ot = Adv lifC(u) (m’ t):l * Grav [fC(M) (m7 t)] + |: ot ] cloud mzcrzgpgh%sggz
8fa(ma7t) o 8fa(ma7t)

ot = Adv [fa (mm t)] +Grav [fa (ma’ t)] + [ ot :| cloud microph(ySa:ilcé )

where u shows type of hydrometeor (the seven types), and Adv||, Grav[])
show change of SDF by advection and gravitational falling.

cloud microphysics
shows SDF changes by cloud microphysical processes.

The time evolution of fc(“) (m,t), and f,(m,t) are shown as:

[afc(“)(m,t)} _ (2 m,); . [0f§“)(m,t)}
ot cloud microphysics L ot Jactivation ot cond/evap
L2 mh);
L ot lcoll/coag/rim/agg
L[4 (), +[af£“>(m,t>}
L ot dfrz ot melt
{%(ma,t)] _ _8fa(ma7t)}
ot cloud microphysics L ot activation

where { } show change of SDF by each cloud growth process. The detail

of these procggges will be provided later.

The change of SDFs by advection and gravitational falling (i.e., first and second
terms of eq.(8.186), and (8.187) ) are calculated by dynamical core of SCALE-
RM shown in section 3.

Discretization of Size Distribution Function(SDF')

The SDF of aerosol and cloud is predicted as mass density of each particle
size (ga(ma), g )(m)). However most equations are given as equations of

number density of cloud/aerosol ( ) (m,t), fa(ma,t)); the mass density of
cloud/aerosol is transferred to the number density of cloud/aerosol (g, (mq,t) =
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Maga(mast), ¢ (m,t) = m® f9) (m, 1)).

To cover a wide size range (i.e., 2 um ~ 3 mm), a logarithmically uniform grid
system (log(m) = n, log(ms) = n,) is used. In this system, the relationship,

"Z:L“ = const. is satisfied.
;

Activation from aerosol to cloud particles (nucleation process)

The change of SDFs by activation from aerosol to cloud particles is calculated
based on Kohler theory Kohler (1936). Through this process, aerosols with
radii larger than the aerosol critical radius (rg ¢rit) are activated to clouds. The
critical radius is given as:

4 A3 1 \1/3 20 . M, ps
AM LY 2y Mg
271 B Sw RQ),OLT Ms PL

where Sy, o, Ry, pr, T, iy, M,, Ms, and ps show supersaturation of water,
surface tension of water, vapor gas constant, temperature, van’t Hoff factor
(= 2), molecular weight of water, molecular weight of aerosol, and density of
aerosol, respectively.
At each time step, 74 crit is calculated using temperature, and masses of aerosols
with radii j r4,cri¢ are removed from SDF of aerosol and transferred to SDF of
cloud as newly generated cloud particles.
The radii of newly generated clouds correspond to those of aerosols, but if the
radii of aerosols are smaller than the lower limit of cloud SDF, the radii of newly
generated clouds are set to the smallest size of cloud SDF (~ 2um).
The changes in aerosol and hydrometeor SDF are shown as:

(8.188)

Ta,crit = (

[aﬁfta} activation /mo:”ﬁ fa(ma,t)dmq (8.189)
(1)
[626: Lctwam’on - {aa{gahcmmon (8.190)

where mg, crit = (: %Tﬁpa is mass of aerosol particles with radii the same

as critical radii, rq cri¢. When there is not enough vapor to activate all aerosol
particles with radii larger than the critical radius, i.e.,

/ mafa(mavt)dma > qup, (8.191)

Ma,crit

only the aerosol particles with radii ; than r49,crit, given as:

/ mafa(mavt)dma = qyp, (8192)

Ma0,crit

are transferred to cloud particles as:

[8(;;} activation /mojo,cm fa(ma, t)dma, (8.193)
(1)
[626: Lcmam B [ag;;a]acmmon- (8.194)

62



where g, and p is the mixing ratio of water vapor and density.

Condensation/evaporation

Calculation of condensation and evaporation processes is based on an equation.
The mass change by these two process is given by an equation (e.g., Rogers and
Yau (1989)):

CiTT = CU(m)GU(T)SW (8.195)
Guw(T) (u: liquid)
(n) _
G = { Gi(T) (p: ice)
47
ew(T)DU KT RUT
47
Gi(T) = R,T + L; ( L; _1)
(1D, " KT \R,T
g — Sw (1 liquid)
Si (p:ice)

where C'(") (m) is capacitance, which depends on the shape of each type of
hydrometeor, S,,, S; are super saturation of water and ice, L,,, L; are sensi-
ble heat of evaporation, sublimation, D,, is diffusion constant of vapor, K is
conductivity of air, and e,,, e; are saturation vapor pressure and saturation ice
pressure, respectively. Condensation (evaporation) occur when S (1) is positive
(negative).

To calculate change of SDF by condensation/evaporation, mass flux (Fc(:f 73 d /ewp)
on each bin is given by using number density ( fc(“ )) and %—T as:
() W) () I ) () 00 G () § ()

Fcond/emp =f (m)ﬁ = fW¥(m)CWGW (T)SW. (8.196)

Using this equation, time evolution of SDF (f() is given as

9 (m)

- _am cond/evap

Of ¥ (m,t)
[%} cond/evap

_ % (£ (m)C#)) G (1) ™). (8.197)

By using the n(= log(m)), eq.(8.197) is transferred to the advection equation:

(1)

WT(W) _ f% (£ (U (1)) (8.198)
Wi = S0 Gy gm

o) exp(m) T

To solve eq.(8.198), a scheme developed by Bott (1989) is used. The number
density of the i-th bin after At (f;(¢t + At)) is given as follows:
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At
fi(t + At) = fl(t) - In [Fcond/evap,i+1/2 - Fcond/e1)ap,i—1/2:| .
An lz+1/2 lz+1/2
Fcon evap,i = |: 7 o Ju :|
d/evap,i+1/2 AL fi(t) — it figa(t)
i?,_i+1/2 = max((),]l ( i+1/2))
i;i+1/2 = mam(O,Il*(ci_H/Q))
th = max(Il,i’ixz‘Hm + ilii+1/2>)
2
+ _ Qi k k+1
I (Ciz12) = Zm[l— (1 —2¢)"]
k=0
2
- Ai+1,k —
I (Ciyr12) = Z 7% +J1r)2k+1 (—1)k [1 —(1- 2¢; )k+1]
k=0
1
aio = =5 (fir(t) = 26fi(t) + fia (1))

a1 = %(.fi-'rl(t) — fisa(t))
aio = %(fi—i—l(t) —2fi(t) + fi-1(t))

= :t(c?+1/2 + ‘0?4-1/2')/2
At
G = U (8.199)

Since super saturation (S*)) can change during time step (At), we apply a
method shown below to reflect the change of supersaturation during At.
Time evolution of supersaturation can be given by equations:

d Sw _ Qc/e bc/e Sw _ Sw
ila) = (o )3 )-(3) 200

ce = et (ot ) [ 10 mC myimGu )
bpe = (5“1)(;,*36;2%) MGZ / ) (m) O (m)dm (1)
e = ~SA D (ot ) [ 1 mC myimG
die = ~S40(y ) 3 [ 12meC minGi)

where g, is the mixing ratio of vapor.
Using eigen value of A (A4, A_ (Ay > A_)), and assuming a./e, bejes Cejes deje
are constant during At, average value of super saturation (.S, ;(t)) during At is
given as:



t+At €A+At_ eA_At_
S (t) = é /t Su(r)dr = bTAtl&(t) + bﬁuls_(t)
- 1 At eA+AL PAoat g
Si(t) = E/t Sindr = (As = @) =S () + (A — )5
(A= @)Su(t) —bSi)
Si(t) = T
5.0 (a— zz?A)fw _(t)A I)bSZ-(t)

The averaged super saturation (S, ;(t)) is used to solve the eq.(%.200).

Collision/coagulation/riming/aggregation

Collision/coagulation processes are calculated by solving stochastic collision
equations (e.g., Pruppacher and Klett (1997)):

9f(m)
ot

m/2
[ ) sm = ! Kl =

0
— f(m) /0 F") K (my "y (8.201)

where K (m,m') is collection kernel function. Three types of kernel function,
i.e., Long type kernel (Long (1974)), Golovin type kernel (Golovin (1963)), and
Hydro-dynamic dynamic kernel as shown in eq.(8.202), are implemented into
the SCALE-RM.

K(m,m") = 7n(r(m) —r(m') |[V(m) — V(m)| Ecor(m,m") Ecoaq(m, m')(8.202)

where r(m) is radius of hydrometeors with mass m and V(m) is terminal
velocity of hydrometeors. The terminal velocity of each species of hydrometeor
and each size are shown in Figure 8.1 E.,, and E.,q4 are collision efficiency and
coagulation efficiency, respectively.

Although the stochastic collision equation can be applied for collision/coagulation

of one type of hydrometeor (i.e., liquid water), SCALE-RM predicts seven types
of hydrometeors and interactions of these types (i.e., riming/aggregation) must
be calculated. To calculate the interaction of all seven types of hydrometeors,
the extended stochastic collision equation:

{3 ) (m)]
ot coll/coag/rim/agg

m/2
)
DA
) e
/ <m>§/0 /

m') f) (m —m') Ky, (m',m —m')dm/

—~

—~

m") K, (m,m”)dm” (8.203)
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Terminal velocity[m/s]

10

©

T

Water —+—
Plate

Columnar

Dendrite |-
Snow
Graupel

Hail -- @- -

10000

Raidus of hydrometeros [10°6m]

Figure 8.1: Terminal velocity of Water (Plus), plate-type ice (cross), columnar-
type ice (asterisk), dendritic-type ice (open square), snow (closed square), grau-
pel (open circle), and hail (closed circle). Cited from Figure A3 of Suzuki (2006)
and rearranged.

is applied (where pu, v, A, k represent species of hydrometeor). The combi-
nations of pu, v, A are shown in table 8.1.

Table 8.1: Catalog of interaction between seven species. W, I, S, G, and H
show water, ice, snow, graupel, and hail, respectively. G/H shows graupel(hail)
generated when T is lower(higher) than 270.15 K

w1 S G O
W W G/H G/H G/H G/H
T 1 S S I I

S

S S S S

S
G GH G/H G G G/H
H G/H G/H G/H G/H H

To solve the stochastic collision equation, a scheme developed by Bott (1998)
was implemented into SCALE-RM.
The Bott (1998) scheme calculates evolution of mass density distribution (g(n) =
mf(n), n =log(m)). The stochastic collision equation can be transferred to:
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m m2 ’ /A / /
99\ _ CEra g —n")K(n—n'.n")g(n")dn
1o

(m m)m

- / o) oy (8.204)

S

where 1, = log(m/2). Decreases of mass of i-th bin and j-th bin are given
by:

(v)
09(“) (1) N
L = _Ag"K,, LA 2
b = A K 0) (5.205)
and
69(/4) ) gl(,u)
5 —Ag; " Ky (i, ]) An (8.206)

respectively. The terms corresponds to the second term of the right-hand
side of eq.(8.204). Egs.(8.205) and (8.206) can transfer to:

2
Ag#) = g [1 = exp(~ K i,1) - AnAt)| (8:207)
J

W _ ) g
Ag) = g [1 = exp(— Ko (i.5) 2

)] (8.208)

The sum of AgE” ) and Aggu) corresponds to newly generated mass by col-
lision of hydrometeors with mass of m; and m;. The newly generated mass
(¢ = Ag" + Ag§y), corresponds to the first term of the right-hand side of
eq.(8.204)) added k-th bin (my = m; +m;). Since my, is not always bin center,
newly generated mass is divided to the k-th and k+1-th bin, as follows.

The production of k-th and k+1-th bin is represented as:

A
AgN = g g —¢ (8.209)
Mgy = g +C (8.210)
gl ak,s k+1
= 1—(1-2¢c
¢ 9V g Z(s+1)2k+1[ ( k)
m — Mg
c, = ————
Mmrg41 — Mg
A A A
ako = 24(9231 — 269 +g)
1, o A
ag1 = 2(9]24.)1 g](g—)l)
1, o A A
w2 =~ — 20 + )
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This procedure is applied for all bins of all types of hydrometeors.
In addition, for more rapid calculation, Sato et al. (2009) " s scheme is also
implemented into SCALE-RM.

Freezing

The calculation of the freezing process is based on a parameterization by Bigg
(1953). The parameterization calculates number density of water ( C(w)) that

can be frozen:

0 10 (m)
Y p(w) _
8tf (m) = o (8.211)
. . exp [bfr (Tp — T)]
fro = afrm

where af, = 1074571, and brr = 0.66°C~! are empirical parameters, and T
is 273.15 K.
Eq.(8.211) can transfer to:

dgwItm g () s212)
ot B Trr(m) '
S exp (bfr (T — T))
fri = agrm

From this equation, the mass change of i-th bin during At is given as:

gt + At) = g™ — Frz (8.213)

g (t+ At) = g™ 4 Frz; (ry, < 200um) (8.214)
ggh“”)(t + At) = gl(hall) + Frz; (ry > 200pm) .

At )]

Frz; = gz(w)(t) {1 —exp(—
Tfri
As shown in eq.(8.214), the mass of liquid is transferred to plate type ice

(ry < 200pm) or hail (r,, > 200um).

Melting

The calculation of the melting process is too simple, with all ice particles (i.e.,
plate, columnar, dendritic, snow, graupel and hail) melting immediately when
the temperature is ; Ty = 273.15 K. This is too simplistic to represent ice phase
processes, and we will modify this method in the near future.

8.4 Surface flux

Corresponding author : Seiya Nishizawa
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8.4.1 Monin-Obukhov similarity

First of all, we assume that in the boundary layer 1. fluxes are constant, and 2.
variables are horizontally uniform.
Relations between flux and vertical gradient are:

%% =on(2), (8.215)
Z{% =on (), (8.216)
%% = ¢, (%) , (8.217)

where k is the Von Karman constant. L is the Monin-Obukhov scale height:

Ou?
= * 8.218

where g is gravity. The scaling velocity, u,, temperature, 6., and water vapor,
Gx, are defined from the vertical eddy fluxes of momentum, sensible heat, and
water vapor:

ww' = —Uy Uy, (8.219)
w0 = —u,0y, (8.220)
W q = —Usqy. (8.221)

The integration between roughness length 2y to height z of the lowest model
level, egs. (8.215) and (8.216) becomes:

u(z) = % {In(z/20) = ®m(2/L) + ®m(20/L)} (8.222)
A = R%* {In(z/2) — ®n(z/L) + ®1(20/L)}, (8.223)

where A8 = 6 — 6y, and

D, (2) = / %’f(zl)dz’, (8.224)
Dy(2) = ’ %ﬁ(zl)dy. (8.225)

8.4.2 Louis’ s (1979) Model

Louis (1979) introduced a parametric model of vertical eddy fluxes.
The L becomes:

Ou? In(z/z) — ®n(z/L) + ®4(20/L)

= . 8.226
9A0 {In(z/z) — ®p(2/L) + CIJm(Z/L)}2 ( )
The bulk Richardson number for the layer Rip is:
. gzA0
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and its form implies a relationship with the Monin-Obukhov scale height L. The
fluxes can then be written as:

w? = a?u?Fy, (Z,RiB) , (8.228)
20
s = Cunor, (2 Ri (8.229)
*«Ux = R h 207 B | .

where R is ratio of the drag coefficients for momentum and heat in the neutral
limit(the turbulent Prandtl number), and

k2
A= —— (8.230)
{In(z/20)}
is the drag coefficient under neutral conditions.
For unstable conditions (Rip < 0), F;s (¢ =m, h) could be:
bRi
Fr=1-—"2"0 (8.231)

" 1+4e|Rig|

under the consideration that F; must behave as 1/u (i.e., \/|Rip|) in the free
convection limit (v — 0) and becomes 1 under neutral conditions (Rip — 0).
On the other hand, under stable conditions (Rip), Louis (1979) adopted the

following form for Fj:

1

The constants are estimated as R = 0.74 by Businger et al. (1971), and
b=2b = 9.4 by Louis (1979). By dimensional analysis:

c; = Cra’b, /Zi, (8.233)
0

and C}, = 7.4,C} = 5.3, which result best fits curves.

8.4.3 Uno et al.’ s (1995) Model

Uno et al. (1995) extended the Louis Model, considering differences in roughness
lengths related to momentum and temperature, i.e., zg and z;, respectively.
The potential temperature difference between z = z and z = z;, Ay, is:

AG; = R%* {In(z0/2) — ®p(20/L) + ®p(2:/L)} + Aby,

= R%ln(zo/zt) + Afy,

= Ab {mn(;z/’zt) + 1} , (8.234)

where Ay =6, — 0,,(= Af):

Zd)h '
—dz

20

Uy, = : (8.235)
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and ¢y, is assumed to be R in the range z; < z < zp. Thus:

1 -1
Aby = A6, {Rn(z(’/Zt) T 1} , (8.236)
Uy,
or equivalently,
Rl -
Ripo = Rip {n(’z‘)/zt) + 1} . (8.237)
Uy,
From egs. (8.228) and (8.229):
RO, 2\ VI,
Aby = In(— 2
b= n<20> o (8.238)
while 0
Aby = f‘l’h, (8.239)
from egs. (8.216) and (8.235). Therefore:
F/IY
U, = Rln <Z> Vom (8.240)
Z0 Fh

Because ¥}, depends on Ripgg, Ripg cannot be calculated from Rig; with eq.
(8.237) directly, so numerical iteration is required to obtain Rigo °. Starting
from Rip; as the first estimation of Ripgg, the second estimate by the Newton-
Raphson iteration becomes:

B RiptRIn(zo/2t)

_y (8.241)
In(zo/2:) + ¥p
where \ilh is the estimate of ¥}, using Ripg; instead of Ripg. Approximate values
for F,,, F}, and ¥, are re-calculated based on the Rz’Bo, and then A6y, and the
surface fluxes u2 and u,0, are calculated from eqs. (8.236), (8.228), and (8.229),
respectively.

R

8.4.4 Roughness length

Miller et al. (1992) provide the roughness length over the tropical ocean,
based on numerical calculations by combining smooth surface values with the
Charnock relation for aerodynamic roughness length and constant values for
heat and moisture in accordance with Smith ’ s (1988,1989) suggestions:

20 = 0.11u/v, + 0.018u? /g, (8.242)
2 = 0.40u/v, + 1.4 x 1075, (8.243)
zg = 0.62u/v, + 1.3 x 1074, (8.244)

where v, is the kinematic viscosity of air (~ 1.5 x 107°), and zp, 2, and Zq are
the roughness length for momentum, heat, and vapor, respectively.

3In the stable case, it can be solved analytically with eq. (8.232), but the solution is too
complicated.
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8.4.5 Discretization

All the fluxes are calculated based on the velocity at the first full-level (k=1)
(z = Az/2). The absolute velocities U are:

2 2
5 B 2(pu)is1 41 N (P)ij—1a+ (P0)ijria + (P0)igr 10+ (PV)ig1 410
2 =0 ek
el Pij1 + Pit1ga 2(pija + piv141)

2
(Pw)i ot + (Pw)it1 141
+ Lt DL S (8.245)
2(pi 1+ piv141)
2
v (pu)i—1 ja+ (pu)ips s+ (Pu)ios jri+ (PWigs jr10
1,j+3,1 Z(Pi,j,l +Pi,j+1,1)

Pig1+ Pij+1a 2(pi i1+ pij+1,1)

2 2 2
02 {(pu)i_wl + (pu)ig1 1 } . { (Pv)ij11+ (V)10 } N {(pw)i,j,H; }
g1 = i B

2 2
2 v i+ w 7,7 l+ w @] 3
+{M} +{(p Jogrey 10 )’ﬁl’l“} . (8.246)

201‘,3’,1 2/)7;,]',1 2,01‘,]',1
(8.247)
It is here of note that (pw)m% = 0. The potential temperatures 6 are:
0);.;
0ij1 = (PP)is, (8.248)
Pi,j,1
_ [Ty
0150 = W’ (8.249)
_ 0: 1+ 0
05111 = w (8.250)

The roughness lengths, zo,z;, and z, are calculated from egs. (8.242),
(8.243), and (8.244), in which the friction velocity u, is estimated as:

uy = /CpoU, (8.251)

where Cy,o is a constant bulk coefficient, and we use 1.0 x 1072 as its value.
From eq. (8.237), the Rip;, which is the first guess of the Ripgy, is:

. 21(01 — Os5c
Rip, = %, (8.252)
with the assumption that 6,, = 6,¢.. The estimation of ‘i/h is calculated with
Rip; from eqgs. (8.240), (8.231), and (8.232). The final estimation of Rigg is
obtained from eq. (8.241),and the final estimation of ¥}, is obtained with Ripgg.
Now we can calculate the bulk coefficients, C,,,Cr, and C, for moments,
heat, and vapor:

k2 .
Cm = mFm(RZBO)’ (8-253)
_ k2 ) Rln(zo/z) !
C. = Rln(zl/ZO)Fh(R B0) { U, + 1} . (8.255)



The fluxes are:
pu'w’ = —CpUpu, (8.256)
pv'w’ = =Cy,Upv, (8.257)
pw'w’ = —C,Upw, (8.258)
pi'w’ = —CLU{pf — pbs.}, ( )
pq'w" = —~CeUp(q — Gevap)s (8.260)

where geyqp is the saturation value at the surface.

8.5 Land

Corresponding author : Tsuyoshi Yamaura

8.5.1 Land physics: slab model

The land slab model estimates soil temperature and soil moisture tendencies
using a multi-layered bucket model. The soil temperature tendency equation is
estimated from the 1-D vertical diffusion equation, as follows:

oT 1 0 oT

where T is soil temperature (K), pr, is land density (kg/m?), Cp is land heat
capacity (J/K/kg), « is thermal conductivity (J/K/m/s), and @ is external
heat source (J/m3/s). Eq. (8.261) is discretized as follows:

ATy, Ve [ Thp1 =T Tp—Tp Qk
- - + , 8.262
At Az ( AZ;H_% Azk_% (pr.Cr)k ( )
2Vk 2l/k Qk
= Tor1 —Th) — Te =Th1) + =~
Azk(Asz,_l + Azk) ( kol k) Azk(Azk + Azk_l) ( k k 1) (pLOL)k-
(8.263)
where
n (8.264)
Vp = ———), .
» (PrCrL)k
(p2CL)k = (1 = Smaz)Cs + Skpw Cw, (8.265)

and S is moisture content in the k-layer (m3/m3), Syu4 is maximum moisture
content, C's and Cyy are heat capacities of soil and water (J/K/kg), and pw is
water density (kg/m?). The range of k is 1 to m. In this case, m is the number
of the lowermost layer. Soil temperature tendency equations are implemented
as follows:

ATl GO 21/1
T + Ty —T1), 8.266
At (pLC’L)lAzl AZ](AZ2 +A21)( 2 1) ( )
ATk 2I/k 21/k
= — Ty —Tr_1)+ T T 7
At Azk(A2k+Azk_1)( k k1) Azk(AzkH—i—Azk)( k+1 k)
(8.267)
AT‘m, 2Vm
T Ton = Tina), 2
At AZ"L(AZW + Az'm—l) ( 1) (8 68)
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where G is upward ground heat flux between the Earth’s surface and subsurface
(J/m?/s). We assume that the ground heat flux under the lowermost layer is
Zero.

We use an implicit scheme for time integration of the land slab model. Ten-
dency equation cofficients are summarized as follows:

a; =0, (8.269)
2I/kAt
=— , 8.270
a Azk(Azk + AZk_1) ( )
2VkAt
b = — , 8.271
§ Az (Azg + Azgyq) ( )
by = 0. (8.272)
The soil temperature tendency equations are then rewritten as follows:
GoAt
=T ——— +0(TT - T& 8.273
1 1 onCLim + b0 (17 = T3), ( )
Tp = Tt 4 an(Tf = Ti_y) + bu(Ti — Tiiyy), (8.274)
T! =T +a, (T — T8 ). (8.275)
This simultaneous equation can be written using a matrix:
e b Ty TN diam
a9 Co bg T% T2t_
ar  c¢p by T | = Tt ,
Am—1 Cm—1 bmfl Tﬁm71 T:;:ill
Qm Cm, Tt Tt
(8.276)

where ¢, = 1 — ax — bg. This matrix can be solved by the Thomas algorithm
(tridiagonal matrix algorithm).
Soil moisture is estimated using a similar method. The soil moisture ten-
dency equation is defined as a 1-D vertical diffusion equation, as follows:
ow 9 ow
hAASEIL A
ot 0z 0z )’
where W is soil moisture (m3/m?) and v is constant water diffusivity for k
(m?/s). Eq. (8.277) is discretized as follows:

(8.277)

- N .2
At pw Az * Az1(Azs + Azp) (W2 — W), (8.278)
AW, 2u o
At Azp(Azy + Aqu)( b 1)+ Az (Azpy1 + Azk)( k1 k)
(8.279)
AW, 2u
T m — Win-1), 2
At Az (A2 + A2y —1) (Wi = Win-1) (8.280)

where P is precipitation rate (kg/m?/s) and E is evaporation rate (kg/m?/s).
As in the case of soil temperature, the tendency equations can be solved using
the Thomas algorithm.
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8.6 Large scale sinking

Corresponding author : Seiya Nishizawa
In the DYCOMSO01 experiment, large scale sinking is added to express large
scale downward motion corresponding to the Hadley circulation. There is virtual
convergence of motion, resulting in mass escape out of the system.
The density loss rate is constant L:

_8[)U}L
0z’

L= (8.281)

where w; is vertical velocity corresponding to large scale sinking. Vertical mo-
mentum with sinking is defined as follows:

pwy, = —Lz. (8.282)
The continuous equation is now:

dp _Opu  Opv N Op(w +wr,)

5t st oy 5 = L. (8.283)

The Lagrangian conservation equation for scalar quantities is:

9¢ 9¢ 9¢ 9 _
PE‘FPU%‘FPU@‘FP(W‘HUL)@ =0, (8.284)

When combined with eq. (8.283), this becomes:

dpg | dpug  dpve N Op(w+wr)e

= —Lo. 2
ot ox y 0z ¢ (8.285)
The equation for the mixing ratio is:
00Q , 9pQu  9pQu  9pQwtwr) (8.286)

ot ox dy 0z

Note that this is identical to that for scalar quantities.

The wy, at the top boundary is not zero, while w is zero. The vertical flux
pwr ¢ at the top layer interface could be determined as that convergence of the
flux canceled with L.
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Appendix A

The detal numerics

A.1 4th order central differnce

The 4th order central difference is given by
09 _ —dit2 +8¢it1 —8pi_1 + Pito

= =0
ox 12Ax
where

O 5 a%) 4NAx3 (a%) 2Az4 (a%
ite = ¢ + 20z | — 2A — — —
itz = it x(ax)i—i_ v <8w2 * 3 Ox3 + 3

dé Ax? (029 Azx3 a3¢> Azt (03¢
i1 =i+ A = (=) +==
Pit1 = i+ x(@x)i+ 2 (8902) 6 Ox3 24 <8x4

bi = ¢;

S ¢ Az? [ 02%¢
$i-1=¢i— A (ax) +T(@) ot

24

O 5 a%) (8%) 2Az4 (a%
ito = ¢y — 20x | — 2A — — —
itz =0 x<81’>i+ * (8 2 3 ox3 * 3 8zr* /),
Therefore,
—@it2 + 8pit1 — 8Pi—1 + Pit2 o¢ 4
= (== A
12Ax ox /; +0(a)

(A1)

o) +olwd)

—) + O(AZA.3)

(A.4)

(
AT (g:f) S <@>1 +O(AaA)
AA L3

) +O(onB)

(A7)

(=it2 + Thit1 + T¢i = ¢i1) = (=bit1 + Thi + Thi—1 — $i—2) _ (3¢> E O(44%)

12Ax ox
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A.2 Flux Corrected Transport scheme

Equation (3.106) can be written as

1
n+1 _
(Pa)i 5 1 (PD)7 ;1 ~ AuAphz [
[ hﬁgh low ]
+ _CH-%,],I@ i+L.5k (1 1+27], ) Fz+%,j,k
_ [ hlgh low ]
Cl*wk z—§,gk+(1 C %M> E 2% g
[ hzgh low
+ _C ,y+2,k i+ 5,k (1 C; ,J+2,k> Fi,j+§,k_
_ [ hzgh low ]
Coigrfiigat (1 <, %vk> LIRS
[ hz h low
+ _C 0,75 k+2 07, k+% + (1 C 7, k+%> F’L,j,k+§
_ [ high low
Cigk—3Figh-1 (1= Cijne %)Fi,j,k—%}
] (A.9)
where
high,low _ high,low
il = AtAyAz(pu);y 1 XA s (A.10)
high,low _ high,low
ig+ik T AtAzAD(pu); iy 1 ik (A.11)
high,low _ high, low
Fz‘,j,k+% = AtAzAy(pu), RREBL Aclint 1 (A.12)
The anti-diffusive flux are defined as
_ hzgh _ low
Mg = UYL F (1)
_ high low
Aivjﬁ'%,k - i,j+%,k Fz ]Jr (A'14)
high low
Aijers = Gak+s T idktd (A-15)
Equation (A.9) can be rewritten as
1
n+1 _ n -
(Pa)i 5 (Pa)7 ;.1 AvApAz [
low
+ _Fz+2,j kT Citl ik Ai+%,j,k_
low
R L R R R I S
low
+ F igate T Ciirdniged
_ low
F,J** FCoi-taig-1.n)
low
+ F7J7k+1+0”k+1Adk+}
_ low
Fir—3 T Ci,j,k,%Ai,j,k,%}
] (A.16)

In practice, we calculate Eq.(A.16) by the following steps:

1. The tentative values are calculated by using the low order flux:

()}, (PD)? 5 1

_ Flow + Flow

1 low low low lo
AzAyAz [+Fi+%,j, 1—7,J,k ,J+ F»J—*ak + Fi,j,k+1 ij(f’é_l]
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2. Allowable maximum and minimum values are calculated:

(p);

(p);

max

4,k

min
4,k

max|

max((pg)! ; ., (P27 4);
max((pq)!_y ;10> (P71 j.1)»
ax P‘I)Hl,],k » (pa i+1,7, k)
max
i,J+1, k)

max((pq)! b1 (PO k—1)5

(
(

(« )i

(0] 11 (0751 )
max((pg)] ;.1 1.+ (PO}

(« )i

(« );

max pQ), k1 (pq 7JJﬁLl)

min]
min((pq )” ko (POL 1)
min((pg)]_ ;. (P07 1 ;1)
min((pa)] 41 ;5 (PO 1 54
min((pa)] ;1 4> (PO} 1.k)s
min((pq )”+1 ko (PO 5 411)5
min((pg )” w1 (PD; k1)
( )

min((pg)] gkt (PO kg

]

3. Several values for the flux limiter are calculated:

+
Bk

Pk

Ri,j,k

— min(0, A.
—min(0, A
—min(0, A
—max(0,4,
—max(0, A, g+l ) +min

—max(0, A”k_‘_1)+min

{
{

min(1, Q:rjk/Pfjk)

0

min(1, Qi_’jyk/Pi,_j,k)

0

zj+ k

”k+1)+max

[(pq)'fl;"‘," ()}, k] AzAyAz
()] = (03| Aoy
+
if PJr >
if P k=
if P_ k>

1ijjk
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=0

0
0

(A.18)

(A.19)

(A.20)

(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)



Cz‘+§,j,k

C,

5+ 5.k

Cz‘,j,lwé

min(R;ijk, R

min(R;

min(R;

4. The flux limters at the cell wall are calculated:

min(R], Ry

i+1,5,k°

1,5,

min(R; -

itk Bijk)

ik Bijk)

ka1 B k)

min(R; -

ik Bij k)
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if Ai—o—%,j,k <0
A e 20
if Ai,j+%,k <0
A s 20
if Ai,j,k-»—% <0

(A.27)

(A.28)

(A.29)



Appendix B

Notation
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Table B.1: Notation of symbols

P) total density kg/m?

qd mass concentration of dry air —

Qv mass concentration of water vapor —

q mass concentration of liquid water —

s mass concentration of solid water —

t time s

u velocity of air flow m/s

wy relative velocity of liquid water to the gas m/s

Wy relative velocity of solid water to the gas m/s
DIFF [z] Diffusion term by turbulene kg/m?[x] /s
Sy source term of water vapor kg/m3/s
S source term of liquid water kg/m3/s
Ss source term of solid water kg/m3/s
D pressure N/m?

g gravitational acceraration 9.8 m/s?
fi drag force due to water loading by liquid water kg/m? /s
fs drag force due to water loading by solid water kg/m?/s*
e, vertical unit vector ( upward ) -

Ry gas constant for dry air for uint mass J/kg

R, gas constant for water vapor for uint mass J/kg

T temperature K

Qq diabatic heating due to physical processes for dry air J/m?3/s
Q. diabatic heating due to physical processes for water vapor J/m?3/s
Q diabatic heating due to physical processes for liquid water .J/m?/s
Qs diabatic heating due to physical processes for solid water ~ J/m?/s
ed internal energy for dry air J/kg

€y internal energy for water vapor J/kg

el internal energy for liquid water J/kg

€s internal energy for solid water J/kg

e total internal energy J/kg

Cod specific heat at constant volume for dry air J/kg/K
Cow specific heat at constant volume for water vapor J/kg/K
Cpd specific heat at constant pressure for dry air J/kg/K
Cpuv specific heat at constant pressure for water vapor J/kg/K
a specific heat for liquid water J/kg/K
Cs specific heat for solid water J/kg/K
P00 standard pressure 1000.0 Pa
04 potential temperature for dry air K

0 total potential temperature K
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Appendix C

Variables in the source code

Table C.1: Variables in atmos/mod_atmos_dyn_fent_fct.f90.

DENS(k717J) Pi,j.k
MOMZ(k,i,j) (pw)i,j,k-&-%
MOMX(kvle) (pu)i—i-%,j,k’
MOMY(kvlv.]) (pv)i,j—i-%,k
RHOT(k71aJ) (pe)i,j,]f
QTRC(k’IaJan) qi,5,k
PRES(k,i,j) Pijk
VELZ(k,i,j) W; j i1
VELX(k,i,j) Ui 1 g
VELY (k,i,j) Ui jydk
POTT(k,i,j) ik
QDRY(kvlaJ) qd
Rtot(k.i,j) R*
num_diff(k,ij)  Fj 1

gfix hi(kij) gt
qfix_lo(k,i,j) gov
quls(k,i,j) :j,k
gjmns(k,i,j) ik
pjpls(k,i,j) 7J,rj,k
pjmns(k,i,j) Py
rjpls(k,i,j) Rij,k
rjmns(k,i,j) ik
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Table C.2: Variables in atmos/mod_atmos_phy_tb_smg.f90.

the(k,i) TKE
nu(kaiaj)v nu**(kaiaj) VsGgs
Ri(k,i,) Ri
Pr(k,i,j) Pr
$33_%(k,i,j) Sy
S11 ( ) S11
$22_%(k,i,j) Sos
S31_ (k I,J) S31
S12_ (k,ld) S12
523 *(k i,j) Sos
qﬂXngS(kvivj) PTij, ﬁT;B
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