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Chapter 1

Introduction

1.1 What is SCALE

SCALE (Scalable Computing for Advanced Library and Environment), which
stands for Scalable Computing for Advanced Library and Environment, is a
basic library for weather and climate model of the earth and planets aimed
to be widely used in various models. The SCALE library is developed with
co-design by researchers of computational science and computer science.



Chapter 2

Governing equations

Correnspoinding author : Hirofumi Tomita

2.1 Continuity equations
The continuity equations for each material can be described as the flux form:

Ipqa

5 + V- (pgau) = DIFF [¢q4] (2.1)
9pgu

gg +V - (pgou) = S, + DIFF [q,] (2.2)
dpq Ipquwy
W + \% (pqlu) + Oz = Sl + DIFF [ql] (23)
dpgs Ipgsws _

BN + V- (pgsu) + 9 Ss + DIFF [qg,] (2.4)

The summation of the mass concentrations should be unit:
Ga+q+a+q =1 (2.5)
The source terms of water substances should satisfy the following relation:
Sy + S+ 5s=0. (2.6)
The summation of Eqgs.(E)-(24) gives the continuity equation of total density:

dp Ipquwr | Ipgsws
+ V- (pu)+ 9% + 9%

= —0, (2.7)

For this derivation, we assume that the operator DIFF [| is distributive. Using
Eq.(23),

DIFF [qq) + DIFF [¢,] + DIFF [q] + DIFF [g,]
= DIFF (g4 + ¢ + @ + ¢s] = DIFF [1] = 0 (2.8)



2.2 Momentum equations

The momentum equations for the gas, liquid, and solid material are described
as

Ip(ga+ qu)u

En +V-[p(ga+q)u®ul (2.9)
= —Vp—Ip(ga+aq)g+(fi+[fs)les

+uS, + DIFF (g1 + g,)u] (2.10)
dpgqiu dpqruw; _ _

D + V- (pgu®u) + 0, (pqug — fi) ez
+uS; + DIFF [gu] (2.11)
dpgsu opgsuws B _

o TV (pgsu@u)+ = = —(pgsg — fs) e
+uS; + DIFF [g,u] (2.12)

The pressure is derived from the equation of state as
p=p(gaRa+ qRy) T. (2.13)
The summation of Eqgs.(2M)-(E12) gives the total momentum equation as

Odpu dpqrwy | Opqsws
ot V- (pueu)+ ( 0z * 0z Cz
= —Vp— pge, + DIFF [u] (2.14)

Note that the drag forces by water loading does not appear in Eq.(2714), because
those term are cancelled out through the summation.

2.3 Thermodynamics equations

The equations of the internal energies are described as

a ed + quvey
Oelaiea ¥ 4u2) | 5. [p(geq + gueuul

ot
= —pV-u+Qq+ Qy+ DIFF [(qq + q,)T™] (2.15)
0 0
paqfl + V- (pgre) + % — Q, + DIFF [qT*]  (2.16)
8 s a sCsWg *
”gf + V- (pgsesu) + % = Q, + DIFF [¢,T*]  (2.17)

where T™ is some kind of potential temperature, discussed later. The internal
energies are defined as

eq = Cpal (2.18)
€y = CyoT (2.19)
e =T (2.20)
es = csT), (2.21)



The summation of Egs.(213)-(217) gives the following internal energy equa-
tions:

dpe Opqiepw; — Opgsesws
Ty Chhed \va
5 TV (peu) + = = 4+ pV
— Q-+ DIFF [T"] (2.22)
where
€ = gqed + gvey + qier + gses, (2.23)

and the total diabatic heating is described as

Q = Qd+Qv+Ql +Qs- (224)

2.4 Conseptual seperation for solving the set of
equations

Egs.(22)-(23),(200),(Z14), and (Z13) with Eq.(ZZ2Z3) are the complete set of
equations. For solving them easily, we seperate the set of equations conceptually

as
0p _ (9¢ 99
ot a < ot >dynamics " < ot >physics (225)

The falling proccess of liquid and solid waters, the source and sink process of
water vapor, and the diabatic heating process for energy equations are treated
as physical process, the others are treated as dynamical proccess.

According to this scheme, the dynamical process can be written as

%0 19 - (pgem) = 0 (2:26)
U4 (par) = 0 (227)
%0 1 (pgo) = 0 (228)
% +V.(pu)=0 (2:29)
%u + V- (pu®@u) =—-Vp— pge, (2.30)
%+V-(peu)+pv~u:0 (2.31)



On the other hand, the physical processes are as follows:

8537) — S, + DIFF [g,] (2.32)
Opar, OPAVL _ g, 4 DIFF [g) (2.33)
85215 N % = S, + DIFF [g,] (2.34)
% 8p@q;wz 8pgszws —0 (2.35)
55;;1 8pcg:wz + ap‘g;ws — DIFF [u] (2.36)
% 3pqazzzwz . 3ﬁqusws = Q + DIFF [T*] (2.37)

2.5 Conservation of thermodynamics in the dy-
namical process

Equation (E=3) is not a complete flux form, because the internal energy itself
is not conserved both in the Euler sense and in the Lagrangian sense. In this
section, we consider the conservative quantity for thermodynamics equation.

In the dry atmosphere, the potential temperature for dry air, which is defined
as

p Rd/cpd
0, = T(?) , (2.38)

is used as a conserved quantity it is conserved along the Lagrange trajectory
cpd Rq are the specific heats at constant pressure and However, it is no longer
satisfied when the water substances are included.

Sinece Eq.(EZ) is equivallent to

dp
i V-u=0 2.39
g TPV u=0, (2.39)
Equation (E231) is
de pdp
— —=—=0. 2.40
Pat ~ pdt (2:40)

Dividing by p, this equation can be written as

de d (1
Cipt(2) =0 2.41
dt+pdt<p> 0 (241)

Substiting Eq.(213) into Eq.(241),

dgacydT d R,T dgyco T d [qR,T
4dCvd +p|:qdd:|+qc + [q }

dt at | p a Pa | p
dgaT  dgscsT

845G _ 2.42
a a7 (242)



Since Eqgs.(2720)-(2729) give

daa _ day _ dq _ das _
dt e dt dt ’
Equation (222) gives the following form:

[dcvdT d [RdT” [dch d
d + v

a " Pa dt Pt
n de;T n desT 0
q dt qs dt =

Dividing this equation by T,

Thus,

da | Cpdip P\ p Qo | porp Par\p))

1dT 1dT

+QZCITE + qSCSTE =0
dinT Rg d 1 dinT R, d

e[+ 2 n ()] o [+ 22

dinT dinT
taa—r sCs— = = 0

dlnb, dlnd, dinT dlnT
qdcpdT + qvchT qic dt + qsCs di =0
i [1n (ggdcpdggvcvaquqscs)] =0

dt

% [egdcpdegUCpuquCquscs] —0

al

Thus, the following quantity is conserved along the flow trajectory;

__ pn9dCpd png,c qicigsc
© = §lacrdgauers PacL o

where 6, is the potential temperature for water vapor, defined as

Ry /cpo
0, = T<p00)
p

The equation of state has the following expression using ©.

where

©

p p

qaRa+qv Ry
— T9acpatqucpvtqicitgscs (pw)

p

*

R
- T (poo) ,
b

4dCpd + GvCpu + qici + gscs
R = Qde + qu'u

* T ¥
|

qaRa qu Ry
T4 Cpa (poo) T'qvCpo (poo) TUct 4 95

(2.43)

(2.44)

(2.45)

(2.46)
(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)



We define a new potential temperature
R* /cy,
g=0Y% = T (poo) (2.57)
p

The pressure expression is derived diagnostically as follows:

R*

p = p(gala+quRy)0 (p> ' (2.58)
Poo
o 1\ =
P = pR0 <) ' (2.59)
Poo
OR*\
P = DPoo (p ) (2.60)
Poo
Note that
e 1 d
B _leua®@ (2.61)

dt a dt

Therefore, pf can be employed for the prognostic varaiable!

Figure ETTI(a) gives the vertical profile of the temperature in the U.S.standard
atmosphere and Fig.Z1(b) shows the vetical profiles of /6, under this temper-
ature condition when we assume that g, is mass concentration of water vapor
at the saturation, q; + g5 gives 0.0, 0.01, 0.02, and 0.04. The differnce between
f and 0, becomes larger with the height and it may not be negligible.

2.6 Diabatic heating in the physical process

If the prognostic variable for thermodynamics is changed from the internal
energy to the newly defined potential temperature 6, the diabatic heating in
Eq.(2537) should be modified. Through the manupulation from Eq.(E20) to
Eq.(E48), Eq.(2230) without turbulence term can be written as

din® Q

= — 2.62
dt oL ( )
On the other hand, Eq.(E61) gives
do 1 dln®©
— = _—Ql/—= 2.63
dt ¢ dt (2.63)
Substituting Eq.(2562) into Eq.(2153),
o 1 B
@ _ L <p> P Q (2.64)
dt ¢ \poo p



2.7 Summary of equations in the dynamical pro-

cess and physical process

2.7.1 The dynamical process

0pqy _ (9pqv
at +V (pQUu) - ( at physics

Opqy _ (9pa
6t +v (pqlu)( at physics

0pgs _ ( 9pgs
ot v (pqSU) ( ot physics

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

dp op
v = ()
ot ot physics
0 0
PRV - (puwu) = —Vp—pge, + ( L0
ot ot physics
0pb 0pb
— + V- (pbu) = <)
ot ot physics
( pOR* ) TR
P = Poo
Poo
where
C;; = (4dCpd + GvCpu + qic + qsCs
R* = qiRq+ quR,
2.7.2 The physical process
(8?)"”) — S, + DIFF [g,]
t physics
0 0
(gfl) = —% + S, + DIFF [g]
physics z
(8,0(]5) __ 8pq$ws + S, + DIFF [qs]
ot physics 0z
( 3,0) __Opqrwy  9pgsws
t ) physics 0z 0z
< dpu ) __Opgraw; _ Opgsuw, -+ DIFF [u]
ot physics 0z 0z
5/)9) 1 < P >}‘?§ { Opqreqw;  Opgsesws
— =—|— — — + DIF 9
< t physics ¢\ Poo Q 0z 0z K¥T9)
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Chapter 3

Descretization of the
dynamics

Corresponding author : Seiya Nishizawa

3.1 Temporal integration scheme

3.1.1 Runge-Kutta schemes

For the time integration of Eqs.(EBR)-(E40), we adopt the full explicit scheme
with the p step Runge-Kutta scheme.

o5 =9 (3.1)
ki = f(¢") 2
ko = f((bt + k‘lAth) (33)
kp = f(¢t + kpflAtapfl) (34)
PTA = ¢+ ALY Bk, (3.5)

The 3 and 4 step Runge-Kutta scheme are implemented.

The Heun’s three step scheme

ki = f(¢"), (3.6)
ky=f (¢" + ;At/ﬁ) : (3.7)
ks = f <¢” + ;AH@) , (3.9)
P = ¢" + %At(/ﬁ + 3k3). (3.9)

12



The Kutta’s three step scheme

ki = f(9"),
ko = f (¢" + ;At/ﬁ) ;
ks = [ (6" — Athy + 2Atks) |

1
Pt ="+ G Atk + dky + k).

The Wicker_and Skamarock (2002)’s three step scheme

kl = f(¢n)a
ky=f <¢n + ;At/ﬁ) ;
]fg = f <¢n + ;Atkz) 5
¢n+1 = ¢n + Atkg
The four step scheme

kl = f(d)n)v

ky=f (615" + ;Aﬁﬁ) ;

kg — f <¢n + ;Atk2> y

ky = f(¢" + Atks),

1
¢n+1 = (bn —+ 6At(k1 —+ 2](12 —+ 2]€3 + k4)

The forward-backward scheme

(3.10)
(3.11)
(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)

In the short time step, the momentums are updated first and then density is

updated with the updated momentums.

puitt = puit + At fou,(p"),
P = o + Atf,(pulth).

13



3.1.2 Numerical stability

A fully compressive equations of a acoustic mode is considered. The continuous
and momentum equations is the followings:

dp  Opu;
% oz, (3.25)
Opu;  Op
o~ on (3.26)
Rp0\ '
P = Do ('O> , (3.27)
Po

here the potential temperature 6 is assumed to be constant.
In order to analize the numerical stability of equation, the equation of the
state is linearized.
prp+ 2y, (3.28)
where c¢ is the sound speed: ¢? = %
We descritize the governing equation with the 2th order central difference.

dp Uipap =Uicayp Vigrp=Vicis Wigayo = Wioayo
ot ik N Ax Ay Az
(3.29)
oUu i+1 — Pi
= — _ 2Pl TP (3.30)
ot i+1/2 Az
v S L= (3.31)
0t ljs1/2 Ay
W1 2Pk =Pk (3.32)
ot i+1/2 Az

where U, V, and W is the momentum at the stagared grid point in x,y, and z
direction, respectively.
The error of the spatial differenece of a wavenumber k£ component quSk is
{exp(ikAz) — 1} ¢, and the error of 2-grid mode is the largest: exp(im)—1 = —2.
The temporal differential of the 2-grid mode is

% _ 1 fezp;fiﬂ')U_ 1 ezpy(m)v_ 1 fezpz(fiw)w (3.33)

%ftf _ _Cz% (3.34)

%‘; _ _szﬂzz—l (3.35)

5@%’ _ e eXP(ZTT) iy (3.36)

The mode of which the U,V and W has the same phase is the most unstable:
% _ _31—62711(—”)U (3.37)

%IZ _ _czwﬁ) (3.38)

14



Writing matrix form,

9o p
(é%) =D <U> ) (3.39)
ot
where
0o -5
D— (2 OM). (3.40)
Az
The Euler scheme
With the Euler scheme,
Pt = o™ + Atf(o") (3.41)
The A is the matrix representing the time step, then
A=1+dtD, (3.42)
1 —68L
_ ( A 1A-r> . (3.43)
Az

The eigen value of A is larger than 1, and the Euler scheme is instable for any
At.

The second step Runge-Kutta scheme

The Heun’s second step Runge-Kutta scheme is

ki = f(o"), (3.44)
ko = f((bn + Atk‘l), (345)
At
¢n+1 = (bn =+ 7([@‘1 + k‘g) (346)
At
A:I+7(K1+K2), (3.47)
K, =D, (3.48)
K> = D(I + AtKl). (349)
After all,
1-62 -5t
a= (M ). (3.50)

where v is the Courant number for the sound speed: Cﬁ;. The eigen value of A

is larger than 1, and the Euler scheme is instable for any At.

The third step Runge-Kutta scheme

With the Heun’s third step Runge-Kutta scheme, the matrix A is written by

At
A =T+ =5 (K +4K3), (3.51)
1 _61/2 _GAt(l _2y2)
= A 52
<2i§t(1 —2?)  1-61° ) ’ (3.52)

15



where

K, =D, (3.53)
At

Ky = D(I + 5 K1), (3.54)
2A

Ky =D(I + TtKZ)' (3.55)

The condition that all the eigen values are less than or equal to 1 is

1
v< 3 (3.56)
In the Kutta’s three step Runge-Kutta scheme, the matrix A is
A:I+%(K1 + 4K + K3), (3.57)
where

K, =D, (3.58)
Ko =D (I + A;Kl) , (3.59)
K3 =D (I — AtK; + 2AtK,). (3.60)

It is the idential as that in the Heun’s scheme (eq. B352). Thus, the stable
condition is the same (eq. BDH).
The Wicker and Skamarock (2002)’s Runge-Kutta scheme is described as

A =T+ AtKs, (3.61)

K, =D, (3.62)
A

Ky=D (1 T ;Kl) : (3.63)
At

K3;=D <I + 2K2) : (3.64)

The A and the consequent stable condition are the identical as the above two
schemes.

The four step Runge-Kutta scheme

The matrix A is

At
A:I+€(K1+2K2+2K3+K4), (365)

_ <1 — 612+ 604 —58(1 - 2u2)>

20801 —2%) 160+ 6

(3.66)

16



where

K, =D, (3.67)
At

Ky=D <I + 2K1) : (3.68)
At

K3 =D (1 + 2K2) : (3.69)

Ky = D(I + AtK3). (3.70)

The condition for stability is

v< —. (3.71)

“|S

The number of floating opint operations with the four step Runge-Kutta
scheme is about 4/3 times larger than that with the three step scheme. Howere,
the time step can be 2\/6/ 3 larger than that in the three step scheme. Since
2v/6/3 > 4/3, the four step Runge-Kutta scheme is more cost effective than the
three step scheme in terms of numerical stability.

The forward-backward scheme

The stabitlity condition is
1
v< —. 3.72
<75 (3.72)
The forward-backward scheme can be used in each step in the Runge-Kutta
schemes. The stability conditions are the followings:

The second step RK scheme

1
v< —. 3.73
<7 (3.73)
The Heun’s three step RK scheme
- (3.74)
— 2' .
The Kutta’s three step RK scheme
<1 (3.75)
Vg .
TheWicker and Skamarack (2002)’s three step RK scheme
6
,< V6 (3.76)
4
The four step RK scheme
v < 0.66 (3.77)

Corresponding author : Hirofumi Tomita
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3.2 Spatial descretization

We employ the Arakawa-C staggered grid with the 3-dimensional momentum
(pu, pv, pw), density (p) and mass-weighted potentail temperature(pf) as the
prognostic variables. Figure Bl(a) shows the structure of the control volume for
the mass, indicating the location of each of prognostic variables. Conceptually,
we use the 4th order central difference scheme for the advection or convection
terms and the 2nd order central difference scheme for the other terms. Before
the descretization of differential equations, we should diagnose several quantities
from the prognostic variables.

Full-level pressure and potential temperature

o*

0); ;1 R*| 5
Di,j,k = Poo [(p Jis } (3.78)
Poo
0);.;
;) — Pk (3.79)
Pi,j.k
(3.80)
Half-level density
_ Pi+1,5.k T Pijk
Puvg g = LEELEE L Pith (3.81)
_ Pij+1,k t Pi gk
Pij+ik = % (3.82)
_ Azppijk+1 + D2pt1pi gk
kel = 2 = 3.83
pz,j,k-&-% AZk +A2k+1 ( )
Half-level velocity
_ (P)it 15k
Ui jh = "= (3.84)
Pit}.j.k
_ (P”)i,j+l,k
Y (3.85)
1,j+35,k
(pw); jrs1
Ty = (3.86)
pl,],k+%
Full-level velocity
(pt)ig 1 jn+ (Pu)iy
Uik = +27j§ i S (3.87)
Pi,jk
(Pv)i 1+ (PV)i5-1
Ty = —— ik (3.88)
Pij,k
(pw); jrs 1t + (pw); 51
Wijk = 7]7k+22 i e (3.89)
Pi,jk

18



3.2.1 Continuity equation

(6;)) _ (PU)H%,M - (pu)ifé,j,k
)i Az
B (pv)i,j-i-%,k - (Pv)i,j—ék
Ay
_ (Pw)i,j,k-s-% - (pw)i,j,k—% (3.90)
Az '

3.2.2 Momentum equations

Figure B(a) shows the structure of the control volume for the momentum in
the x direction. The momentum equation is descretized as

(ap“> - _ (P 41,50 Tit 1,5,k = (P 5Tk
ot i+3,5.k A
Py ey 4T gk~ (P o3 Vi d bk
Ay
_ (PU)ig g gkt 3 Wit gkt d ~ (P k4Pt gkt
Az
_W (3.91)
where
pu)i,j,k
— pu)i+%7j7k + 7(pu)i+%,j,k + 7(pu)i—%,j7k - Um)i_%vj:k
_ (3.92)
12
()4 1,11
_ —(pw)ir 1 jyon +T(PWiy s jian T 7(P0)ir s ji — (pu)”%’j*l’kfi’) 93)
= \ ’

12
(P01 gt
=(Pw)ir 1 gy T 7Pyt jrrr + 70wy e — (PU)ig 1 ik

= 5 (3.94)

and the velocities at the cell wall for the staggered control volume to x direction
are defined as

Uip Lk T Uiml 5k

Uijk = 5 (3.95)
Uy il g+ U0 ial
_ J+ 5k i+1,j+35.k
Vitgitgk = - 9 : (3.96)
@i k4L + w; 5 1
_ - 2Jik+ 3 i+1,7,k+3
Wil jhts = 5 (3.97)

In this form, the 4th order accuracy is guaranteed on the condition of the con-
stant velocity.
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The momentum equations in the y and z directions are descretized in the
same way:

<8pv> iy g w T g g sk~ (P)ing g kT d
Ot Jij+sk A
(PV); j1 6 Vi5+1.6 — (PU); ;4 Vijik
Ay
(PV)ia g ey Vi s — (PV)igrt o 1T g kg
Az
Pij+1.k — Pijk 308
(8pw> ey k1T gk s — (PW)is g ey 3 Tiodkrd
Ot Jijk+t Az
(Pt e 3 i g e — (PW)i 1 1 Wi g ket
Ay
B (pw); k41 Wije+1 — (PW),; kWi gk
Az
Pijk+1 — Pijk
T A, Piak+id (3.99)
Pressure

Since the pressure pertubation is much smaller than the absolute value of the
pressure, truncation error of floating point value is relatively large and its preci-
sion could become smaller. Therefore, the pressure gradient terms are calculated
from the deviation from reference pressure field satisfing the hydrostatic balance.
Additionally, the calculation of the pressure (eq. EZ60) is linearlized avoiding a
power calculation, which numerically costs expensive.

-
_ c, POR*\ <5 —
AP+ = ( > 0 — pf
p=p R*C: Poo {p po}
ct
—p+ 2L 9y (3.100)
Cy pb
ct
D — Pref =P — Pref + %i(p@/ (3101)
cy, po
3.2.3 Energy equation
% _ (pu)i+%,j,k§i+%,j,k - (pu)i—%,j,kai—%,j,k
o). in Az
B (pv)i,j—&-%,kgi,j—i-%,k - (pv)i,j—%,kgi,j—%,k
Ay
_ (pw)i,j,k+%§i,j,k+% - (pw)i,j,k—%gi,j,k—%
Az

(3.102)
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where

3 —Oiv2k +T0iv1 ik + 705k —Oion ik

Bt i = - (3.103)
= —0; 426+ 705 j1.6 + 70 50 — i -1k
Oijrae=—" ey J (3.104)
_ 0, 70, 0550 — Oy

97;,]‘7]@4,_% — ,3, k42 + aJ7kJ’;I-12+ .95k k=1 (3105)

3.2.4 Tracer advection

The tracer advection process is done after the time integration of the dynamical
variables (p, pu, pv, pw, and pd). We impose two constraints to tracer advection:

Counsistency With Continuity ( CWC ) On the condition without any source/sink,
the mass concentration in the advection process should be conserved along
the trajectory. It is, at least, necessary that the spatially constant mass
concentration should be kept in any motion of fluid. In order to satisfy
this condition, we use the same mass flux at the last Runge-Kutta process
of Egs.() and () for integration of tracers:

(PQ)?;FJIC —(P9); .1 B (PWis 1 ki s gk — (PUi— 1 5 kTim 1t ok
At - Az
(P)i gt kgt — (PV)ij— 2 kT 1k
_ &
(PW); 5k 1T gyt — (PW)i k- 1T h—d
B Az
(3.106)

Monotonicity In order to satisfy the monotonicity of tracer advection, we
employ the Flux Corrected Trasport scheme, which is a hybrid scheme
with the 4th order central difference scheme and 1st order upwind scheme.
If The 4th order central difference is applied, G is descritized as

_high _ —Gi+2,5k T G146 + 1G5k — Gi—1,4.k

Qs g, = 15 (3.107)

_high _ —Qig+ok 11k + TGk — Qij—1k

7, = . (3.108)

ik _ — Qi k42 + i g k+1 + TGk — k=1 (3.109)
1,5,k+35 12

On the other hand, in the 1st order upwind scheme q is described as

Ql.owl o qij.k ((pu)i-s-%,j,k >0) (3.110)
it g0k gi+1,5k (otherwise)

gow | = )Gk ((pu)i i1, > 0) (3.111)
btk ¢ij+1,x (otherwise)

gow = JGan ((PWijaey >0) (3.112)
6Jk+g ¢ jk+1 (otherwise)

21



The actual q is described as

_ o —high _ —low
Giryor = Cirdirliyy nt (1 Ci+%,j,k> %1 g (3113)
_ o —high —low
Gijrin = CijrinGirin™ (1 - Ci,j+§,k> Ti 1y (3.114)
_ _ —high _ —low
Gjrrt = CigredTjprs T (1 Cm‘,k+%) @iy (3.115)

See the appedix for the method to determine the flux limter.

3.3 boundary condition

The boundary condition only for the vertical velocity at the top and bottom
boundaries is needed:

0 (3.116)
(3.117)

Wi g kmant+s =

.. I
wz7]1k7nin -3

o

This leads to the boundary condition of the prognostic variable as

(PW)ij kot =0 (3.118)
(PW0); j ki1 =0 (3.119)

3.4 Numerical filters

We impose an explicit numerical filter using the numerical viscosity and diffu-
sion. Although the filter is necessary for numerical stability, too strong a filter
could dampen any physically meaningful variability. In this subsection, we de-
scribe the numerical filters used in this model, and discuss the strength of the
filter.

In order to damp the higher wavenumber component selectively, we adopt
the hyperviscosity and diffusion in the traditional way. The hyperviscosity and
diffusion of the nth order is defined as

o an—lf
- [”pax"—l} 7 (3.120)

where f is an arbitrary variable (f € p,u,v,w,8, q).
The Laplacian of f is discretized as

1 1 1 1 1
Af; = —— fix1 — i+ —fic1], (3.121
f Al‘i A.%‘Pr% f'+1 <Ami+; + Amlé> f + A,rk%f 1‘| ( )
and
1 1 1 1
An/Q = An/2—1 ; _ An/Z—l .
o= e | Be o=\ Royy T 4
1
——A"2Lf 3.122
+Aa:i_% fi1 ( )
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Here we consider spatially dependent grid interval in calculating the Laplacian.
If it is calculated with constant Ax; as

1
Afi= N (fix1 —2fi + fic1), (3.123)
1
An/Zfz — @ <An/271fi+1 - 2An/271fi + A”/271f¢_1) , (3124)

K2

non-negligible numerical noise appears where the grid spacing varies (e.g., stretch-
ing layer near the top boundary).
The hyperviscosity and diffusion can be discretized as

0 an—lf Fi+% — Fi—%

* ~ 3.125

Oz [V'Oanlx} Ax; ’ ( )

where
Vi 1P 1
Halits n/2—1g  _ Am/2-1p
Pt Ko (A2 fiy — A1) (3.126)
The coefficient, v, is written as

Vipy = (—1)/y e (3.127)
va 2nAt '

where v is a non-dimensional coefficient. One-dimensional sinusoidal two-grid
noise will decay to 1/e with 1/+ time steps. Note that the theoretical e-folding

time is i—z% However, it is % with the fourth-order central scheme used in
this model.

For the numerical stability of the numerical filter itself, it should satisfy
v<1 (3.128)

for the one-dimensional two-grid noise, and

1
v<z (3.129)
3
for the three-dimensional two-grid noise. The conditions might be stricter for
other types of noise.
The flux, F, for the numerical filter is added to the advective flux as

(puf)]y s = (puf)iyy + Fiey, (3.130)

where the first term of the right-hand side is the flux calculated by the advection
scheme. In the present model, the advection scheme is the fourth-order central
difference scheme. This concept is very important for the CWC condition in
the tracer equations. The modified mass flux of the numerical filter should be
used in the tracer advection, otherwise the CWC condition is violated.

The numerical viscosity and diffusion in the y and z directions are formulated
in the same way as in the x direction, although a special treatment for the
z direction is needed. At the top and bottom boundaries, the flux must be

zero, Fy . 1= F, = 0. In order to calculate the F}, 1 and Fj__ . 1

o1 1
min — 3 3
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values beyond the boundaries, fx . +1 and fr_, —1, are required, then the mirror
boundary condition is assumed; fr .. +1 = —frne 0 flp—1 = — fp, - Lhis
condition is appropriate to cause the decay the vertical two-grid noise.

Vertical profiles of density, potential temperature, and water vapor usually
have significant (e.g., logarithmic) dependencies on height. Eq. (BT23) has
a non-zero value even for the steady state, and the numerical filter produces
artificial motion. To reduce this artificial motion, we introduce a reference
profile which is a function of height, and deviation from the reference is used as
f instead of p, 8, and ¢y in calculating the numerical filter. The reference profile
can be chosen arbitrarily, but a profile under hydrostatic balance is usually
chosen.
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Chapter 4

Terrain-following
Coordinates

Corresponding author : Hisashi Yashiro

4.1 Geometry and Definitions

We introduce a terrain following coordinate system with a new vertical coor-
dinate £. &-coordinate system is not deformable system. We use the relation
between z and & as

_ Ztoa(z - Zsfc)7 (41)
Ztoa — Rsfc

Where 20, is the top of the model domain and z,¢. is the surface height, which

depends on the horizontal location.

The metrics are defined as

0z

G: = e (4.2)
A () -
J5s = (gi)Z = —jzz (4.4)
=G = (45)
where
7= (5:). (1.6
Ty = (g;)g (4.7)
J3 =G3 (4.8)



If we use the Eqgs.(4.1)-(4.5), we obtain following equations:

. les 0J5.G2 | . les 0J5.G3
G:V¢ = ( axd)) + lgg e, + < 8y¢> + 2g§ ¢ é,
0J5.G3| .
i’gig”’ (4.9)
, oG oG IG3 ¢
G2V.(¢u)=< 8;[5“) +< 8;”) + a§¢€ (4.10)
3 3

where {&,,é,, é.} are unit vectors in Cartesian coordinate, and f is the vertical
velocity component in the terrain following coordinate, giving by

. d
¢ zdé = JSu+ J5v + J5yw. (4.11)

4.2 Summary of modified equations in the dy-
namical process

Prognostic variables by multiplying G % are defined as

(PQu)ijk = Gij,k(PQU)i,j,k, (4.12)
(Q0)i e = G, (P (4.13)
(PQs)i gk = Gij,k(l)qs)i,j,k, (4.14)
Rijw = GZ, pijik (4.15)
(PU)ig1 = G§+%7j7k(pu>i+%,j,kv (4.16)
(OV)igiye =Gy 1 (P0)igiy (4.17)
(W) jaes = G2y (P0)i s b (4.18)
(PO)ijh = Gij,k(W)i,mv (4.19)
Pojk = G2, pijh (4.20)

Eqs.(2.67)-(2.72) are modified using Egs.(4.9)-(4.11),
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(4.21)
(4.22)
(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

where Einstein summation has been used to implicitly sum over repeated indices,

and ($1,$2,$3) = (xayvg)v (Ul,'LLQ,Ug) = ('I.L,’U,g).

4.3 Spatial descretization
4.3.1 Continuity equation

(@)
ot )ik

(pU)iJr%,j,k - (pU)ifé,j,k
Ax

(pv)i,j+%,k - (PV)i,jf

Ay

1
3,k

+

~Z

x

z

1
2

n (J1£3)i,j,k+%(pU> igk+L T (J163)¢,j,k7%(PU) i, k—

A

yZ

igk+s T (Jgg)i,j,kfé (V)

Y

,9,k—

1
2

n (J§3)i,j,k+%(pv)
Ag

" (J§3)i,j,k+%(PW)i,j,k+% - (J§3)i,j,k+%(pw)i,j,k7%

Ag
where
(). (pu),
57 1 PU); g1+ (PU); ik
(pU) igk+i = Giz,jykﬂL% 2 ’
. (P0); 5 a1 + (p0);
— 1 PY)i 5 k+1 PY)ijk
(pV) igk+t = Giz,jykﬂL% 2 7

(pu)zjyk and (pv)f_wC are obtained by same manner in eq.(3.20)
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4.3.2 Momentum equations

(5 )"
T N

—~— T —~— T
(PU) ;11 j 81,56 — (PU); 125,k
Ax

—y B —y _
(PD) i1 it bgr sk — (PU) a1 3 0ind i1k

+ =
Ay
J o), T JE U, T
( 13)i+%7j,k+%(p )i+%,j,k+%ui+%,j,k+% —( 13)i+%,j7k7§(p )i+%,j,k7%ui+%,j,k7%
AL
'3 z =gz B 3 z =gz
(st)i+é,j,k+§(PU)¢+%J,k+%” i+3,0:k+3 (J23)i+%,j,k7%(pU)i-i-%,j,k—%v i+3.5,k—%
A¢
JE U), T JE ), T
( 33)i+%,j,k+%(l) )i+%,j,k+%wi+%,j,k+% —( 33)i+%,j7k—%(p )i+%,j,k7%wi+%,j,k—%
Ag
4 Bk = Pijk
Az
E Iz - § Tz
(J13)i+é,j,k+%Pi+é,j,k+% (JIS)iJr%yj,k*%PiJr%,jyk*%

A¢ ’
(4.32)
where (;)\ﬁ)zj’k, (;)\ﬁ)Z%JJF%’k and (/p\U/);%’j’kJr% is obtained according to
the method of eq(3.20)-(3.22). The velocities at the cell wall for the staggered

control volume to x direction are defined by eq(3.23)-(3.25). @ and 77 are
defined as

— _ Uit g gkt T ULk 433

Yird jkt+d = 9 ’ (4.33)
—y —y —y —y

=52 Uikt Uk T 0051 T Vi 4.34

Vot L k+1t = 4 ‘ (4.34)

P is defined as

e —ar Pi+1,4k+1 T Pit1,4k T Pijk+1 + Pijk
i3kt T ikl ikt 4 :

(4.35)

The momentum equations in the y and z directions are descretized in the
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same way:

— T

(OV)ig g g+ g it 3 gtk ~

opV

(OV)im gy i3 .543

( >i,j+;,k

ot Az
—y _ ——y
N (PV )i i1k Vii+1k — (PV); 1k Pijok
Ay
—ZYz z Yz
N (J53)ij+ b L (oV); FIRGUELLATE WIS (Jls)u+2,k—f(PV) PSR T
Ag
(J5)s 141 pa1 (BV): Tt pns — ()i ot ot (PV): I
23)i+ 3. k+3\PV )i Lk LY+ L k4] 23)i5+5. k= 3PV )i L - 21Vi5+3 k-4
Ag
3 =y ¢ i
(J33)ij+3 k41 (PV) ij+3 k3 ,a+%,k+% B (‘]33)i7j+%7k—%(pv)m+ k’—lw Litgh—g
A¢
n Pijiik — Pijk
Ay

¢
(J53)ije 2 2 Pyt s

(J2£3)i,j+%,k ;P’L‘]+ kf—

3

Ag
(4.36)

—

(pW)H'zJ,’H‘j i+5.0.k+3 7(pW)t—§7J,k+* i—3.5.k+3

_|_

Ax
i —
(pW)”+ bt 3T ey — Oy ki dTig 1kt
Ay
()i (OW) T 1 = (T5)i (OW) 00
AL
(J58)iattt (PW) e = (I5)ii (W),
AL
z
(S8t (W) s s = ()i (W), 07
AL
'3 £
(J33)ig,k+1Pijk1 — (J33)i5.k Pigok (4.37)

A
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4.3.3 Energy equation

().
ot ),

i—1.5k%i- 15k

(pU)i-&-%,j,kgi-&-%,j,k — (pU)
Az

100i5-1k

(PV)i sz ki1 e — (PV )i
Ay

(pU) z’,j,k—%gi,j,kf%

(J1§3)i,j,k+%(pU) i,j,k+%§i,j,k+% - (J1£3)i,j,k7%
Ag
¢ 3 ¢ R
(JQS)i,j,kJr%(pV) i7j7k+%9i,j,k+% - (J23)i,j,k7%(pv) i,j,k—%gi,j,kf%
Ag

(J§3)i,j,k+% (pW)i,j,k+%§i,j,k+% (J§3)i,j,k+% (pW)i,j,kfééi,j,kfé

Ag
(4.38)

where @#%’j,k, gi,j+%,k and ?i’j,,ﬁé are obtained according to the method of

eq(3.29)-(3.31).
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Chapter 5

Map factor

Corresponding author : Seiya Nishizawa

5.1 Coordinate transform

A orthogonal rectangular coordinate (z,y,z). A orthogonal curvilinear coordi-

nate (&, 7, ().
The transform is defined by
ox . y .. 0z
P + e + Ze,, 5.1
e 6§e +a§ey+3€e (5.1)
ox . dy .. 0z
e, =€+ —é,+—é&,, (5.2)
n on on
ox . y .. 0z
e = a—cex + 8—Cey + a—cez. (5.3)
Reverse transform is
. 0¢ on ¢
€x = 5 e + 5267 + 926 (5.4)
. On on ¢
€, ayeg + By e, + By ec, (5.5)
. OC n ¢
€ % .§+&En+&e< (5 6)

k
The Jacobian matrix is { gii }.

The reverse transform after the transform of the transform after the reverse
transform make a vector to the original vector;

ok ozt
ozt 6‘51 - 617 (57)
ozt ogk
6% 907 = 7 (5.8)

where index which appares upper and lower suffix in a single term implies sum-
mation of the term over set 1,2, 3 (Einstein notation).
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Spatial parial derivative is tranformed with the Jacobian matrix (covariant
transform);

0 ozt 0
ek~ 0k Dt (5.9)
o otk 9

927~ Dat 2% (5.10)

Velocity is transformed with the inverse of the Jacobian matrix (cotravariant
transform);

agk .
k _ 7
¢t = e dz’, (5.11)
i 0ty
dz' = 85kd§ . (5.12)
The metric tensor, g; is defined by
oo = (0T (2
gkl = € - € = 06 i ¢, j
Ozt Ozt
= . 5.13
96, 06 (513)

For orthogonal curvilinear coordinates, the matrix gy; is diagonal. Metric
factor, hy is defined as

9 i\’
hkzgkkzz(afk) | (5.14)

%

Here we define the matrix, E¢ is

_ oz’ _
E:=(ece ec) H 1:Ex-{a£k}-H L (5.15)
where F, = (&, &, é.), and
hy 0 O
H=| 0 h 0o |. (5.16)
0 0 hs

The vector iek is unit vector and orthogonal each other, so the inverse of the
E¢is EY.
ox’ N\ oz’ N\
(oo {eep#) = (e {Gf )
3 -1 oy foa ! T
H'{axk}'E’” =H oy P
¢! L (0" .
= 12!\ .ET.E,
e} - (o)
Oz*
=H?. 5 5.17
15 (47
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That is )
¢k _ 1o
oxt hi ogk”

5.2 Governing equations

5.2.1 Continuous equiation

Divergence of pu is

o . 0k (o
oz P17) = 5 e (p Dl d5>

o0&k 02' 0
— G g e el + e

lagk 62
Dt DEFDE
0 9zt 9%
= aigk(pdg )+Zh7ipd§ agkw

A
3€k (pde®) *Zth o (ask)

- erlote A a1 g

(pde®) +Z pdfl—ln h2

0
T ook ¢

d
= a—gk(pdf + pdfka—gk In( th

_, 0 _
= {J 8€k(pd§)+pd£k8€k 1}

0
= J o (J7 pde"
where J is the Jacobian of the Jacobian matrix and

1
J =

I 1 b '
The continuous equation is
8p d pdek
—+J—= =0.
¢ "o g

5.2.2 Momentum equation

Opder _ o0E* dpdx’
ot ozt ot
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(5.19)

(5.20)

(5.21)
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Advection term
o&*F dpdxtdr?
ort  OxJ
ok Opdx’ ;Odx?
= - | dx? - ¢ -
ox! ( o - pde ox7

— afk (Wd€l> %li ( agk Oz 3 9 n
" 021 \ 00" ) 97 Dem \"oen ) <3£l 5)865<a@€>

a0 (o L0 0 .
~ie e () + 56Ja£m<a§"§>

ok (ox' 0 0%x! o™ (0xI OdE™ 0%l
l el n n k n
faxz {Gev o0 04+ 8" i | + 6 515 (G e 4 g
8€k 82 i 6dfm 6fm ang
v k n k kgen9s
agl (pdé™) + ot dglaen T PIE e TP G Semaen
0 & 06k 92t kg l@f 0?2’
= o (pd*dg') + pdg'dg Dt DETDET + pd&™dg o7 DEToEm
o J—l agk 82 i
= J3 J ' —(pdcFd ™
{ oel (pdgdg') + pde®de’ oe } 97 DEOET
0
= J g pdetde! + pdg'dg T, (5.23)
where I' is the Christoffel symbols of the second kind, and
P 875}6 an'i
lm ot aglaf'rn
_ 1 kn 6gmn agln 6glm
—2f ( oer " oem e
1 Ohy, Ohy, 5hl
_ < Gt Do i SOt — W%), (5.24)
where {gF"} is inverse matrix of {gx,}.
Coriolis term
agk 1]p J p _ kim l m
o flpdz?P =€ hkhlh Fdem, (5.25)
where € is the Levi-Civita symbol, and
R agl .
L_ 25 ¢j
f 8x-7f . (5.26)
Pressure gradient term
sk ap ek (0 dp
Ozt dxt  Qxt \ Ozt OE!
_Losiog op
~ h2 Otk Ozt OE!
1 0p
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After all, momentum equation is

9
d§ +J e

1

(I~ pdetdg’) + pdg!de™ Ty, + M

Jp

g ogk

5.3 Map factor

» 08"

Oxp’

We introduce Map factor m,n.

1la
m
la

n

+z
a
+z
a

hihihm

where is a is radius of the planet. Assuming shallow atmospher,

m

n

Normalized velocity is defined as

a

>
Il
D‘

hs

w

= hl—l
=hyt.

df 1
dt m

dg

E7

dn 1dn
dt  ndt’

¢ d¢

Sdt — dt

The continuous equation becomes

ot

+

9 pi
"o T

The momentum equations are

dpi”

ot

+

a0 puak
8§ n

+ mmy, puu

— mamy,pii>

I

0& my,

9 0
ek m

+mn—

0
an

k0
+ nmypoi” — —
— — nmypd

+ pgosk.
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0

L0
m  0C

1
on my,

2 0 1,
ackn T °

klm

mlflpﬁm

flpd

gm

(5.28)

(5.29)

(5.30)
(5.31)

(5.34)
(5.35)

(5.36)

(5.37)

(5.38)



This equation can also be written as

Opu O pu 0w O
at 9 n an m " ac’
— fpv —mnpv Uﬁ 1 —u2 1 ——m@
P P 06 \ n om\m)[| o€’
opv d puv 0 p 0
ot + na€ + P +a<pvw
+ fpu + mnpu vi 1 fug 1 *—n@
P P 0 \ n on\m)/)|  “on
Opw g dPew 0w O 0P
o T Ty m Tact T Tac Y

The thermodynamical and tracer equations

dpg . 0 pud d pdp  Opwd
— +mn —— =

ot % n e m o %
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Chapter 6

Horizontal explicit virtical
implicit

Corresponding author : Seiya Nishizawa

6.1 Equations

where
Gz S, =
G2S,, =

G289 =

000 _OWGirw  gig, (6.1)

ot 0¢
0Gzpw  AJGip 1
= — — G2 GQS W 6.2
ot o€ Pg+GEop (6.2)
G ph 0J33G2pwd 1
=— G2S 6.3
ot 85 + 05 ( )
Rp9 cp/Co
= P —_— .4
p 00 (Poo ) ) (6.4)
1 0pu 1 0pv
“or Ty
_aG%pu B GG%pv B aJlgG%pu—I— JggG%,ov (6.5)
ox* Ay* ¢ ’ '
1 dupw 1 dvpw 1 dwpw
¢ ox ¢ Jy ¢ 0z

_aGéupw 8G%va 0

—G3

— — —(J1gG%upw + J23G%’UP’LU + J;),;gG'%’wp’w)7

ox* dy* o€
(6.6)
1 Qupl 1 Ovpl
— G2
or dy
C0GEup)  0GEuvpf 013G Eupd + Jy3Gruph 6.7)

ox*

dy* o0&
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6.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave in vertical direction.

n+l _ n 1 a 1 N N
% = *Gfgaf{J:BGQ (pw)" '} + 57, (6.8)
n+1

pw — (pw a n n n
( ) At ( ) -G~ 2 5&<J33G2p +1) gp + + Sp'wa (69)
et U B R (6.10)

At cn (p9) ot’ '

% _ —G—*f{Jgge 0" (pw)™ 1} + 87, (6.11)

Note that the potential temperature at previous step, 8", is used.
Eliminating p"*1, (p§)" !, and p"*!, the Helmholtz equation for (pw)"*! is
obtained:

At2g 0 At? 9 mpt 9J53G 20" (pw)n
n+l J G J P
N i A A Bz T T T
At 8 AtC p9
= " — — Atg(p™ + AtST) + AtS” .
(6.12)
Vertical differencials are discritized as follows:
n At?g 1oon
(pw)k_ﬁ/Q 1 {J33G2 (Pw)k::__;/g — J33G2 (Pw)k+}/2}
(A2k+1 + Azk)Gk+1/2
3 At? {<J33 CpD ) J33G% (pw) k1 3/20k13/2 — J33G 2 (pw)k 11205112
Azk+1/2Glf+1/2 P/ ki Az
CpP J33G'2 (Pw)k+1/2ék+l/2 - J33G%(pw)k71/2ék71/2
— | J33
copl Az,
= (Pw)ZH/z

A . A ) A
- —t; {J33G2pk+1 (1 + tcPSM) — J33GZpy (1 + tCPSP@> }
k+1 k

Azpi1/2Giiy o copl cpl
Atg
(p+ AtS,)k41 + (p+ ALS,) i} + AtS,y, (6.13)
where )
9k+1/2 = ﬁ (*9k+2 + 70k 1 + 70, — ak—l) . (6.14)
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Finally we obtained

1 0,
_ : {AZ+3/2 Ak+1 + Bk+1/2} (pw)z_—:__ém (6.15)
Gk+1/2 k+1/2
0
+{1+ B (Apr + Ax) p (o) (6.16)
AZk+1/2Gk2;+1/2
1 ék7 n
_ % {AZ 1/2 Ak — Bk+1/2} (p’l,U)kii'/2 (617)
Gk:+1/2 k+1/2
= Ck+1/2; (618)
where
AL‘QJggG% Cpp
A = Jg5—L 6.19
o= S () (6.19)
At2gJ33G2
B = —J7o0 2
k+1/2 Acros + Azp’ (6.20)

Cry1/2 = (Pw)Z+1/2

JisGlpen (1+ A2 = TGl (14 A1)

At o -
Azp1/2Gi 402
 ArgP ALk + (0 + ALS) S (6.21)

2
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Chapter 7

Horizontally and virtically
implicit

Corresponding author : Seiya Nishizawa

7.1 Equations
The governing equation is the followings:

1

0Gzp/ B 78G%pu B G2 pv B 0J33G2 pw

ai or oy oc o
BG;tpu = _ag:;p’ + G328,
aG;t”“ — _ag;*p L Gis,.,
86:;;)9 _ _3%5;/)(9 B 86;/1:;)9 B 8J33§§wp0 . G%Sﬂe,
p = Poo (%)CI’/CU ;
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where

Gis, = — 8‘]13@”“82 JQSG%””7 (7.7)
G%Spu =— acj;;:pu — aG;;ipu aaf(JlgG?upu + J23G2vpu + J33G2 wpu)
- (%(JBG%Z?'% (7.8)
G%Spv =— 86;;:/)1} — ac;izpv aag(JlgGﬂlpv + J23G2 vpv + J33G2wpv)
- %(J%G%pm (7.9)
GES,y = — 8G;;p v aG;ylip < gé(‘]l?)G Supw + JosGEvpw + Ja3GEwpw),
(7.10)
i,y = 913G Euph + ngc;%vpo. (7.11)

23

Prime describes deviation from a reference state, and the reference state depends
only z and satisfies in hydrostatic barance:

p =p—Dp 7.12
p'=p—p, (7.13)
W) _ e (7.14)

7.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave.

m+1 _ In

Pl G5 R AGH ()
—GZ—L@G@MM%+S (7.15)
(pu)nﬂAt_ (pu)™ o (Gf ety +5m, (7.16)
o~ o) _ -3 3‘9* (@) + 5, (747
e G — g 4 (718)
Z%;pm . (;:())m Hn(pg)nﬁnq% o (;’9’;”%’;9, (7.19)
O G (G ()} - G (G o))

~-G3 —{Jggaz 0" (pw)" Y + (7.20)

n
P>
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where k = ¢,/c,. Note that the potential temperature at previous step, 6", is
used.

In order to obtain Helmholtz equation, a linearlized equation for the density
is used instead of Eq. [13.

1 p
m+1 / /m+41 /
P~ — o { nH_pm}. (7.21)

Here we assume that the potential temperature does not change during a tem-
poral step due to acoustic wave.

Eliminating (pu)”*, (pv)" 1 (pw)?*t,, and p™*!, the Helmholtz equation
for p'*1 is obtained.

% m—+1 % m+1 % m—+1
0 ( gn9GHp L0 [gn0Ghp L0 gn0T5sGhp
ox* ox* ay* oy* 85 o€

0 (J?,gG z260™p /”+1> B G%anm—’_l

I5¢ Cc2n AR2C2n
1 [0GE0" {(pu)" + AtS u} dGzO™ {(pv)™ + ALST Y 0J33GE0" { (pw)" + AtS?, }
= Al 6x* oy + ag
o | J3Gzompm sl GES,  GROTpT

+ ga§ { an J33G (p 9) + Al AtQCSQ" s (722)

where
c? = kL. 7.23
; (7.23)
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Spatial differentials are descritized.

1 0 (G%p/n+1)i+1 _ G%pmﬂ _a G%p/nJrl _ (G%p,nﬂ)i_l
7A$i i+1/2 AZii1)2 i—1/2 Az 1/
N 1 é o (G%p/n+l)j+1 _ G%p/n—&-l B é 1 2G%p/n+l _ (G%p/n—i-l)j_l
Ay; j+1/ Byj+1/2 j—1/ ayj_1/2
1 m+1 1 n+1 L ongl 1 a1
n 1 (s )isrjoliss o J3sGrply — JasGrp™ T (o)l 12 J33G2p J33G2pi,
Azk AZk+1/2 Azk'—l/Q
n 1 J33G%9p;2:_11 B J33G%9p;€”j'11 B G%ep/n-&-l
gAk“/Q + Az Ol Coh At2CE

1 Gf+1/2éi+1/2 {(pw)it1/2 + At(Spu)iz1/2} — Gfil/Qéi_l/Q {(pw)i—1/2 + At(Spu)i—1/2}

At Az
+ Gl iajabiniye {(0v)je1s2 + At(Sp0) i1 /2} = GFypliy2 {(pv)j1y2 + AYSp)m1/2}
Ay;
+J3SG%9’€+1/2 {(pw)is1/2 + At(Spw)ks1/2} — JBSG%9k71/2 {(pw)—1/2 + At(Spw)k—1/2}
Azk
1 TssGROp JaaGROpy A
- — J33G2{(p'0) 1 — ('O)1—
+gAZk+1/2+AZk—1/2 { CZein cy s3G{(PO)rsr — (P01}
G2S,0  G2Op™
T AL T AcE (7.24)
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Chapter 8

The physical
parameterization

8.1 Turbulence

Correnspoinding author : Seiya Nishizawa

8.1.1 Spatial filter

The governing eugations are the followings:

9p , uip _

= 1
Opu; | Oujpu;  Op ‘
Op0  Ouipfd
o + B, =Q (8.3)

Spatial filtering the continuity equation yields

o , oup _

ot " o, 0, (8.4)

where ¢ means the spatial filtered quantity of an arbitrary variable ¢. The
Favre filtering (Favrd, T983) defined by

= po
= 8.5
¢ p (8.5)
makes the equation (83)
dp | Ou;p
ot o (8.6)
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The momentam equations become

dpu;  Oujpu;  Op | _

ot " Tom, © om P90 (87)
dpu;  Oujpu;  Op | _ 9

ot D = o + gpdis D (wipt; — u;pus) (8.8)
dpu;  Oujpu;  Op | _ o0 _,

o1 dx; = or, + gpdis oz, P (wit; — ujt;) . (8.9)

As the same matter, the thermal equation becomes

opl  duipd 0 _(~ =
B+ T = Q" g (W - Th). (510)

Then, the govering equations for the prognositic variables (p, pu;, and p6)
are

op | diip _

g — 11
8t Oxz 0’ (8 )
opu; | Oujpu; o |, _ IpTij

- 513 — , 8.12
ot 6Ij 8951 + §poia 817]‘ ( )

opd  dupd . dprp
o T o 9 e (8.13)

where

Tij = Uil; — U;Uj, (8.14)
P = w0 — ;0. (8.15)

Hereafter, we omite overline and tilde representing spatial and the Favre
filters.

8.1.2 SGS model
Smagorinsky-Lilly model

The eddy momentum flux is

1 1
Tij — ngk&'j = —2vsgs (Sij — 3Skk5ij> , (8.16)

where S;; is the strain tensor,

- 1 8uz 8Uj
5= 1 (%j n 6)) , (8.17)
and
vsas = (CsA)?9]. (8.18)

C is the Smagorinsky constant, X is a characteristic SGS length scale, and |S]

is scale of the tensor S,
S| = /28555 (8.19)
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Then the eddy momentum flux is

1 2
Tij = —2VsGs (Sij — SSkkéij) + gTKE(Sij, (8.20)
where
1 vsas \’
TKE = —1;; = , 21
2" ( o) ) (8:21)

where C}, is a SGS constant and assumed to be 0.1 by following Deardorfi (I9=0)
and Moeng and Wyngaard (T9%R).
The eddy heat flux is

00
D
Z=-D — 8.22
T SGS G (8.22)
where 1
D = — . 8.23
SGS = 5-VsGS (8.23)

Pr is the turbulent Prandtl number. For the other scalar constants such as
water vaper, Dggg is also used as their diffusivity.

To include buoyancy effects, the extension of the basic Smagorinsky devel-
oped by Brown ef all (I'994) is used.

vsas = (CsA)?|S[\/1 — Rf, (8.24)

where Rf is the flux Richardson number (Rf = Ri/Pr). Ri is the local (point-
wise) gradient Richardson number,

. N?
and N? is the Brunt-Visala frequency,
g 00
N? = 99, (8.26)

The Prandtl number is an unknow parameter, and it depends on the Richardson
number, while it is offten assumed a constant value. For the unstable conditions
(Ri < 0),

vsas = (CsA)?|S|V1 — cRi, (8.27)
1
Dscs = 5~ (CA)?|S|V1 = bRi, (8.28)

where Pry is the Prandtl number in neutral condtions. The values of ¢, b, Pry
are set 16, 40, and 0.7, respectively. Then the Prandtl number is

1—cRi
Pr=Pryy/——t. 2
TN T TR (8.29)

For the stable condtions, when the Richardson number is smaller than the crit-
ical Richardson number, Ri.(= 0.25),

Ri\"
vsas = (CsA)* S| (1 ~ T ) , (8.30)
1 2 Ri\" .
D = 5—(Cs 1—-— 1-— . 31
sos = = (€181 (1= ) (1= R (831
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The constant g is determined as the Prandtl number becomes 1 in the limit of
Ri — Ric and then is (1 — Pry)/Ri.. The Prandtl number is

. —1
Pr:PrN{l— (1—P7~N)£;Z} . (8.32)

For the strongly stable condistions (Ri > Ri.), the eddy viscosity and the
diffusivity for scalars are 0;

vsas =0, (8.33)
Dsgs = 0. (8.34)

The Prandtl number is Pr = 1.

Scoffi_ef—all (T993) suggested that the length scale should depend on the
grid aspect ratio. In the equilibrium condition with the universal Kolmogorov
spectrum, energy cascaded to the SGS turbulence, which equals to SGS dissi-
pation, must not depend on grid aspect ratio. The energy flux or dissipation
can be written as function of S;; and the length scale, A\. The S;; depends on
the grid aspect ratio, so the length scale should have dependency on the aspect
ratio which cancels the dependency of the S;;. With some approximations, they
obtained an approximate function of the length scale T :

A= fa)A, (8.35)
where f(a) is a function of grid aspect ratio, a, and
fla) = 1.736a/3{
4Py (by)a’® +0.222P, (by)a™>/3 + 0.077P3(by )a™ /3
—3b1 + 4P, (bg) + 0.222P2(b2) + 0077P3(b2) — 3by
}3/4, (8.36)

Here by = arctan(1/a), by = arctan(a) = 7/2 — by, and

Pi(z) = 2.5P5(z) — 1.5(cos(z))?/® sin(z), (8.37)
Py(2) = 0.982 + 0.0732% — 0.4182° 4 0.1202%, (8.38)
Ps3(z) = 0.9762 4 0.1882% + 1.1692> + 0.7552* — 0.1512°. (8.39)

For instance, f(2) = 1.036, f(5) = 1.231, f(10) = 1.469, and f(20) = 1.790. A
is the filter length, and is defined to be proportional to (AzAyAz)'/3 here. In
this model, we introduce a numerical filter to reduce two-grid noise discussed
above. This filter reduces two-grid scale physical variability as well. This means
that two-grid scale would be preferred for the filter length in this model rather
than grid spacing itself, that is,

A = 2(AzAyAz)'/3, (8.40)

IThey considered two grid aspect ratios, while we here think only one, i.e. Az = Ay.
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Terrain-following coordinate

Tendencies representing effect of the sub-grid scale turbulence with the terrain-
following coordinate are following 2;

dG pu _ _8G%P7'11 _ 9G2 pris _ 813G priy + Joz G2 prig + J33G2 prig

ot ox* oy* o0&
(8.41)
dGz pu _ _3G%P7'21 _ 9G2 pros _ 0J13G pTog + Ja3G pTog + Ja3G7 pTog
ot Ox* oy* ¢ ’
(8.42)
8G%pw _ _8G%p7'31 o 8G%p7-32 _ 8J13G%p7'31 + JggGépng + JggGépng
ot Ox* oy* ¢ ’
(8.43)
0Gipd)  OGiprP  9GEprP  0J13GEprP + JpsGEprd + J33GEprd
ot or* oy* 0&
(8.44)
1 8G%u 8J13G%u
2 = 4
G251, ppe + BT , (8.45)
1 8G%’U 3J23G%v
G285 = 8.46
22 oy + PTa (8.46)
1 8J33G%w
3 =20 7 4
G2 S33 9 (8.47)
f 1(8G2u  0G2v  8Jy3Gru+ Ji3G2v
2 [ 4
ohsm (2510, 000 oaaGluscle)
1 - 1 8G%w angG%U + J23G%w
ohoam (e Shhvamoie)
1 o 1 3G%w 8]13G%w+J33G%u
G283 = 5 < pe + € ) , (8.50)
. 0Gz20  0.J13G20
P =D = 51
G>my SGS( prraies o€ ; (8.51)
1 0G=0  8.Jy3G20
G2 D _ —D 8.52
TS 5GS ( oy + BTz ) ) ( )
GirP = _DSG578J33G§97 (8.53)
3
. 8.J33G20
N2 = 99U 0 .54
G 6 oc (8.54)

2Equations which are not changed in the terrain-following coordinate are ommited.
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8.1.3 descretization
Spatial descretization

We use the 4th order differnce scheme for the advection term as mentioned in
the chapter B. The 7;; and 7P are propotional to the square of the grid spacing
(A?%). Due to the consistency with the advection term in terms of order for
spatial difference, the second order central difference scheme is used for terms of
the sub-grid scale turburence. In the following part in this sub-section, overline,
and ¢, 7, k mean as they are in the chapter B.

Momentam equation The tendencies in the momentam equation related to
the sub-grid scale mode are

dG pu =_ (G2 pmn)is1gk = (G2pm)ijik
Ot it+l,5k A
1_ £y
. (G2P7_12)i+%7j+%7k — (Gsz12)¢+%,j—%,k
Ay
{G%E(Jwﬂl + JozTi2 + J33T13)}i+%,j,k+% - {G%ﬁ((hsTn + JasTia + ']337—13)}i+%’j7k_%
Az |
(8.55)
1_ 5
aG%pU B (GQ,OT21)1'+%J+%J€ - (Gzp7'21)i—%d+%,k
ot ijrik o
_ (GEpman)ijirn = (G2 pTan)ijn
Ay
(G + Tasran e | {G2p(J13ma1 + JasTao + J33723) }i ji 3 k-
Az |
(8.56)
1_ P
9G= pw __GEpms))igy s — (G2PTs1)in g ke
Ot igk+d o
1_ 5
_(CEP2)ige g ey — (C2PT2)i5 g
Ay
_ {(G2p(Ji7s1 + JosTsz + Js3733) bijwr1 — {(G2p(Jis7s1 + JsTso + J337s3) bk
Az |
(8.57)
The p is
_ Pig+Lk+1 F Pij+1k + Pijkt1 + Pigk
et os i i,j r i GVELY (8.58)
_ Pi+1,5.k+1 T Pit+1,5,k T Pijk+1 T Pijk
Pitdjkit = i 74 = ==, (8.59)
Pitdj+ik = Pit1,j+1.k + Pz+1,J’Z Pijt1k T Pijk (8.60)
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Thermal equation The tendency in the thermal equation related to the sub-
grid scale model is

8G%p9 o (G%ﬁTlD)i+%,j,k - (GéiTlD)i—%,j,k
ot ik Ax
_ (G%ET2D)7, j+%,k - (G%ET2D)7, jf% k
Ay
B {G2p(Ji3mP + Jasf + T3373) i jkek — {G2p(J1smP + JosTP + J3373) }ijk—1
Az
(8.61)
The p at half-level is eq.(B=T)-(B=X3).
The eddy diffution flux, 77, at half-level is
(G%TD) . —_D L (G%G)H—Lj,k - (G%Q)i%k 4 (J13G§§)i+%,j,k+% - (JISGég)iJr%,j,kf%
1 Jit+35,5,k SGS,i+35,7,k Ax Az ’
(8.62)
1= 1=
G D =-D (G20)ijerk = (G20)ijn , (J3G2igis ey = (F23G20)i50 40y
(Gz1y )i,j+%,k = —Usas,ij+i.k Ay + s ;
(8.63)
1 J33G20; j i1 — J33G20, 1
(GQTBD)Lj,kJr% = _DSGS,i,j,kJr% : +Az 2=, (8.64)

Strain tensor All the strain tensor, eq.(8I1), have to be calculated at full-
level (grid cell center), and some of them are at cell edges.
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e cell center (i,7,k)

1_ 1__
(G20)iy 1 50 = (G2W)ig i

(J13G%ﬂ)i+%,j,k+% - (‘]13G%ﬂ)i+%vja’f—%

1 .. — 2
(G2 S11)i 5k Ax Az 7
(8.65)
(G2 Sa2)i i = (G20); 010 — (Go0) 1 p (Jo3G20), vt — (J23G20); o1 gos
22)i,j,k = Ay Az 7
(8.66)
JggGéwi gl — JBBG%wi jk—1
GLS P IR 5 RT3 8.67
(G 533)i5,k Az ’ (8.67)
1 1_ 1_ 1__
PRV i el (LT N A TS B el AL TRV B
12)ijk = 5 Ay Ax

_’_(JQSG%E)Z’,J}M—% — (J23G20); gy + (J1aG70); gy — (J13G70), 5y }
)

Az

ol
Nl

w); 5410 — (G
Ay

@)i,jfé,k

) 1[G
(G28523)i .k = 3 {

1 1_ 1__
J33G2 Ui jhtd = J33G2vi7j),€_% + (J23G2w)i,j7k+%

(8.68)

Az

L 1 G%w qrl i — G%@ i—L1 4
(G2831)ijk = = ( Jivg ik~ ( )i-gi
> 9 Az

1 1_ 1__
Ja3G2 Uijrtl — J33G2ui,j7k_% + (J13G2w)i,j,k+%

)

- (J23G%w)i,j7k—% }

(8.69)

Az

e zedge (i+ 3,5+ 1,k)

- (JISG%w)i,j,k—% }

(8.70)

1__ 1__
(G20)ip1 5436 = (G20)i1 1k

1_ 1__
1 {(Ggu)i-&-i,j-&-Lk — (G2 Wiy ik +

1
(G=812)iy 1 410 = 2 Ay

1_
(J23G2W);i 11 i1 kst

Ax

1_ 1_
— (J2sGE0) iy g kg + (J13G20)ig g 511 ke

— (JldG%@)

o zedge (i,j+3.k+3)

1_ 1__
1 {(sz)i,jﬂ,m; - (G2w)i,j,k+%

1
(G2 523)i,j+%,k+% D) Ay

Az
(8.71)

1 1_ 1 1__
J33G20; 11 ppr = J33G20; o1 g+ (J3GPW); s iy — (J3GPW); 501 }

Az
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o yedge (i+ 35,7, k+3)

1__ 1__
1 {(G“’w)i+1,j,k+; - (sz)i,j,k—&-%

(G2 S31)i41 jrrs = 2 Az

1__ 1__ 1__ 1__
J33G 201 g1 — J33G2 U1 g+ (J13G2W) 41 g1 — (J13G2W) 41 54
Az ’

(8.73)

velocity Calculattion of the strain tensor requires value of velocity at cell
center, plane center, edge center, and vertex. The velocities at cell center (full-
level) are eq.(BX2-B=X9).

e z-y plane center (i,j,k+ 1)

Wi g k+1 + Wik

ai,qu-ﬁ-% == 45 (8.74)

_ Vi g k+1 T Uik

Vigk+i = %» (8.75)

_ (Pw)i.j,k+l

W, j ot = _— 2, (8.76)
Pig k41

e y-z plane center (i + 3,j,k)

(PU)H%,J‘,}C

Ut jh=—"""", (8.77)
Pitl ik

= Vit1,4,k T Vigk

Vit l gk = - 9 (8.78)

_ Wit1,5,k + Wi, jk

Wit gk =" o - (8.79)

e z-x plane center (i,j + 3, k)

— Uij+1,k + Uik
Ty gy i = LHRET L, (8.80)

(pv)i,j+%,k

= ; (8.81)
Pij+3.k

Vij+ik =

_ Wi j+1,k + Wik
R (8.82)

e x edge center (i,j + %, k+ %)

- Wikl Wik + Wigk + Uik

Uit htd = 1 , (8.83)
D1 +T. .1

_ Jtg.kt1 1,0+ 5.k

Vil el = 5 ) (8.84)

_ Wikt T Wikt

Wij+3k+d = 2 : (8.85)
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e y edge center (i + %,j, k+ %)

Uit d k1 T Uigl

Uit L ghty = 2 ) (8.86)
_ _ Vit1,5,k+1 T Vit1 5k + Vijk+1 + Uik (8.87)
vi+%,j,k+% — 4 3 .

_ Wit1j e+t T Wijetd

wi+%,j7k+% = D) . (8.88)

e 2 edge center (i + %,j + %’/{)

Uit g1,k T Uit d ik

Uiyl jrdk = 5 ; (8.89)
Vig1,j41 e TV 401k

— _ ) 25 s 25

Uitd bk = 5 ) (8.90)

_  Wig1,j41,k T Wit1 5,k + Wi j+1,k + Wijk 8.91

Witlj+3.k = 4 : (8.91)

o vertex (i + 3,5+ 3,k + 3)

Uit d i1kt T Uil 16 T Wit d a1 T Uig L 5k

Yitdj+3.h+s = 4 ,
(8.92)

_ Uitk T 01k T Vi L k1 T Vi Lk

Vit lj+3k+3 = 1 :
(8.93)

_ Wit ikt T Wi el T Wikt T W5l

Witl j+3.k+3 = 1 :
(8.94)

Eddy viscosity/diffusion coefficient The eddy viscosity/diffusion coeffi-
cient, vsgs / Dsas, is calculated at full-level with S and Ri at full-level and it
at half level is interporated one at full-level.

Brunt-Visala frequency The Brunt-Visala frequency, N2 is required to cal-
culate the Richardson number at full-level.

g J33G%91',j,k'+1 - J33G%91‘,j,k—1

GIN?), 0 =
( ) Jk Gm-,k 2Az

(8.95)

8.2 Boundary layer turbulence model

Correnspoinding author : Seiya Nishizawa

8.2.1 Mellor-Yamada Nakanishi-Niino model
level 2.5

54



Opu

prale LT (8.96)
0 0 ——
% =g P, (8.97)
8p01 0 —
o = 9.0 (8.98)
9pqa 0 ——
gt = —5, Pl (8.99)
o ——0u ——0v g — 0 —
—pq° = —2 " — "w' — 2= p0l w' — —pgPw’ — 2 8.100
;1 (puw 5, T PUw az> + 2P0 = ooptw’ = 2pe, ( )
where
Ga = Qv +qc + ¢ + ¢ +gs + qg, (8.101)
and g2 is doubled tubulence kinetic energy;
¢ =u?+ v+ (8.102)

The higher order moments and the disipation term are parameterized as
followings:

ou

"W = —LqSn— 8.103
u'w 4S5 (8.103)

v
W = —LqSy— 8.104
v'w 4Sm 5, (8.104)

00,
0w = —LqSy— 8.105
|w qoH (927 ( )

Ma
g w = —LqSHE, (8.106)

9¢?
2w = —3LqSy —— 8.107
q*w 45m 3~ (8.107)
Oy’ = Boljw + Bydyu’, (8.108)
q3
= 1
€= BT (8.109)
where

By — 3C,P

Sur = acAlw, (8.110)
Dy 5

®, + 30, P

Spr = Ay 2T 21T (8.111)
Dy 5

Bp =14 0.61q, — 1.61Q; — Rabe, (8.112)
B, = 0.616 + Rac. (8.113)
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Dy5 = P29y + P53, (

®; =1-302A3B5(1 — C3)Gyy, (

Py =1-9a2A;A5(1 — C)Gy, (
B3 = &) +902A2(1 — Cy)(1 — C5)Gy, (8.117

by =D — 12024, A5(1 — Co)Gy, (

5 = 602 A3G )y, (

(

) de, a<aq
o = { v > 8.120)
L? ou\ 2 ov\?
S R —
2
Gy = —%NQ, (8.122)
1 Q1
R= 3 {1+erf (\/§>}, (8.123)
- Q 1 ai
R=R %0 Vi exp ( 5 | (8.124)
1 2
Q) = 20, {RQl + Ners exp (—21) } , (8.125)
a
Q1= 5. (qa — Qs1), (8.126)
2 1 o9 a _ @ ?
oL = 4a L°a.BsSy P baz , (8.127)
Qs
5Qy = 7 (8.128)
T |p_p,
I -1
a= <1 + 5Qsl) , (8.129)
CP
b= %5@(31, (8.130)
— (14 0.61gs — 1.61Q) 212 ~ 1610 (8.131)
Cc = 014, . l TCp . s .

and Qg is the satulation specific humidity at the temperature T;(= 6,7/6).
The buoyancy flux term, which is the third term of the left hand side in eq.
RM is

g g 00, 0¢a
220w =2 ( —BgLqSy— — B,L
o =25 (~oLasuGE - pulasu’ye )
__ 9 (5,20 5 0%
= 2LqSH00 (50 62’ +Bq az>
g 900,
= —2LqSy——~
QSHao 0z
= —2LgSyN?, (8.132)
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where N? is square of the Brunt-Vaisala frequency.

8 o ou\® o)
5P 2quSM{<8z> +((‘3z> }

3
—2pLqgSyN? + 9 SquSng2
0z 0z

q

_9pd 8.133
PBI ( )

Swma2, SH2, and g9 is for level 2 scheme corresponding to Sy, Sy, and g,
respectively;

A1Fy Rp1 — Rf
Surs = - 8.134
M2 Ry~ RfOM2 ( )
_ Rfe—Rf
Swa = 3A2(71 + 72) 1—Rf (8.135)
o\  [ov\’
q% = BlLZSMQ(l - Rf) { ((;:) + (az> } . (8136)

Rf and Rf. are the flux Richardson number and the critical flux Richardson
number, respectively. The gradient Richardson number, Ri, is

S
Ri = Rf SZ; (8.137)

Then the Rf is

1 AyF. AF. AF A F 2
Rf=-"22{Ri+ ! lRfl—\/Rz’2+2 ! 1(Rf1—2Rf2)Ri+( ! IRﬂ) :

2 A Fy Ao Fy Ao Fy Ao Fy
(8.138)
Al
Rfc = 7 8.139
fe Y1+ 72 ( )
(8.140)
where
—-C
Ry =By AL (8.141)
')
Ry =B 2. (8.142)
Fy

The turbulent length scale, L, is determined by the smallest length scale
among the three length scales;

1 1 1 1
L 4= 14
I LTI, (8.143)

he surface layer scale, Ly, the boundary layer scale, Ly, and buoyancy length
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scale, T'g;

kz/3.7, (>1
Ls =< kz/(14+2.7C), 0<¢<1 | (8.144)
kz(1—100¢)%2, ¢<0
> qzd
Ly = 0.23M, (8.145)
Jo adz
q/N, 90,/9z > 0and ¢ >0
Lg =< {1+5(q./LrN)"/?}q/N, 86,/0z>0and <0 |, (8.146)
0, 89@/82 S 0
where ( is the dimensionless height;
z
= —. 8.147
=y (5.147)
Ly is the Monin-Obukhov length;
0 3
Ly = — % (8.148)
kgt w',

where u, is the friction velocity, and the subscript g denotes the ground surface.
g is a velocity scale defined similarly as the convective velocity w,, except that
the depth z; of the convective boundary layer is replaced by Ly;

p 1/3
4. = {%egw'gLT} (8.149)
]_ _
A =B 6371, (8.150)
1
Ag=m —— (8.151)
3B Pry
By = 24.0, (8.152)
Bs = 15.0, (8.153)
1
Cr=y— ——, (8.154)
34,B)*
Cy = 0.75, (8.155)
Cy = 0.352, (8.156)
Cs = 0.2, (8.157)
v1 = 0.235, (8.158)
241 (3 — 2C3) + By(1 — C-

Ny = 1( 2)31 2( 5)7 (8.159)
Fy = Bi(y1 — C1) + 241(3 — 2C2) + 345(1 — Co)(1 — C5), (8.160)
Fy = Bl(')/l + ’}/2) — 3A1(1 — Cg), (8161)
Pry = 0.74. (8.162)
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descretization

The diffusion equations for ¢%a is solved implicitly.
y

()"t = (g)"

ou\ ov\?
=2p | (L — — LqSyN?
Pk A7 pr | ( qSM)k{<8Z> +<6z> }+( qSH )k‘|
1 (@)™ = (@)™
+ Aor {(3PLq5M)k+; Aury — (3pLqSn)p—1
209k |, 2\ni1
7B1Lk (g3) . (8.163)
ap (o)™ 0k(ge)" + erl(gi_)" = dy, (8.164)
where
At
=———(3pL 1 1
@k Az 1 Azgpy, (3 qSM)HE’ (8.165)
2At
by = —ap — cp + 1+ Blzk, (8.166)
At
ck = (3pLaSa)p—1, (8.167)

B AzkAzk_%pk

LqSy { (gj)z + (gj)Q} - LqSHNﬂ (8.168)

di. = (gi)" + 2At

()" = exgi)™ ™ + fr, (8.169)
where
ag
=0, 8.170
o bi + crer—1 ( )
dy — i fr—1
= - 8.171
fk bk + crep—1 ( )

Vertical flux for pu, pv, pb, pq. is also solved implicitly. For instance, the flux
for pu, F, is calculated by

n+1 n+1
F,oor = (pLgSM),, okl — Tk (8.172)
u,k+35 pLq k+5 Azk+; . .

w1 is calculated as the same way with the ¢2, but

At
—_ -—— L -1
ag A2k+%A2kPk (p qSM)k-‘r%’ (8 73)
by = —ar — ¢ + 1, (8.174)
At
= — — L -1
Ck AzkAzkfépk (v qSM)k_%’ (8.175)
di. = uj. (8.176)
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8.3 Microphysics

Corresponding author : Yousuke Sato

The SCALE-RM has three types of cloud microphysics models. We will show
description of these models below.

8.3.1 Kessler Parameterization

An one-moment bulk microphysical scheme, which treats only warm cloud (cloud
and rain), is implemented in SCALE. This scehem predicts mixing ratio of cloud
(Qeloud) and rain (Qrqin ). Cloud microphysical processes treated in this scheme
is saturation adjustment (corresponding to nucleatioin, evaporation, and con-
densation of cloud), evaporation, auto-conversion, accretion, and sedimentation.
The tendency of Qciouds Qrain, and @, (vapor mixing ratio) is given as

% = dQ‘sat - dQ‘auto — dQ|acc (8177)
8 rain
% = dQlauto + dQlace — dQlevap — Fo, |sea (8.178)
0Qy
8% = dQlevap = dQlsar (8.179)

where dQ|set, dQ|auto, AQlace, and dQ|evqp represents tendency of mixing
ratio by saturation adjustment, auto-conversion, accretion, and evaporation,
respectively. Fg |seq represents flux of @, by sedimentation.
dQ|autos AQ|ace, and dQlevqp are given as

cloud * 1073 cloud > 1073
Qoo = { (Gt = 1075 (5.150)
ancc = 22x choud X 25725 (8181)

qsp 5,4X105+%

, o) (8.182)

_ 10.525
Foent 2 Qcloud _(P*Qrain) (s > Qetoud)
dQevap =

where fyen: is ventiration factor (fyent = 1.6 +124.9(pQain )°-2%4%), and unit
of dQ..« is [kg/kg/s]. p, qs, and p is pressure, saturation vapor mixing ratio,
and total density.
The dQ|sqt is given as

dQ‘sat = Q’U — (s- (8183)

Terminal velocity of cloud (Vi) and rain (V4 ) is given as

Vie = 0 (8.184)
Vir = 36.34(pQrain)"***[m/s] (8.185)
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8.3.2 Double-Moment BulkSeiki and Nakajima (2014)
Treatment of hydrometeors

Generally, characteristics of cloud particles are determined by their size, shape
and chemical properties of solute in them. Representation of these character-
istics needs a multi-dimensional parameter space of size, shape and chemical
compositions. Since development of a cloud resolving model (CRM) coupled
with an aerosol transport model is beyond the scope of this study, we consider a
two-dimensional parameter space of size and shape of cloud particles. We then
categorize cloud models into two major groups according to their representation
of cloud particles. One is the bin method, with discretized particle size bins,
predicting the population density of particles in each bin. The other is the bulk
method in which the particle size distributions are approximated by several pre-
scribed modes, predicting the total populations of partilces of each mode. The
treatment of hydrometeors adopted in this study is described in the following
sections.

Droplet Size Distribution

The Seiki and Nakajima (2014)Seiki and Nakajima (2014) scheme is designed
to maintain the self-consistency of the assumptions regarding droplet size dis-
tribution (DSD) and the shapes of ice particles among the cloud microphysi-
cal processes. Following Seifert and Beheng (2006; hereafter, SB06), Seiki and
Nakajima(2014)Seiki and Nakajima (2014) predicts the moments of the DSDs of
each hydrometeor assuming the generalized gamma distribution to analytically
formulate the cloud microphysics as follows:

fa(r) = aqz” exp(—Ax) (8.186)

where the index a € (c,r,i,s,g) represents cloud water, rain, cloud ice, snow,
and graupel. For a given DSD, the k-th moment of a DSD can be defined as
follows:

M®) = / T fa(r)dz, (k€R) (8.187)
0

For example, the 0-th moment of a DSD is the number concentration N,, and
the 1st moment of a DSD is the mass concentration L, = pg,. The evolutions
of DSDs are represented by updating «, and A, using N, and L, with two fixed
parameters, v, and pu,, respectively. The diagnostic parameters a, and A, are
calculated as follows:

u/\a zatl
Maa _y, b (8.188)
r ( Va+1>
Ha

Ao = [ngftflg}ua
T Vo+2
ta
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where the mean particle mass z = L, /N,. We maintain the self-consistency
of the shape of ice particles by assuming power law relationships between: 1)
the particle mass and the maximum dimension D and 2) the particle mass and
the projected area to the flow A as follows:

D = apa’ (8.189)
A = agpabm (8.190)

where a.,, by, Gaz, and by, are constant coefficients. We chose to use con-
stant parameters in the representations of DSDs following SB06 for cloud water,
cloud ice, snow, and graupel; and following Seifert (2008) for rain (assuming the
collisional-breakup equilibrium condition). The shapes of ice particles are those
given by Mitchell (1996) assuming cloud ice as hexagonal plates, snow as assem-
blages of planer polycrystals in cirrus clouds, and graupel as lump graupel. The
abovementioned constant parameters for each hydrometeor are summarized in
Table .

Table 8.1: Constant parameters chosen for the generalized gamma distribution;
power law coefficients used for maximum dimensions and the projected area;
and ranges of lower- and upper limits of mean mass.

cloud water rain cloud ice snow graupel

v 1 -1/3 1 1 1

7 1 1/3 1/3 1/3 1/3
[ kg~ "™ 0.124 0.124 1.24 1.24 0.346

b 1/3 1/3 0.408 0.408 0.357
Uoe[MZkg™ 0] 0.0121 0.0121 0.178 0.196 0.0599

bax 2/3 2/3 0.755 0.768 0.714

ZTmin|kg) 42x1072 42x1072 42x10777 42x1072 42x10" "2

Tmaz|k9) 26x10710 26x10710 26x1071 2.6x10710 2.6x 10710

Terminal velocity of hydrometeors

In the same manner as in Seifert and Beheng (2006a), the terminal velocities of
particles are formulated in power laws except for the gravitational sedimentation
which is described in accurate formula, because the gravitational sedimentation
is directly compared with precipitation data. The terminal velocities of hydrom-
eteors are determined by the balance between the drag force and gravitational
force. Traditionally, the terminal velocity for small spherical particles, small
Reynolds number (Ng.), are described by Stokes Law,

29(pw —
Vt,stokes(r) = g(f;np)T,Z (8191)

where g = 9.80616 [ms~2] is the gravitational acceleration, pw = 1000 kgm =3
is the density of liquid water, p is the density of air and 7, is the dynamic viscos-
ity of air. Laboratory experiments showed that the terminal velocity departed

from Stokes Law as the Reynolds number increases (Gunn and Kinzer, 1948;
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Beard and Pruppacher, 1969). Thus, other formulas are required for larger
droplets such as rain droplets and ice crystals.

In the case of liquid water droplets, the terminal velocity is well determined by
laboratory experiments because of simplicity of the shape. In contrast, in the
case of ice particles, there are many observation data of the terminal velocity for
various shapes of ice crystals. Bohm (1989), Bohm (1992) and Mitchell (1996)
proposed the general formulations of the terminal velocities of ice particles based
on the boundary layer theory and their studies showed good agreement with
observational data. In this study, we calculated terminal velocities for each ice
particle based on Mitchell (1996) and then made a fitting curve by a power law
in the suitable range of diameter.

In the theoretical formulas, the terminal velocities of hydrometeors are depen-
dent on diameter, shape, the Reynolds number and the Best (or Davies) number
(Nx). Application of these dependencies to cloud microphysics are so compli-
cated that here we have applied a simplified approach suggested by Beard (1980),
1. The terminal velocity is calculated for the reference atmosphere.

2. The terminal velocity in the atmosphere are adjusted from the reference
value.

In the following paragraphs, we describe the terminal velocities for the reference
atmosphere and the adjustment technique.

Terminal velocity of liquid water droplets for the reference atmo-
sphere

In the case of liquid water droplets, absence of shape variability makes for-
mulation easier than ice particles. Here, we only consider the dependency on
the diameter of droplets. Seifert and Beheng (2006) applied the formulation of
Rogers et al. (1993), which is the analytical approximation to the observation
data of Gunn and Kinzer (1948),

ar,D(1 — exp(—br, D)), (D < Do)
(D) =4 agr, —brexp(—cr,D), (D> Dy,) (8.192)

where ar, = 4000571, br, = 12000m~1, ar, = 9.65ms™1, by, = 10.43ms~ 1,
cgr, = 600m~1, and Dy, r = 7.45 x 10~* m. This formulation approaches the
quadratic form of Stokes Law in the limit for small diameter. In addition, the
data of Gunn and Kinzer (1948) agrees well with the terminal velocities cal-
culated by theoretical formulation based on the boundary layer theory (Bohm,
1992). Therefore, we applied eq.BTI2 for the sedimentation of rain (Fig. B2
11). Here it is mentioned that the reference atmosphere of the formulation is
T = 293K, p = 1000h Pa, and relative humidity is 0.5 (Gunn and Kinzer, 1948).

Terminal velocity of solid water particles for the reference atmosphere

In the case of ice particles, we derive the theoretical formulation of the terminal
velocity following to Mitchell (1996). In general the aerodynamic drag force Fp
on a particle is expressed as follows,

1
Fp= 5pyfAcD (8.193)
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where Cp is the drag coefficient. Terminal velocity is determined by the
equilibrium condition between the drag force and the gravitational acceleration,

2zg \1/2
= 8.194
“ (pACD ) ( )
The problem of derivation of the terminal velocity is reduced to derivation of
the drag coefficient indepenently on the terminal velocity. In practice, Mitchell
(1996) and many other researchers calculated the terminal velocity by the defi-
nition of the Best number (Nx) as follows,

22gpD?

N, =CpN3, = ,Zigg (8.195)
Where Ng, is the Reynolds number. The terminal velocity can be calcu-
lated after the relationship between the Best number and the Reynolds number
is determined. In the relationship, it is convenient that the drag coefficient is
determined by the Reynolds number although the dependency of the drag co-
efficient is complicated. A theoretical formulation of the drag coefficient was
proposed by Abraham (1970). The drag coefficient is the dimensionless number
defined by the drag force, the dynamic pressure and the projection area of the
particle (see eq.BT93). Abraham (1970) assumed that the effective projection
area of the particle contained the projection area of the particle itself and also

the boundary layer surrounding the particle as follows,

1 Op + 2
Fp = -prfCoA(l + — 8.196
D 2PVt 0 ( + TA) ( )

where Cj is the drag coefficient which is due to the pressure of the fluid and
should be determined independently of the shape, d; is the boundary layer depth
and r 4 is the radius of a circle with the equivalent projection area. Furthermore,
the ratio of the boundary layer depth to the radius is expressed as follows,

S _ ‘% (8.197)
TA NR

e

where Jg is non-dimensional constant. Substituting eq.8T97 into eq.BTUR,
the drag coeflicient which also includes the effect of the boundary layer is cor-
responding to the following,

(50 2
Cp=Co(1+ W) (8.198)

R
Thus the drag coefficient is expressed by the Reynolds number. The re-

lationship between the Reynolds number and the Best number is derived by
substituting eq.ET98 into eq.BTI4

83 4]\7)1(/2 1/2 2
Ne, =2 |(1+ 5303/2) —1] (8.199)
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Here we use Cy = 0.6 and §p = 5.83 as provided by Bohm (1989). Finally
the terminal velocity of ice particles is calculated by substituting eq.BT93 and
eq.BT9Y into the definition of the Reynolds number,

_ a8 4 2agpD* 127172 12
 Dp4 [[1 5303/2( An? ) ] 1} (8.200)

In this formulation, required variables are mass, projection area, maximum
dimension of ice particles and thermodynamical variables. Here we use several
piecewise-constant mass-maximum dimension and projection area-maximum di-
mension relationships provided by Mitchell (1996). The terminal velocities of
various ice particles are plotted in Fig.82. As shown in Fig.Bdl there is less
difference between hexagonal plates and stellar crystals with broad arms with
the diameter less than a few hundred micrometers. Therefore we only consider
hexagonal column and hexagonal plate as representatives of the category of ice.

Adjustment factor of terminal velocity

Beard (1980) suggested that calculation of the terminal velocity using the Best
number could be simplified with use of an adjustment factor (f,:) defined as,

Vg = VtOfvt (8201)

where vy is a reference terminal velocity. He demonstrated that f,; was not
sensitive to the shape of hydrometeors. When electrical force is not considered
in the cloud microphysics, formulas of f,; are as follows,

for = futo (NRe, <0.2) (8.202)
for = forco (NRe, > 1000) (8.203)
fvt = fvtO

+ (fotoo — for0)(1.61 +InNg_0)/8.52 (Nge, < 1000) (8.204)
foro = (m0/n) (8.205)
foroo = (po/p)*? (8.206)
Nr,o = poDvi/mo (8.207)

The upper limit of the Reynolds number ( Ng, = 1000 ) corresponds to
a diameter of several milimeters and the lower limit of the Reynolds number
( Ng, = 0.2 ) corresponds to a diameter of tens of micrometers. Seifert and
Beheng (2006) applied a further simplified adjustment factor based on eq.BK203
and eq.B203 as follows,

fotn = (po/p)", (n=c,1.i,5,9) (8.208)

where 7. = 1.0 and v, = 7; = 75 = 774 = 0.5 This simplification formula of the
adjustment factor is intended to avoid the dependency on the Reynolds num-
ber. However, ~,, = 0.5 is valid only for high Reynolds number particles whose
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diameters are more than several millimeters as shown in eq.8200. Therefore,
the above formula always underestimates the terminal velocity of cirrus clouds.
Another simplified formula for cirrus clouds was suggested by Heymsfield and
Taquinta (2000) as follows,

for = (p/po) ™" 8(T ) T) 039 (8.209)

where Ty = 233 K and pg = 300 hPa. By using these adjustment factors, we
can only consider the terminal velocity for the reference atmosphere. Adjust-
ment factors used for each hydrometeor in this study are summarized in Table
B2

Table 8.2: Adjustment factor for the reference terminal velocity.

cloud rain Ice Snow graupel

f’Ul 1 (p(]/p)o.5 (p/p(])f[).l7 (T/j“[))*(]\%q&i ([)/p(])f().17 (T/]“[])*O.&()él (p/po)70.178(7“/7“0)70.394

Weightend mean terminal velocity

In gravitational sedimentation, the mean terminal velocity weighted by the k-th
moments of DSD (vi nq) is calculated straightforward as follows

'Ukjnq = / xkfnq(x)vt,nq(x)dx (8210)
0

However, the formulas of the terminal velocities, eq.BTU3 and eq.B200 are

too complicated to analytically integrate eq.8B2I0. Seifert and Beheng (2006)
and Seifert (2008) approximately used the large branch of eq.BTI3 for rain
droplets and simple power laws derived by observation for other hydrometeors.
Here we made more accurate formulations to calculate the weighted terminal
velocities.
As shown above, the dependency of the terminal velocity on the diameter varies
among the aerodynamical regimes. In other words, the dependency varies among
the range of diameter. Therefore, firstly we prepared two branches of the ter-
minal velocities of hydrometeors except for cloud droplets so as to integrate the
DSDs analytically. For cloud droplets, we use the same power law provided by
Seifert and Beheng (2006) which is based on Stokes law. For the rain droplets,
we directly use the formulation of eq.BTU3 because we can integrate each branch
analytically. In contrast, we need to derive two fitting curves for ice particles.
The formulation of the terminal velocity of ice particles is described as a power
law of the diameter made by the least-square method as follows,
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Ut,js = atnjsxbv"jsa (j5:i7579> (8211)

idmax
_ N _ N 2
(RMSE)]CJS = Z (lnvk,js,t,.ue(Did) _lnvk,js(Did)) (8.212)
id=1
ORMSE)ys _  O(RMSE)i;e _
8av’js ’ 8bv7js
wpDa) = [ g e D Lo/ L
0
[ (Lietbogethtly (vt -
= CGvys (F ’Ujs’lj:]erl ) 1—\(1)::]—:2>] | xfé,;; (8.213)
( Hjs ) ( Hjs )
B imax B
Uk,j;t7'ue(Did) = Z xkvt,js,trueflogD(l’HDhDid7L)AlnD/L
=1

where Dy = 10um, Dimez = 10mm, tpq, = 1000, and L is arbitrary con-
stant. The fitting ranges of the mean volume diameter in eq.B2ZT2 are from 20
to 400 pm for the small branch and from 200 to 2000 pm for the large branch.
The derived parameters are summarized in Table B3.
Secondly the terminal velocity with a certain mean diameter is calculated by
interpolating between the two branches in the logaritgmic scale of the diameter.
Here we practically use the mean diameter weighted by the kth moments of
DSD in the interpolation. The formulation of the weighted terminal velocities
of the rain droplets and solid particles are as shown in the following,

Vk,nq

Uk, sml,r

Vk,Irg,r

Wik ,nqVk, l":ga ng + (1 - wk,nq)vk,l;g,nm (nq =T, iv S, g) (8214)
0.5(1 + tanh(win(Dg /Do k.r)))
maz (0.0, min(1.0,0.5(1 + In(Dk s/ Do k.js)))) (is=1,s,9)

f[)oo an(ﬁﬂ)]}k‘fnq(,ﬁ)dl‘
foooxkfnq(ﬁ)dx
Ung+bm,ngtk+1 Upgq+1
D_nqr( v )[ (QTUIS)T)MM (8.215)
r(==) )
];\j;:/ lar,D(1 — exp(~br, D))]z"N,(D)dD
T 0
(1+:LLD,T+3I€)
QR ——————
: )\D,r
- <1+%)_2_“D”—3k} (%0)1/2 (8.216)
J;(;;:/ l[ar — briexp(—cpD)]z* Ny (D)dD
T 0
an — b (1+ ;lzjz )—1—uD,T—3k(p7)o)1/2 (8.217)
No, D™ "Prexp(—Ap,D) (8.218)
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where D, and Dy ;s are the branch points of the fitting curves (see Ta-
ble B4). Here we apply the form of the modified gamma distribution for the
diameter as a DSD of rain droplets. Derivation and correspondences of the co-
efficient No , the slope parameter A\p,r and shape parameter D appeared in
the modified gamma distribution are described in Appendix B. Weighted ter-
minl velocities of ice particles for two branches, and, are calculated by eq.B2T3.
Fig.B3 shows the terminal velocity of rain droplets weighted by number and
mass concentration. Our method gives better results than the results by the
approximated method applied in Seifert and Beheng (2006) in the range within
their upper and lower limit. Fig.B4d shows terminal velocities of ice particles
weighted by the number and the mass concentration.

Table 8.3: Coefficients and exponents of the relationship between the mass and
the terminal velocity of each hydrometeor used in the gravitational sedimenta-
tion and other processes.

Hydrometeors Sedimentation of mass Sedimentation of mass __Sedimentation of number __ Sedimentation number other process
Small Large Small Larg

Cloud ay =3.75 x 10°,b, =2/3  a, =3.75 x 10°,b, = 2/3  a, =373 (

Rain 8.193 8.193 193 8.193

g
0°.b, = 2/3 _ay = 3.05 X 10°.b, = 2/3__a, FO057 1., = 2/3

Hexagonal plate @y = 1.2 X 10°,0,0549 _a, = 422,b, = 0.385
Tlexagonal columns 5 b, = 0.274

Aggregates of planar polycrystals _a, =039 a,

Tump graupel a, a, a, = 698,b, = 0387 __a,

Table 8.4: Branch points of the weighted terminal velocity.

Hydrometeors Branch points of the weighted terminal velocity [m]
Cloud Not used
Rain Dy, =7.45x 10~%
Hexagonal plates Do =262x 1075 Dy ; =399 x 1076
Hexagonal columns Dy,o,; = 240.5 x 109, Dy 1, =330 x 1076
Aggrgates of planar polycrystals Doos =270 x 1075 Dy 1 = 270 x 1076
Lump graupel Dy 0, = 269 x 109, Dy, =376 x 10°6

Detailed description of cloud microphysics

Cloud microphysics is mainly categorized into two physics. One is phase change
among the gas, liquid, and solid phases. Another is the collection process among
all the particles. In addition, all the hydrometeors are vertically transported by
gravitational sedimentation. Phase change depends on the thermodynamics of
environment air and affects thermodynamics itself through latent heat release.
In contrast, collection is an internal growth process with less interaction with
the atmosphere. Since the growth speed of the collection process is much faster
than that of phase change, the role of the collection process is a key to determine
the lifetime of cloud (e.g. lifetime effect). Finally, gravitational sedimentation
determines the removal rate of cloud from the atmosphere. Directly it removes
cloud by transportation, and indirectly by the collection process via collision
volume (swept volume).

The cloud microphysics scheme developed in this study basically follows Seifert
and Beheng (2006). Their two-moment bulk cloud microphysics scheme is re-
markable in improvement of the collection process by using a bin cloud mi-
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Figure 8.1: Dependency of terminal velocity of liquid water droplet on diameter.
Marks are from Gunn and Kinzer (1948), red line is from Rogers et al. (1993)
and blue line is calculated by Stokes law (eq.BT9I) under the condition T=293K,

p=1000hPa.
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Figure 8.2: Dependency of terminal velocity of liquid water droplet in maximum
dimension. Each color of solid line is corresponding to different ice particle type
based on Mitchell (1996). Hexagonal columns is blue, hexagonal plates is green,
stellar crystal with broad arms is red, Aggregates of planar polycrystals in cirrus
clouds is purple and lump graupel is light blue.
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Figure 8.3: Dependencies of number weighted terminal velocity (viy) (left) and
mass weighted terminal velocity (v;r) (right) of rain droplets on mean volume
diameter (D,,). Abscissa is the mean volume diameter and vertical axis is
the terminal velocity. Dots show exactly integrated value and solid lines show
approximated value by this study (red, green and blue) and Seifert and Beheng
(2006) (purple). Red and purple ones are calculated with D = 0, green ones
are calculated with pD = 1 and blue ones are calculated with D = 31.
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Figure 8.4: Dependencies of number weighted terminal velocity (viy) (left) and
mass weighted terminal velocity (v:r,) (right) of ice particles on mean volume
diameter (D). Abscissa is the mean volume diameter and vertical axis is the
terminal velocity. Dots show the exact value calculated by Mitchell (1996) and
solid lines show the fitting curves. Red, green, blue and purple denote lump
graupels, assemblages of planar polycrystals, hexagonal columns and hexagonal
plates respectively.
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crophysics scheme. After their works, we modify the cloud nucleation process
(Twomey 1959; and Lohmann 2002), the condensation process (Morrison et al.
2005), and the formulation of the terminal velocities (Mitchell, 1996) with ex-
pectation of the application to global cloud resolving simulations. We describe
production and reduction terms of the mass concentration and the number con-
centration in the following sub-sections.

Phase change

Condensation/evaporation

Theoretical formulation of condensation or evaporation is basically derived by
balance equation of vapor and thermal diffusion above the surface of a single
particle (Rogers and Yau, 1989; Pruppacher and Klett, 1997). The growth rate
of liquid droplet mass x;1 is described as follows,

d .
7?1 = 21D(x;j) G (T, p)Fup(xjl)Sw, (jl =c,r)  (8.219)
R’UT L’UO L’UO -1
G, = T-1 8.220
: peu()Dy KoT R, )} (8.220)
Fop(z,) = aupr+bopo NNy (8.221)

Here Gy, is a coefficient related with vapor and thermal diffusion, D, is dif-
fusivity of water vapor and Ky is thermal conductivity, and F, ¢ is the so-called
ventilation coefficient. This is a correction factor for assumption that the water
vapor field surrounding each droplet is spherically symmetrical. Formulation of
Fvf was experimentally determined by Pruppacher and Klett (1997) and it de-
pends on Schmidt number (Ng,) and Reynolds number (Ng, ). This formulation
for single droplets is transformed into that for moments following to Seifert and
Beheng (2006). With assumption of DSD as a generalized Gamma distribution
and neglecting the change of DSD caused by other process in a time step, we
can derive the growth rate of moments,

oM
ot

dz (8.222)

cnd,evp cnd,evp

> ox
o~ ) k=127
| a1

we can consider eq.B2Z22 from a different view point as follows,

oMk

i ~ [ k[l% ]
ot cnd,evp /0 f]l(x)x z Ot cnd,evp
[e'e) . k
- / @)y r2 2 (8.223)
T Oz lend,evp
0 ot

Here, we mention that the theoretical treatment of condensation or evapo-
ration change droplet mass only. Then, we diagnose the growth rates of other
moments by the change ratio of droplet mass with time scale 7. Thus, we can
derive the growth equation for arbitrary moments,
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k
oM}
ot cnd,evp

27TleSw/ Dji(x)Fyggi(x) fju(z)z""" do
0
= 27TGIUSwleDjl(fjl)pvﬁk’jl(i'jl)f?fl (8224)

where F, f,k,i is an averaged ventilation factor for the k-th moment of DSD.
This formulation seems to be valid unless reduction of number concentration oc-
curs. Because reduction of number concentration occurs only in the case of the
smallest droplet being completely dissipated by evaporation, the formulation by
change ratio is not suitable for complete dissipation. Therefore this formulation
is incomplete to derive the reduction tendency of number concentration by evap-
oration (condensation never changes number concentration). Temporarily, we
assumed that the number concentration of cloud droplets never reduces unless
their mean mass of cloud (Z.) falls below the lower limit Z. yin. The treatment
of rain droplets is discussed in the following section.

Evaporation of rain droplets

Ounly in the case of rain droplets, Seifert (2008) attempted to overcome the
incompleteness for the reduction of number concentration in evaporation. He
reformulated eq.BZ24 as follows,

ON,| _ N, oL
Ot lewp — UPL ot

7;_’“’ 27 G10Su Ny Dy (Z0) F 1.4 (70 (8.225)

Here evaporation parameter .., means the evaporation efficiency of number
concentration towards to mean mass Z,. According to Seifert (2008), ey, and
[m,r are parameterized as follows,

D,

Yevp = D(f )exp(_O-QNm,r) (8.226)
_ 6tauh|cepp,1(D(Zr) — Deq)Q} +1 (D(2,) < Dey)
B = { 30tauh|cevp 2 (D(Zr) — Deg)’] +1 (D(Z,) < Dey) (8.227)

where D, = 1.1 x1073m is the equilibrium diameter in breakup-coalescence
processes and the cepp,1 and ceqp2 are set to 4000 m~" and 1000 m™!, respec-
tively. In this study, we apply eq. 8224 for mass and eq.B2ZZ3 with e, = 1 for
number concentration as a default setting (refer to SB06-run).

Deposition/sublimation for solid water

Theoretical formulation of deposition or sublimation is the same as that of
condensation or evaporation except for the definition of surface area. The shape
of ice particles is not spherical and varies widely as is shown in section 2.1.2.
Therefore, vapor and thermal transfer over the particle surface is expressed
by the analogy between the diffusion equation and equations in electrostatics
(Pruppacher and Klett, 1997). Replacing diameter D;, by capacitance Cjs =
Djs/cjs, we can derive the growth equation of a single particle as follows,
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d.]?]‘s

AnC Gy (T, p)Fyp(245)Si, (js=1,s,9) (8.228)

[ RUT Ls70
psz(T)Dv KTT

dt dep,sbl

GS'U

(é’:; = 1)}71 (8.229)

Here Cjs = Dj,/2 for sphere, C;s = Dj,/m for circular plate, and capac-
itances of other typical shapes such as oblate spheroid crystals and columnar
crystals are expressed by,

.Djs{f o b2 3
st = m, E = ( — E), (fO’f' Sphe’r'ozd) (8230)
A
C; A== (a®> - b*)Y2, (for columnar) (8.231)

Inf(a+ A/’

where a is semi-major axis and b is semi-minor axis. For simplification,
cloud, rain, snow and graupel are assumed as sphere and hexagonal plate ice is
assumed as circular plate here. In the same manner as condensation (evapora-
tion), we can derive the growth equation of arbitrary moments as follows,

oM ]]-CS 4 A N _k—1
T dep.sbl = aGSUSiNjSDjS(xjs)va1k('Tjs)'TjS (8232)
Discussion concerning the reduction term of number concentration is the
same as that for rain droplets. Therefore, we applied eq.BZ32 for mass concen-
tration of solid particles. For snow and graupel, the reduction rate of number
concentration is as follows,

k
ON, _ Njs OLjs
ot lsb L;s 0t lsbi
1 47w _

= = ?GsvSistDjs(-fjs)va,l(-'i'js)(js = S,g) (8233)
js Cjs

This formulation corresponds to e,, = 1 in the reduction term for rain
droplets. That means sublimation occurs so as not to change the mean mass of
DSD (Z;5). Number concentration of ice never reduces in sublimation unless the
mean mass of ice (Z;) falls below the lower limit. The formulations of the reduc-
tion rate for the number concentration of ice particles are somewhat temporary
and will be improved by the insights drawn from the results of microphysics bin
schemes and observations in future work.

Accurate integration method to solve condensation/evaporation and
deposition/sublimation

The condensation/evaporation process for cloud droplets usually requires a
smaller time step than rain droplets or other particles because of its timescale.
When we apply the time integration with the first ordered Euler method, the
accuracy of the condensation/evaporation and the deposition/sublimation pro-
cesses are worse unless we resolve their timescale. We estimate the timescale
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with the exact thermodynamic definition in NICAM initially and then formu-
late an accurate method to apply the condensation process and the evaporation
process for cloud droplets similar to Khvorostyanov and Sassen (1998) and Mor-
rison et al., (2005). Since the supersaturated condition is achieved by updraft
of air mass, we consider a Lagrangian parcel model with constant updraft ve-
locity and no mixing with external air mass. Basic formulation is based on the
Lagrangian change rate of supersaturation (0s., = ¢y — gsw) as follows,

dbsw (dqv dqsw> (8.234)

dt At dt

Hereafter we consider the tendency of specific humidity and saturation spe-
cific humidity by dynamics, cloud microphysics and radiative heating.
At first, assuming an adiabatically ascending/descending parcel with no phase
change (g, /dt = 0), eq.(B223d) becomes

dbsw _ Oqew\ AT Oqew, d
= (Gewy 8 (o P (8.235)

dt oT v dt op 'Tdt

Here the tendencies of temperature and pressure are described as follows,

dT 1 dp dp
— = ——, — & —pgw 8.236
at — pepat’ dt Y (8.236)
where €, = qqCpa + quCpv + QligCl + Gso1C; is the mean specific heat at constant
pressure. We can derive the dynamic component of the tendency of &g, by
substituting eq. B23@ into eq.BZ33 as follows

d(SSU)
dt

1
DYN wg(a

8QSw aQSUJ
(G, 05, )r) (8.237)

Assuming air parcel with only cooling/heating by latent heat release, eq.
B34 becomes

ddsuy _ dqy . (QQSw)dI
dt — dt oT ’/ dt

(8.238)

The tendency of temperature is caused by latent heat release with conden-
sation/evaporation and deposition/sublimation

dr'_ Lyoo+ (cow — )T dqiiq n Ly oo+ Lo+ (co — ¢i)T dgsol
dt Coa dt Cua dt
lllna:lt
_ Lo+ (oo —a)T ]Z da
Cva ‘ dt cnd,evp
jl=1
Lyoo+ Lo+ (cow — )T Ry dgjs
: : 8.239
+ Cva Z dt dep,sbl ( )

js=1
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The tendency of specific humidity is caused by condensation/evaporation
and deposition/sublimation,

JSmax

"X

Then, we can derive the cloud microphysics component of the tendency of
dsy by substituting eq.B2Z39 and eq.B241 into eq.BZ3Y,

.7 max

dg, d
X w

d%s

(8.240)

cnd,evp dep,sbl

jl
Adsw Ly 00 + (va - )T aq:;w Ry
BOsw - (14 ) dgidt
dt ‘MP ( * Cy Z g L cnd,evp
Lv 00 + Lf 00 t+ (cvv - Cz)T 6qsw I dqjs
- (1 ) 8.241
( + Co ( oT ) Z dt d(ep,sbl )

By replacing the source term of the mixing ratio of hydrometeors in eq.B=241
with eq.B224 and eq.B=2Z32

dCIjl o 6sw
245t = , or
dt cnd,evp Tend,jl
% _ Os; _ Gsw — Gsi (]l — ¢ 7,) (8.242)
dt cnd,evp Tend,jl Tend,jl ’ ’
des . 6575
= , or
dt lde,sbl Tdep,js
deS 5sw Gsw — Qsi . .
— + s S = Z, S) 8243
dt ldep,sbl Tdep,js Tdep,js (] g) ( )
B 1
Tendjl = ( 27TleDjl(5€jl)leva,1) (8.244)
PAsw
1 4r -t
Tdep,js = ( GevDﬁ(x]?)NJ?va 1) (8.245)
Pqsi Cjs

We can rewrite eq.B240 as a function of super saturation itself,

aésw _ Aliq,lig + Aliq,liq + Asol,liq + Gsol,liq + asol7liq)6
ot lmp Tend,c Tend,r Tdep Tdep,s Tdep,g o
1 1 1
- ( + + )(QSw - QSi) (8246)
Tdep,i Tdep,s Tdep,g

Lv + (Cow — €1 T 6qsw

Qligrig = 1+ 22 (5 ) (Z7) (8.247)
Lyoo + Lo + (cow — ¢i)T ,0qsw

Cy oT

Here, we can find that 7.4, and 74cp ;s in eq.B248 are considered as the
characteristic time scale to relax the super saturation condition by the condensa-
tion/evaporation and deposition/sublimation processes. The timescale of each
hydrometeor is modified by coefficient a;;q,1iq Or@so1,1ig, which means the effect of
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latent heat release. The second term on the right hand side in eq.B228 means
the transfer of vapor from liquid droplets to solid particles. The Bergeron-
Findeisen process is implicitly formulated by the difference of saturation vapor
pressure between liquid and solid.

Finally assuming an air parcel with radiative heating (cooling), eq.B23d be-
comes

ddsw ’ _
dt |rap

B ( Iqsw~ AT

L) (D) (5.249)

All the components in the Lagrangian ascending/descending parcel model
are described by eq.B2Z31, eq.B248 and eq.B249,

A6 s S
= Acna — 8.250
dt 4 nd (8.250)
ds ds
Aa = 222 S|
d dt |pynN dt |RAD
1 1 1
- (= + ) (sw — asi) (8.251)

Tdep,i Tdep,s Tdep,g
Qliq,liq + Qliq,liq + Qsol,lig + Qsol,lig + asol,liq)*l (8 252)
Tend, e Tend,r Tdep,i Tdep,s Tdep,g

Tend

Here, we can see that A.,q4 is a production term of super saturation and cnd
is a characteristic timescale of all the phase changes. From their formulation
(eq B2 and eq.B243), we can find that the timescale of each hydrometeor is
in inverse proportion to its number concentration. The timescales under various
conditions are shown in Fig. B
Assuming that time variance of the production term and the timescale in a sim-
ulation time step dont vary much within a model timestep, we can analytically
solve eq.B2h0,

t

Tend

6sw (t) = Acnchnd + (6510 (tO) - Acnd'rcnd)exp(_ (8253)

where t = tg + At and ¢ty = 0. Then, the condensation (evaporation) rate
of cloud and rain are reformulated by substituting eq.B253 into eq.B2Z4 and
integrating them,

AL; cn
L = pAcnd Tend
At lend,evp Tend,jl
(6sw(t0)_Acnchnd) Tend [ t ]
exp(— —1|(8.254
p At Tend,jl Tend ) ( )

This semi-analytical formulation takes time variability of super saturation
into condensation (evaporation) growth. Therefore, it is better than direct time
integration with a first order Euler method.

In the same manner, we can also derive the semi-analytical formulation for
deposition (sublimation) with super saturation for solid water (ds;),

76



5si(t) = Adep’rdep -+ (551‘(150) — AdcpTdep)e.%p(*Td ) (8255)
ep
AL, Tde
) = pAdep dep
At dep,sbl Tdep,js
6Si t - A e e e At
p( (o) depTdep) Tdep [exp(— ) — 1} (8.256)
At Tdep,js Tdep
where
ddg; dds;
Agy = Dsi )
dep dt |Ipyn  dt |rap
1
sw — Yst 8.257
* Tend, e + Tcnd,r)(q 1 ) ( )
QAliq,so QAliq,so Gsol,s0 Gsol,s0 Gsol,sol \ —
Taep = (ol Cligsol | Deolsol | Zsobseol y Deohsoly™(g o5g)
Tend, e Tend,r Tdep,i Tdep,s Tdep,g
_ LUOO + (va - CZ)T aQSi
Aligsol = 1+ z, ( oT )p
Lyoo + Loo + (cow — ;)T ,0qsi
sol,sol =1 —
sol, sol + c (8T )p
dds; . 1 ,0qs; 0qsi
dt Ipyn wg(ép(aT )P+p( Op )T)
d(ssi _ (aCIsi ) (dT)
dt |rap oT ', dt /RAD

Finally we applied eq.B254 and eq.B=Z50@ for the prediction of mass concen-
tration and eq.B2Z3 and eq.B233 for the prediction of number concentrations
of rain, snow and graupel. Number concentrations of cloud and ice are assumed
not to change by evaporation and sublimation.

Nucleation of cloud droplets

Seifert and Beheng (2006) applied traditional empirical formulation as an aerosol
activation spectrum as follows,

Nc(Sw,IOO) = Cccnsgiigo (8259)

where super saturation ratio S, 100 is in . They use Cpep, = 1.26 x 109m =3
and Keen, = 0.308 in continental conditions and Ceep, = 1.0 X 108m ™3 and keen, =
0.462 in maritime conditions. Further, Seifert and Beheng (2006) transformed
eq.BZ5Y into a tendency formulation by time differentiation of the activation
spectrum,

KReen — 98w
aNC Cccn“ccnswjloo 1Wmow
ot = (Sw,loo > 0, waSg’;OO >0, and Sw,lOO < 11)
0, (else)
0L, ON,
= c,nuc T o, 8.260
Ot lnuc Te, Ot lnuc ( )
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where Z¢ puc = 10~ '2kg is an arbitrary mass of nucleated droplets. Because
the aerosol activity spectrum is a function of supersaturation and unbounded
by the total aerosol number concentration, we chose an upper limit of activated
aerosols as 1.5 X Cyep, as similarly chosen by SB06: The maximum acticated
aerosol number concentration is 1.5 times of the activated aerosol number con-
centration at ssw = 1 °/,. Here, we should mention that this formulation
depends on the grid value of super saturation ratio, vertical velocity and verti-
cal derivation of the super saturation ratio. Since super saturation significantly
varies in tens of meters above cloud base (see Fig.B9), accurate prediction of
super saturation and its vertical derivation is quite difficult. In this study, we
applied a traditional nucleation scheme (Twomey, 1959; Rogers and Yau, 1989)
following Morrison et al. (2005),

Newue(weps) = 0.88C2(Feen®(0.07w} ) een/ (Feent) (8.261)
& dT
Weff = w—l—wTB—?p(E)RAD (8.262)

where we s is effective vertical velocity for nucleation and wrp is the sub-grid
variability of terminal velocity. This is an analytical formulation of maximum
number concentration around the cloud base for the Twomey equation with
aerosol activated spectrum by eq.B259 (see Fig.BH). By using this scheme we do
not have to resolve the vertical variability of super saturation around the cloud
base. Furthermore, applying sub-grid turbulence effects on vertical velocity
reduces under estimation of nucleated cloud number concentration caused by
low horizontal resolution (Ghan, et al., 1997; Lohmann, 2002; Morrison and
Pinto, 2005). In this study, implementation of the sub-grid turbulence effect
follows Lohmann (2002),

2
wrp = crp(;TKE)" (8.263)
Nc,nucl = 0.1x Nc,nuc(weff)1‘27 (8264)
where ¢y = 1 is used in this study, ]wac em ™3 is a grid averaged nucleated
3

cloud number concentration and N¢ pye(Wesp)em ™ is maximum cloud number
concentration in turbulent air. By substituting eq.B261, eq. 8262 and eq.B2G3
into eq.B264, the tendency of cloud number concentration is calculated by,

ON w’ (Sw >0, Nepue > Ne and at cloud base)
¢ = 8.265
OL. ON, Osw
_ min(en ’ 8.266
5| mzn(w , 5t | e At) ( )

Since nucleation is usually limited around the cloud base within several tens
of meters (see Fig.B9), we define cloud base layer (k.pqse) where the nucleation
scheme works as follows,

1.5 X Ceen > Nenu(kepase) > 0, and Ngpu(kepase — 1) < 10° (8.267)
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In addition, we prepare the option (NO-TB) to switch off the effect of tur-
bulence by substituting eq.B2&1, eq. 8262 with wrp = 0 into eq.B2Z63. There
remain some problems to be solved in future,
1.Definition of cloud base is empirical and arbitrary
2.Implementation of sub-grid scale is empirical and cpp is a kind of tuning
parameter. In particular, the TKE approach only considers isotropic eddies.
Sub-grid should be expressed as sub-grid cloud dynamics.
3.Formulation of eq.BZ64 does not converge with the NO-TB option when TKE
= 0.

We need to investigate the above problems by using a large eddy simulation
(LES) cloud model.

Nucleation of cloud ice

This study employed two simple ice nucleation schemes, which dont require the
properties of ice nuclei. One is the depositional and condensational freezing
nucleation scheme parameterized by Meyers et al. (1992),

Nin = 10%exp(—0.639 + 12.965,,;)

where Njy is nucleated ice nuclei, and S,,; is supersaturation for solid wa-
ter. While this scheme is widely used in CRMs (e.g., Walko et al. 1995; Khain
et al., 2000; Seifert and Beheng, 2006), this scheme could not be acceptable for
conditions at temperature below -20 degC or supersaturation over 0.25 where
observational data were not available in their study. For simulating cirrus clouds
around the tropopause, application of this scheme to CRMs may cause signif-
icant error. Phillips et al. (2007) proposed an alternative scheme to modify
Meyerss scheme by fitting to observational data at temperature between -30
degC and -80 degC taken by Demott et al. (2003),

Ny = 10%exp[0.3 x 12.96(S; — 0.1)] (8.268)
In this study, the nucleation rate is formulated by the newly nucleated ice

nuclei with the tendency of supersaturation in the same manner as Murakami
(1990),

ONin 9S50 9Sso
ANi [ S5 O%e (S > 00nd B > 0) o0
At 0, (else)
aSsol ~ |:8590l 8S90l ) (ai) :|
ot ot / RAD
AL;
At lnuc - At nucxIN (8270)

where 27y = 10712kg is an arbitrary parameter for a nucleated ice nuclei
mass. Here, we assume the change of supersaturation comes from the vertical
motion of airmass and the radiative cooling. Meyerss scheme produces the
number concentration of cloud ice more than Phillipss scheme, and the departure
becomes large as supersaturation increases. This difference would come from
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the sampled air masses used in observational data that their schemes referred
to, and also implicit dependencies of their schemes on temperature and aerosol
species. It is expected that Phillipss scheme is appropriate for the simulation
of mid-latitude cirrus clouds because Phillipss scheme is based on the air mass
sampled in the free troposphere at the mid-latitude while Meyerss scheme is
based on the air mass sampled in the atmospheric boundary layer where ice
nuclei is rich.

Freezing

The freezing process consists of two types of mechanisms. One is the homoge-
nous freezing which is freezing of supercooled water droplets for themselves
without the other agents. Another is the heterogeneous freezing, which is freez-
ing of supercooled water droplets with insoluble part of aerosols dissolved in
cloud droplets. We apply the same parameterizations of both the homogeneous
freezing and the heterogeneous freezing as Seifert and Beheng (2006a). Cotton
and Field (2002) parameterized homogeneous freezing rate for a single droplet
by a fitting to the theoretical estimation by Jeffery and Austin (1997). We apply
their parameterization as Seifert and Beheng (2006a),

1 Of(x)
fc(l‘) ot hom

= _thom(Tc) (8271)
where Jpom is a homogeneous freezing rate (kg~'s™1) and T, is centigrade
temperature. Jpm is formulated as a function of temperature as follows,

25.63 — 243.4 — 14.75T, — 0.307T2, (—65°C > T,)
10910(10 3 Jhom) = {  —0.00287T3 — 0.0000102T%, (—65°C < T, < —30°C)
—7.63 — 2.996(T, + 30), (—30°C < T,)

Based on the equation for a single droplet, we can derive the equation for
moments by integrating eq.B2Z71 as follows

ON,
8tc hom = —Lcdhom = —NeZedhom (8272)
aLC T ve+3 T ve+1l
= —Z.Jhom = _L(;C)Lcjcjhom (8.273)
Ot lhom F(VC+2)
ll’C

Here, we mention that eq.B2ZT2A and eq.BZ73 are expressed via filtered Z.
in order to avoid artificial value of the prognostic variables. The homogeneous
freezing for rain is not considered because it is negligible compared with the
heterogeneous freezing due to their largeness. Although Cotton and Field (2002)
considered also freezing point depression in freezing due to soluble aerosols, we
dont consider the effect because Seiki and Nakajima (2014) is not yet coupled
with aerosol transport models. Heterogeneous freezing is based on the empirical
formulation by Biggs (1953) which is widely used in CRMs.

1 of(x)
) o = —xJpet(Te) (8.274)
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where Jy; is the heterogeneous freezing rate. Jy¢ is formulated as a function
of temperature as follows,

Jhet = Ahetexp(_BhetTc - 1) (8275)

whare Aper = 0.2kg 's™! and Bper = 0.65K ! are empirically determined
parameters. Similar to the homogeneous freezing, we can derive the equation
for moments as follows,

ON;
8;} = —NuZiJnet (il = c,r)snl126) (8.276)
et
oLy spas)
7 ;l(mm)gl LuZaJner (il =c,r)  (8.277)
Hil

Although the heterogeneous freezing should be also formulated as a function

of aerosol concentration, here we apply simple formulation because our model
is not yet coupled with an aerosol transport model.
Thus, these parameterizations dont include the information of aerosols and it is
considered that they assume background aerosols. The validity of the parame-
terization was demonstrated by Khain et al. (2001). Nevertheless their model
also applied the same simple freezing parameterizations, they could represented
the observational features of supercooled liquid water by Rosenfeld and Woodley
(2000). Both freezing rates are shown in Fig. BI0. The heterogeneous freez-
ing is dominated at temperature over -35 degrees Celsius. At the temperature,
supercooled liquid water is mixed with ice particles. In contrast, the homoge-
neous freezing rate suddenly increase below -35 degrees Celsius. Liquid water
droplets have been hardly observed below the temperature of -40 degrees Cel-
sius (Rosenfeld and Woodley, 2000). The feature can be represented by using
the parameterization.

Melting

Melting process is the same as Seifert and Beheng (2006a) based on Pruppacher
and Klett (1997). Theoretical treatment of this process is similar to the con-
densation process. The differences are

1.Time scale of evaporation of a single particle is replaced by that of fusion of
a single particle.

2.Vaporization of melted particle is considered in a balance equation of vapor
and thermal diffusion.

As a result, the melting rate of a single ice particle is described as follows,

d'rje 271'ng|: DT
- = — —=\Kyp(T-Ty)—F, .
dt it Lo (T = To) - Fus (w55
D’UL’UO Do psw(TO) . .
— "\ F, ,S] =1,s, 2
+ o (F - T ) Fupla)| (s =ys,g) (8.278)

where Dy is diffusivity of heat, and Ty = 273.15K is melting point. The
growth rate of moments can be formulated by using a melting time scale 7,
defined as follows,

81



Tjs

( dﬁis )mlt

_ ‘/Oo = finle) g,
0

Tmit

(8.279)

Tmlt

oM,
ot

mlt

_QL[KTDT Dy Luo . M)}
Lf() D, R, T To

X stDjs(i'js)x?s_lpvf,js (8280)

(T —Tpy) +

We mention that this scheme allows the existence of ice particles over the
melting point (7' > 273.15K) since the melting time scale of large particles can
be longer than a simulation time step. Actually, ice particles are transitionally
converted into liquid droplets and the type of hydrometeor is not changed in the
transition. However, here we assume that ice water mass is converted into liquid
water mass in a certain melting time scale and the part of liquid water mass is
categorized as the other hydrometeors. Here, graupel and snow is converted into
rain, and ice is converted into cloud. This formulation has a possibility to cause
an artificial production of cloud or rain in melting. Validation experiments and
impact assessment are necessary in future.

Collection process

The collection processes are the same as Seifert and Beheng (2001), Seifert and
Beheng (2006a) and Seifert (2008). The collection processes among hydrom-
eteors are summarized in Table B4. In this section, the formulations of the
collection processes, auto-conversion, accretion, aggregation, riming, and their
related processes are described.

Table 8.5: Hydrometeors that result from binary collision. Collecting hydrom-
eteors are written in the 1st row and collected hydrometeors are written in the
1st_column.

cloud water rain cloud ice snow graupel
cloud water rain - - - -
rain Tain Tain rain(T > 273K), graupel(T < 273K) _rain(T > 273K), graupel(T < 273K) _rain(T > 273K)
cloud ice cloud ice - Snow - -
Snow snow - - snow
graupel graupel  graupel(T < 273K) graupel graupel

Self-collection, auto-conversion, and accretion

With a few assumptions and a little algebra, Seifert and Beheng (2001) derived
the analytical formulations of the self-collection, auto-conversion, and accretion
processes as follows,
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ON, B (Ve +2) po

T L e (281)
aaLtC o _2]8;2 e Z;QL(VDJ 4)’;’L§m§ (8.282)
aé\t]c o ;aéc » (8.283)
B = 3D s = 2 0 (5.284)
agc e TRerNeL (p ) (8.285)
% e = TRerLely (p ) (8.286)
aé\th e = kLol (p ) (8.287)

with k., = 4.33m3kg~'s~!, and where density factors are introduced by Seifert
and Beheng (2006a) in order to correct the effect of terminal velocity on the
collision efficiency. In addition to the analytical derivation, Seifert and Be-
heng (2001) made corrections depending on the development stage by using
the dimensionless internal time scale. Since moment bulk methods cannot rep-
resented complicated changes of high-order moments, the corrections are nec-
essary as DSD undergoes evolution by the collection processes. Firstly, the
auto-conversion rate is represented by 7 by substituting eq.?? to eq.B22,

or - kee (Vc+2)(yc+4)100 2L

Ot laur ~ 20z* (ve +1)2 (1- ) (8288)

The assumptions used in the derivation of eq.BZ288 are valid for the initial
stage of collisional growth. Therefore, the additional collection by a universal
function ¢g,: was introduced by Seifert and Beheng (2001) as follows,

or

ke (Vc+2)(’/c+4) Po 22202
ot

aut - 203?* (l/c —|— 1) C ¢ C

[( T2) + Paut (7—)] (8289)

Similarly, the correction for the accretion rate is also made by a universal
function ¢qcc,

_ kc,,L(p—;)l/Q(l P INC (8.290)

In contrast to the correction for the auto-conversion rate, the assumptions
used in the derivation of the accretion rate is valid for the mature stage of the
collisional growth. Therefore a correction function is multiplied so that ¢qq:
becomes zero for the beginning of the collisional growth and one for the mature
stage of the collisional growth. Here, it is recognized that the growth rate of the
dimensional internal time scale is proportional to LWC in eq.BZ89 and eq.B=290.
Therefore, the parameterizations developed by Seifert and Beheng (2001) satisfy
the similarity included in the SCE. Finally, the universal functions are derived
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by fitting to the results by a bin cloud microphysics model,

Gaur(T) = 4007%7(1 —70T)? (8.291)
Pace(T) = (m)4 (8.292)

These functions are shown in Fig.B4.

Here, we mention that the fitting curves of the universal functions highly depend
on the calculation by a bin cloud microphysics model. In fact, the functions pro-
posed by Seifert and Beheng (2006a) were modified from the original functions
by Seifert and Beheng (2001) with the progresses in the estimation of the collec-
tion kernel. We have to update the parameterizations when more sophisticated
collection kernel will be estimated than the one used by Seifert and Beheng
(2006a)

Break-up

Large rain droplets are not always stable in the collision process. It was ob-
served that large rain droplets could break up into many small droplets after
the collision ( Low and Lists, 1982 ). Collisional break-up sustain mean droplet
size so as not to grow extremely larger and cause strong precipitation. As dis-
cussed by Hu and Srivastava (1995), the system of collision, coalescence and
break-up reaches the equilibrium condition between coalescence and break-up
after the sufficient long time. Consequently the form of the DSD of rain is led
to the self-similar equilibrium DSD with the equilibrium mean diameter Deq
. Seifert and Beheng (2006a) simply parameterized the break-up process as a
relaxation of the DSD with the mean diameter more than Deq to the self-similar
equilibrium DSD.

ON,
ot

ON,
ot

ok - [¢brk(ADr) + 1]

(8.293)

sle

where ¢y, is a universal function of break-up, and AD, = D, — Deq, D,
is the mean volume diameter of rain, with D., = 1.1mm according to Seifert
(2008). The universal function was derived by a fitting to the results by a bin
cloud microphysics model based on ( Seifert et al. 2005 ), and formulated as
follows,

-~ 26xp(’€§rkADr) - L, ([27‘ > Deq)
d)brk(ADr) = KorkAD,. + 1, (Deq 2 D, > 0.35 x 10_3m) (8294)
~1, (0.35x 1073 > D,)

with kprr = 2.3 x 103m™!, and kpr, = 1000m~!. For the mean volume
diameter less than 0.35 x 10~3m, break-up is neglected.
Mixed-phase collection

In the previous sections, the collection processes are limited for warm cloud. In
this section, the collection processes among mixed phase clouds are described.
In contrast to warm cloud, there exist many kinds of particles in cold cloud as
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discussed in section 2.1. Since the variety of the shape and their coexistence
condition differs case by case, there are no systematized theory, observation,
and experiments for the mixed phase collection processes. Therefore, Seifert
and Beheng (2006a) proposed a general formulation of the collisional interac-
tions among hydrometeors starting from the simplification of the SCE. Due to
the variety of the types of hydrometeors, the patterns of the interaction are
categorized into following five cases.

1.A particle of hydrometeor a collects b and then the collecting particle a grow.
This pattern is corresponding to the collision between ice and cloud (ic), snow
and cloud (sc), graupel and cloud (gc), snow and ice (si), graupel and rain (gr),
and graupel and snow (gs).

2.A particle of hydrometeor a collects b and then the other particle c¢ is pro-
duced. This pattern is corresponding to the collision between rain and ice (ri),
and rain and snow (rs).

3.A particle of hydrometeor a collects a and then the other particle b is pro-
duced. This pattern is corresponding to the collision between ice and ice (ii).
4.A particle of hydrometeor a collects a and then the collecting particle a grows.
This pattern is corresponding to the collision between snow and snow (ss).

In the following sections, we introduce the derivation of the mixed phase collec-
tion corresponding to the five cases.

The collision case 1: a+b — a

In contrast to the SCE for warm cloud, the production term and reduction
term are slightly different in the binary collision between two types of hydrom-
eteors. The reduction term of the hydrometeor b and the production term of
the hydrometeor a are described as follows,

o )
fgl(fy) col,ab - /0' fb(y)fa (x)Kab (.T, y)dx (8295)
o o)
fgiy) col.ab - /0 fa (-T B y)fb(x)Kab(aj - Y, y)dm

- /0 " @) foly) Ko y)dy (8.296)

Here, the formulation of the collection kernel is often described by the swept
volume of large particle as follows,

Kab(‘ra y) = Eab('ra y)% [Da(x) + Db(y)]z [vt,a(x) - Ut,b(y)] (8297)

where E,;, is the collection efficiency, D; and v;; are diameter and terminal
velocity respectively. We can derive the growth rate of the kth moments by
integrating eq.K293 and eq.K2984,
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oM}

- / / Fo®) fa(2) [Da(@) + Do(y)]

ot col,ab

X |vra(@) = vip(y) | Eas (2, y)y* dady (8.298)
OMPF 0o oo
5 = 1) [ R@a0ID@ + D)

X |vea(®@) — vep(y) | Ean(z,y) [(z + y)* — 2F]dzdy (8.299)

Here, the difference of the terminal velocities, and the collection efficiency in
the integrand make the analytical integration of eq.8&2U8 and eq.E299 impossi-
ble. In the past, many researchers have made effort to express the integration
by approximation. Seifert and Beheng (2006a) achieved the integration by using
the approximation proposed by Wisner et al. (1972) with some improvements.
Hereafter, we only demonstrate the equations for the Oth moment N and the
1st moment L.

aLb ~ _7T— 3
W col,ab - Z abAUt’ab
< [ [ @) [Data) + Dify) ydzdy (8.300)
0 0
OL, o e )
ot = *EabAvt ab fa(x)fb(y) [Da(x)+Db(y)] ydxdy
col,ab 4 ’ 0 0
oLy
- -3 (8.301)
8Nb ~ T = ) >
W col,ab o 7ZEabAvt’ab/0
<[ 1@ o) [Dale) + Dofw)]*dady (8.302)
0
ON, -
ot col,ab =0 (8303)

where Eg;, is the mean collection efficiency, and Av_fab is a characteristic
velocity difference. Thus, the integrand are transformed so as to be integrated
analytically and the problems result in the evaluation of E,, and AvF _,. Some

cloud microphysics schemes evaluate Av_fab as the approximation proposed by
Wisner (1972),

Av;k,ab = |17M1; (Za) — Vpgp ()| (8.304)

The characteristic velocity difference is simply approximated by the differ-
ence between the mass weighted mean terminal velocity of the hydrometeors.
This is equivalent to the physical assumption that all the particles are falling
with the same terminal velocity equal to the mass weighted mean terminal ve-
locity. However, as pointed out by Seifert and Beheng (2006a), the formulation
underestimates the term for the similar mass weighted mean terminal veloci-
ties even though larger particles preferentially collect smaller particles due to
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their differences of the terminal velocities. Seifert and Beheng (2006a) applied
an alternate approximation in order to avoid the abovementioned problem as
follows,

I I vea(@) — v (y)2 D2DE fu(@) fo(y)y*dady 1 1/2
fooo fooo D?ngfa(a:)fb(y)y’fda:dy

The integrand can be integrated straightforwardly assuming the diameter
and the terminal velocity follow power laws as given in section 2.1. Here, we
apply the equivalent projected area diameter in contrast to the maximum di-
mension applied by Seifert and Beheng (2006a),

Avk = | (8.305)

D = Do(x)= (%A)”2 = apa®® (8.306)
4 baa:
ac = (;aaw)l/Q; bo = 7

Since the diameter is used in the calculation of collisional cross section,
maximum dimension overestimates collisional cross section for needle or column
like crystals. Firstly, the denominator in eq.B=303 is transformed as follows,

/ / D% Dy fo(@) f5(y)y" dudy
0 0

_ 2 2 M2bc’aMb2bC'b+k
a

ac,ac,
= D¢.o(@)DZ,(5)7"
) F(2bc,a,l;§:a+1) F(%C’thJFIVQJrl)
)
igygz_l;rbc,a FE{.};}%J’M s.307

Secondly, the numerator in eq.B311 is transformed as follows,
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2b k 2b, by btk 2b, 2b, p+k
+ Mb cbt _2av,aav,bM§bc’a+b“‘aMb c,b+by, b+ +a3,bMa2bc‘aMb c,b+2by b+ ]

= DZ,.(2)D¢,(5)y"
L (7)F(2bc,a+2l;:;a+va+l)F(Zbc,b+uka+va+1) F(W)rbc’"'Jrzbv’a{F(vﬂl
v a €T Vq Vg Vg T veF2Y)
" (%) L) r(=s) (252
T 2bc,a+bv,a+va+1) F(ch,b+bv,a+k+va+1)
= 201,4(T)ve(7) o e
r(420) (%)
y {F(Uagl)}%c,a-}—bvya[F(Ulzz)}%c,a-‘rbv,b-i-k
I(*at2) T (=)
. UQ (g)F(ch’a::)a—i_l) F(QbCYb+2b1LZ+k+va+1) F(U(L_l.l)}%ca
t,b Va Vg Va
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[
r(222)
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Finally, the characteristic velocity difference are derived by substituting
eq.B3301 and eq.B308 into BZ303,

Avk,, = [0002,(7) = 05va(@)oa(@) +0503,] 7 (3.309)
F(ch a+2bvuz+k+va+1) |:F(Ua+1)
F(ch,a+ulc‘l+vn+1) I‘(Ub+2)
F(ch,a,_"bv,a,“rva"rl) F(ch,b+bu,b+k+vb+1)
9517 = 2 F(ch,alf:%+1) F(2bc,b+l;:+vb+1)
Ha 1223
F(ﬁ“)}ba{l“(”il) bus
D(w£2)) lr(e=)

Ho

o0 =

[{2boasn (8310)

X

(8.311)

Here, it is noticed that the notation ab in 6%, is not symmetric because 6%,
is weighted by the mass of collected particle to the power of k. Integrations in
eq.B300 and eq.B3302 are similarly calculated as follows,
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CONNCY
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5y, = 2—— -t e e i (8.314)
' F() TR e )

Here, 55,) is also asymmetry in ab as 0§b' Finally, the growth rates of the
prognostic moments are represented as follows,

aLa ™ = _ B B B
9 leotar ZEabNaLbégDé,a(xa) + 64y Dc.a(Za) Do (@) + 64 DE 4 (Th)
X (0507 1 (Za) — O%y0t.0(Ta)vep(Tn) + 0507, (T0) + 00 + 03](€2315)
oLy OL,
ot = - 8.316
ot col,ab ot col,ab ( )
ON, T — 0 0 - B 0y
9 leotab ZE“bN”Nb(;“DC’ﬂ(%) + 6ap D0 (Ta) Do (Tn) + 6y Dy (T0)
X [92%2,@(56(1) - 9gbvt,a(§3a)vt,b(i'b) + 9811?7;)(5%) + 04+ 05]68‘/.2317)
ON,
Ot lecol,ab =0 (8318)

where o, and o} are constant variances due to the probabilities of the ter-
minal velocity of particles. Seifert and Beheng (2006a) proposed the concept to
mimic an introduction of the effect of turbulence to the collection kernel with
the use of the constant variances. The constant variances are only applied to
ice and snow with o; = 0, = 0.2ms™! while no variances are assumed for the
other particles.

The collection efficiencies of ice particles

The collection efficiencies of ice particles are poorly understood due to their
varieties and the lack of the systematic observations. In addition, the efficiencies
cannot be approximated by power laws. Therefore, Seifert and Beheng (2006a)
described them in a simple way. The collection efficiency E,; can be decomposed
into two part of efficiencies, the collision efficiency E.,; and the sticking efficiency
FEgtick- This means that two particles stochastically collide each other with
E.o;, and then they stick each other with Eg;.x. It is considered that the mean
possibility of collection Ey; is parameterized by the multiplying E.,; by Essick-

Eay = Eeot.ab X Estick,ab (8.319)
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The mean collision efficiencies of each gydrometeor are given as follows,

Eeotab = Eeota X Eeotkp (8.320)
07 (Dc < Dc,O)

Eeoe = { 5520 (Do < De < Dey) (8.321)
1, (D¢ < Dy)

Eeoly = 1 (8.322)

- B { 0, (Djs < 150nm)

ECOIJS Ecol,maz,j57 (DjS > 150nm), (]S = Ls,g) (8323)

~ with Deo = 15um, Dc1 = 40um, Ecoimaz,i = Eeol,maz,s = 0.8 , and
Ecol,maz,g = 1.0. Furthermore, the mean collision efficiency of one is assumed in
the collision between rain droplets and ice particles, and the collision between
ice particles. These values are so empirical that further investigations and as-
sessments are required.

The sticking efficiency is considered only in the case of the collision between
ice particles. Otherwise, the efficiency is assumed as one. It is known that the
stick efficiency depends on the enviromental condition around ice particles and
the shape of ice particle (Pruppacher and Klett, 1997). Ice crystals with many
branches are likely to stick each other. In addition, the ice particles under wet
conditions are also likely to coalescence because of the surface condition of ice
particles. Since these dependencies of the stick efficiency are poorly understood,
some simple formulations were proposed by past researchers. Lin et al. (1983)
proposed the following formulation,

_ { exp[0.09 x T.], (T, <0°C) (8.324)

Esticr(T) = 1, (T.> 0°C)

In contrast to their formulation, Cotton et al. (1986), proposed an alterna-
tive formulation based on observations (Hallgren and Hosler, 1960) as follows,

Eticr(T},) = min(100-035(T»=278:15)-0.7 () 9) (8.325)

where T}, is particle surface temperature. They also diagnosed the departure
of particle surface temperature from the enviroment due to phase change in
the calculation. In addition, their formulation has a upper limit to reduce the
efficiency as observations showed. In a similar way, Khain and Sednev (1996)
proposed a formulation based on other observations (Hosler et al., 1957; Rogers
et al., 1974). Their formulation also depends on vapor pressure as follows,

Estick = mln(CSEﬁl, 1) (8326)
SE = max(as + bsT. + ;T2 + dsT?,0) (8.327)

with as = 0.883, bs = 0.093, ¢5 = 0.00348, and ds = 4.5185 x 10~ °. In this
study, the formulation proposed by Lin et al. (1983) is applied following Seifert
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and Beheng (2006a). These efficiencies are shown in Fig.810 with the various
obeservation data from Pruppacher and Klett (1997). The further investigations
and assessments are necessary to determine which one is better than others
although there are less information for making a decision.

The collision case 2: a+b — ¢

The case is the same as the case 1 except for the growing particles.

0

% col,abs - / fb f“ ab(w y) (8328)
Ofa

% col,abs - / fa fb ab(17 y) Y (8329)

Similarly, the growth rates of the prognostic moments are derived as follows,

aL ’]T — —
- = —;Ealv]
ot col,ab b vt ab
X / / fa(@) fo(y)[Da(2) + Dy(y)]Pxdzdy  (8.330)
oLy
— = —fEa Avl
ot col,ab 4 b vt,ab
< [ 1@ h@IDu@ + D) Pydedy (8331)
0 0
ON, 8Nb T
at ‘Col7ab = COl ab_ - 4 abAvt ab
X / / fa(@) fo(y)[Da(z) + Dy(y)?dedy  (8.332)
ON, B
W}col,ab N (‘3t col,ab (8333)

Finally, the equations are transformed by using the approximations as fol-
lows,
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[00DZ: o (Za) + 04y D00 (Ta) Doy (Tn) + 6, D2 4 (T3)] - (8.334)
[Govt o(Ta) = aibvt,a(fa)vt,b(i’b) + Ogvib(i‘b) +0a+ Ub]1/2
_ZEabNbLa
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_ZEabNaNb
[00DZ: o(Za) + 0y Do.a(Za) Doy (Tn) + 6y DE o (T0)]  (8.336)
[QOUt o(Ta) — egbvt,a(ja)vmb(ib) + ngia(ib) +0a+ Ub]1/2
_ZEabNaNb
[00DZ: o(Za) + 0y Do (Ta) Dop(E) + 6y DE (7)) (8.337)

(0907 4 (Za) — Opave.6(Ta) Ve (T6) + 00074 (Ty) + 00 + 03]/

The collision case3: a+a — b

In the case, binary collision between particles in the same hydrometeor is con-
sidered. All the pairs in the collision turn into the other hydormeteor as follows,

Ofa(w
ll (l (l(l 8.338
8t rotan / fa(@) fa(y) Kaa(z, y)dy (8.338)
The growth rate of the prognostic moments is as follows,
oL, T
= **EaaNaLa
ot col,aa 4
X JgDé,a(ja) +5éaD%a(ia)
X 0007 o (Za) — 0207 4 (Ta) + 204 (8.339)
0N, T
“a. = **EaaNaNa
ot col,aa 4
X 260D2€a(ja) +52aD% a(fa)
X 20007 1 (Za) — 09,07 4 (Ta) + 204 (8.340)
0Ly, oL,
—_— = - 8.341
ot col,aa ot lecol ,aa ( )
ON, 19N,
—_— = 8.342
ot col,aa 2 ot col,aa ( )

The collision case 4: at+a — a

In the case, self aggregational growth is considered. In the aggregation, the
number concentration of the hydrometeor a decreases under the conservation of
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the mass concentration. The basic equation is the same as the case 3 except for
the absence of the other hydrometeor.

ON, 17 -
= *7*EaaNaNa
ot 24
X 252D%,a(ja) +5gaDé,a(fa)

/2

X

20007, (Za) + 02,02 (Za) + 204"

t,a

(8.343)

The secondary processes

There are several secondary processes associated with the mixed phase collec-
tion. Here, we briefly describe them following Seifert and Beheng (2006a).

Enhanced melting

We assume that the particle temperature is the same as the enviromental tem-
perature. However, the melting process allows the existence of ice particles
under the warmer condition than the melting point. In the riming process un-
der the condition, coalescence of a liquid droplet uniformizes the temperature of
colliding two particles. Subsequently, the temperature difference between a ice
particle and a liquid droplet are compensated by the latent heat relase of the
ice particle. In our model framework, since the category of wet ice particle is
not considered, the melting part of a riming particle is accounted as the produc-
tion of a liquid droplet. The melting rate by the riming process is formulated
following Rutledge and Hobbs (1984),

8Ljs o C1TC 8Lj5
ot eml_ Lf() Ot lcol

(T. > 0°C), (js=1,s,9) (8.344)

Here, the reduction rate of number conentration is treated similarly to the
melting process,

ON;j.| 1 0L,
Ot lemi o ffjs ot leol

(8.345)

Partial convesrion

According to Seifert and Beheng (2006a), a riming particle becomes a densely
rimed spherical particle as soon as the collected liquid droplet fills up the envelop
of the collecting ice particle. The produced densely rimed spherical particle is
categorized as graupel. Here, we consider that the volume difference between
a ice crystal or a spongy ice particle and its enveloping sphere is filled by the
collected liquid droplet. The critical liquid droplet mass Z¢rit,pcon is estimated
by the geometry of ice as follows,

B T~ Z; . .
Lcrit,pcon,js = A fill,jsPw (ED‘?S - pjs, (]8 =1, 5) (8346)
e
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where ay;y is the so-called filling coefficient, p. = 900kgm =3 is density of
ice. The filling coeflicient is the criterion to categorize a ice particle as graupel
by its dense. Tentatively, azyi;, ¢ = 0.68 and a4y, s = 0.01 are set by Seifert
and Beheng (2006a). This means that snow is categorized as almost unrimed
ice particles. The characteristic conversion time scale pcon is estimated by the
growth rate of mean particle mass by the riming process as follows,

jcrit,pcon,js
T, ¢ = —————— 8.347
pbcon,js 1 aLjs ( )
st ot

rime

Finally, the conversion rates of riming particles into graupel are derived by
using the characteristic time scale.

oL L; T oL ;
9Ly = (2 1) e (8.348)
at pcon Tpcon,js xcrit,pcon,js at rime
Tjs [ Pw T 5 1 } -1
— = o js— (=Djpi— —1 8.349
Lerit,pcon,js Fill.gs Pe (6 iPi Tjs ) ( )
The conversion rate of number concentration is as follows,
ON, 1 0L
g =3 (8.350)
ot pcon Tjs ot pcon

The conversion coefficient of riming particle Z/Z¢rit pconw 1S shown in Fig B,
In this formulation, small ice particles are likely to convert into graupel in rim-
ing because small ice particles have simple geometry and are almost sphere. In
order to suppress the conversion of small ice particles, partial conversion are
limited to ice particles with the mean diameter of more than 500 um.

Ice multiplication

It has been observed that the number concentration of ice particles can be
up to several orders of magnitude larger than ice nuclei in atmospheric cloud
(Pruppacher and Klett, 1997). Among the possible mechanisms to explain the
fact, the Hallet-Mossop mechanism has been received in many literatures and
widely applied in cloud microphysics schemes. The Hallet-Mossop mechanism
is based on the fact that ice splintering occurs when many liquid droplets are
collected by graupel. Cotton et al. (1986) applied the formulations based on
the observations by Hallet and Mossop (1974), and Mossop (1976). Hallet and
Mossop (1974) reported that approximately 350 ice splinters were produced for
every 1073¢g of rime accreted by a graupel at -5 degC. The parameterization is
formulated with the temperature correction f1 in the units of mks as follows,

ON; oL
: 350 x 10° T J%
ot spll,js x x fl( ) x ot rime,js

0, (T >< 270.16K)
£(T) = L=268.16 © (270.16K > T > 268.16K)
! - L=20816  (268.16K > T > 265.16K)
0, (265.16K > T)

» (s =1,5,9)(8.351)

(8.352)
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The splintering mass concentration is assumed as follows

oL _ ON.

=T
ot spll ! ot spll

(8.353)

On the other hand, Mossop (1976) reported that approximately one ice crys-
tal was produced per 250 drops larger than 12 um radius accreted onto a graupel
at -5 degC. Here, since it is difficult to calculate the number concentration of
riming cloud droplets larger than 12 pm (Nyime,), we assume simple relation-
ship following Cotton et al. (1986) as follows,

Nrime,c Nc (Vc+ 1

~ — = Q _—
Nrime,c Nc e

,T12) (8.354)

where Q is the complement of the incomplete gamma function, and i
is the droplet mass with the radius of 12um. With the above relation, the
parameterization is formulated with the same temperature correction function
in the units of mks as follows,

N, OL;,
L. ot

JN; 1
ot spl2,js_%Xf1XQx(

), (s=1i,s,9) (8.355)
rime,js
In contrast to Cotton et al. (1986), we evaluate the incomplete gamma
function with an accurate approximation by Press et al. (2007). The splintering
rates of mass concentration is assumed as follows,

oL ON.

=X
ot spl2 ! ot spl2

(8.356)

Here, it should be noticed that we may double count the ice multiplication
process due to the Hallet-Mossop mechanism by using the two formulations.
Those two formulations may be two independent processes or the interpretations
of the same process in different two development stages. Since the process is
poorly understood by the lack of observation, the assessment of the process by
a set of sensitivity studies is necessary in the future.

Appendix of Seiki and Nakajima (2014)
The k-th moment of generalized Gamma distribution

The kth moment of the DSD frequently appear in the equations of cloud mi-
crophysics. In this section, derivation of the kth moment of the generalized
Gamma distribution is described. The generalized Gamma distribution is de-
fined as f(x) = aazvexp(—Azpu). There are four parameters in this generalized
Gamma distribution but only two prognostic moments in a CRM; the number
concentration N and mass concentration L. Hence p and v are set constant pa-
rameters so that the other coefficients oz and A can be related to N and L as
follows.
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Figure 8.5: Left figure shows the modified Gamma distribution for various shape
parameters m. Center figure shows the scatter plot of shape parameter and mean
volume diameter for various initial conditions. Gray dots are from cloud model,
dotted line is parameterization of Milbrandt and Yau (2005) and dashed-dotted
line is that of Seifert (2008). Right figure shows the scatter plot of evaporation
parameter and shape parameter. These are from Seifert (2008).

Te+08 T T T — T T T T —
€ “Ocean 100%  +
~Ocean 80%  x |
6e+08 NE:Oan B0% % o e e 3
:Ocean
Be+lf b N;Ocean 0% : R
B Y S OO = SO S . i !'E'EEJ:
E E
£ 30408 | e L i | i - ilu
1] E
26408 . 5311 i G X i —r
i w oW WX LI X n o n N
1e+08 " e S R :
1 " o kot + L] LI L o E|
[/l + + + + . . E
om 01 1
Wmis]

Figure 8.6: Dependency of maximum number concentration on updraft velocity
in ascending air parcel. These are based on a Twomey equation with various
CCN conditions. Aerosol activation spectrum refers to eq.8B2a4.
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Figure 8.7: Timescale of condensation for cloud droplets at maximum num-
ber concentration in ascending air parcel. Experimental design is the same as
Fig B3.
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Figure 8.8: The dependencies of the homogeneous freezing rate (dashed line)
and the heterogeneous freezing rate (solid line) on centigrade temperature. The
freezing rates are in common logarithmic scale.
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Figure 8.9: The universal functions of (a) auto-conversion and (b) accretion as
a function of the dimensionless internal time scale.
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Figure 8.10: The dependency of stick efficiencies on centigrade temperature.
The stick efficiencies by (a) the various observations from Pruppacher and Klett
(1997) and (b) model parameterizations.
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Figure 8.11: The coefficients of partial conversion. Solid line shows the coeffi-
cient of ice, and the line with symbol shows the coefficient of snow.
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M°=N = a/ x¥exp(Azt)dx
0
o o0
.« (v+1)/p—1 B o
= /\(V'H)/“,U/o Y exp(—y)dy, (y = Aa")
e} v+1
= NG ( ” ) (8.357)
1 - «Q v+1
M =L = A(V+2)/,U.‘u/ ( i )
Then « is expressed as,
oo NpAr+D/w _ Lu\+2)/p
L) L)
and then we can derivev A\ and «,
F(V+1> i uN
— Iz 7 — (v+1)/
A_[F(Vig)} x“anda_r(il)A z (8.358)
w m

where & = L/N define the mean particle mass. Here we can rewrite the
generalized Gamma distribution by using N and L in following form,

e u T
el

Fa) = % )r+1

)

The kth moment of DSD is now given by the expansion of eq.B357 and by
using eq.B2308,

D((v+2)/p) zqu
exp[—[m ] } (8.359)

vi2
I

v+l
I

MF =

r k+1/+1) F(V;rl
|

ﬁ(vi F(VMH;Fkav (k€ R) (8.360)

~—

8.3.3 Spectral Bin Model(SBM)Suzuki ef_all (2010)

The Spectral Bin Model (SBM) was developed by Suzuki et al. (2010)Suzuki
ef"all (P010). The model forecasts Size Distribution Function(SDF) of 7 types
hydrometeors (liquid, plate-ice, columner-ice, dendrite-ice, snow, graupel, and
hail).

The SBM calculates mass density of the 7 types of hydrometeor and 1 type of
aerosol as their SDFs. The SDF of aerosol can be changed by advection and
acvitvaiton (i.e. nucleation from aerosol to cloud) process. The SDF of hydrom-
eteors can be changed by several growth processes (i.e. activation from aerosol
to cloud, condensation/evaporation, collision/coaguration, freezing/melting, ice
nucleation, riming, aggregation, advection, and gravitational falling).

The time evolution of SDF (number density) of aerosol (f,(m,t)) and SDF
(number density) of hydrometeor (f.(m,t)) are shown as equations:
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DfH (m, 1) afé”(m,t)]

(w) (w)
ot Adv [fc (m7 t):l + Grav [fc (m7 t)] + |: ot cloud mlcr(gghgglz
Ofa(ma,t) _ Ofa(ma,t)
ot = Adv [fa (ma7 t)] + Grav [fa (m(h t)] + [ ot :| cloud mz('roph(y89§'§2)

where p shows type of hydrometeor (the 7 types), Adv[], Grav]]) shows
change of SDF by the advection and the gravitational falling.

cloud microphycis
shows changes of SDF by the cloud microphysical processes.

The time evolution of f{* (m,t) and f,(m,t) are shown as:

af (m, 1)

af&" (m,
[ ot Lloud microphysics - { ot :|activation + [ 8(tm t):|cond/evap
(9 éu) ;
+ [ : 8(tm t):|coll/coag/rim/agg
(k) (1)
+ [afc a(tm t)} gre T [WC a(lfm,t)}melt
Ofa(ma,t) _ Ofa(ma,t)

{ ot } cloud microphysics { ot } activation

where [ ] show change of SDF by each cloud growth processes. The detail

of these procnges will be shown later.

The change of SDF's by advection and gravitational falling (i.e. first and second
term of eq. B3, and B3672 ) are calculated by dynamical core of SCALE-RM
shown in section 3.

Discretization of Size Distribution Function(SDF)

The SDF of aerosol and cloud is predict as mass density of each particle size

(ga(ma), g£“ ) (m)). However most of equations are given as equations of number

density of cloud/aerosol ( () (m,t), fa(ma,t)), the mass density of cloud/aerosol

are transferred to number density of cloud/aerosol (gq(ma,t) = Mmaga(ma,t),
g% (m, ) = m® £ (m, 1)).

To cover wide size range (i.e. 2 um ~ 3 mm), logarithmically uniform grid
system (log(m) = n, log(m,) = n,) is used. In this system, the relationship,
L — const. is satisfied.

mg -

Activation from aerosol to cloud particles (Nucleation process)

The change of SDF's by activation from aerosol to cloud particles are calculated
based on Kohler theory (Kohler 1936). Through this process, aerosols whose
radii are larger than critical radius of aerosol (rq.crit) are activated to clouds.
The critical radius is given as

4 AP 113 2 M, ps
4 )" a4 7 =i, =2l (8.363)

, B=1i, .
R,prT M pr,



where Sy, o, Ry, pr, T, iy, M,, My, ps show supersaturation of water,
surface tention of water, gas constant of vapor, temperature, van’t Hoff factor
(= 2), moleculer weight of water, moleculer weight of aerosol, and density of
aerosol, respectively.
At each time step, rqcr¢ are calculated by using temperature, and mass of
aerosols whose radii are larger than rg .-;; remove from SDF of aerosol and they
are transferred to SDF of cloud as newly generated cloud particles.
The radii of newly generated clouds are corresponding to those of aerosols, but
if the radii of aeorol are smaller than the lower limit of cloud SDF, the radii of
newly generated clouds are set to smallest size of cloud SDF (~ 2um).
The change of aerosol’s SDF and hydrometeor’s SDF are shown as:

[aéffa ] activation /n:”n fa(ma; t)dma (8.364)
()
[6?)6: ] activation N {aa{fa } activarion (8-365)

where Mg, crit = (: %’rrgpa is mass of aerosol particles whose radii are the

same as critical radii, 7 crs¢. When there are not enough vapor to activate all
aerosol particles whose radii are larger than the critical radius, i.e.

j/ Mg fa(Ma,t)dma > qup, (8.366)

Ma,crit

only the aerosol particles whose radii are larger than rqg, ¢ri¢, which are given
as:

(o]
/ Ma fa(Ma, t)dma = qup, (8.367)

Ma0,crit

are transferred to cloud paricles as:

[8('3];&} activation /mojo,cm fa(ma;t)dma, (8.368)
(1)
[6?;: j|acti’uation - [a(;:fa]acmmion' (8.369)

where ¢, and p is mixing ratio of water vapor and density.

Condensation/Evaporation

Calculation of condensation and evaporation process are based on a equation.
The mass change by these two process are given by an equation (e.g. Rogers
and Yau, 1989Rogers and Yau ([[9%9)):
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o = CW (m)GW(T)SW (8.370)
Gu(T) (u: liquid)
(») -
¢ = {G,m (' ice)
47
Gu(T) = R,T Lu (L.
-+ (1)
4
Gi(T) = —— +g(#_1)
e(T)D, © KT\R,T
g — Sw  (p = liquid)
Si (w:ice)

where C’(“)(m) is capasitance, which depends on shape of each types of hy-
drometeor, S,,, S; are super saturation of water and ice, L, L; is sensible heat
of evaporation, sublimation, D, is diffusion constant of vapor, K is conductivity
of air, and e,,, e; is saturation vapor pressure and saturation ice pressure, re-
spectively. Condensation (evaporation) occur when S is positive (negative).

To calculate change of SDF by condensation/evaporation, mass flux (Fc((’f 72 J /emp)

on each bin is given by using number density ( fé“ )) and %—T as:

Ja — (m)% = fW (M)W G (T)sW. (8.371)

cond/evap ~

Using this equation, time evolution of SDF (f(") is given as

9w
- %Fcond/evap (m)

Af 1) (m,
[%} cond/evap

_%(f(u)(m)c(u))G(u)(T)S(”), (8.372)

By using the n(= log(m)), the eq.B372 is transferred to advection equation

(1)

WT(W) - ai (£ () U™ () (8.373)
Wi — €0 g

v () O DI

To solve the eq. B373, a scheme developed by Bott (1989)Boti (I9RY) is
used. The number density of i-th bin after At (f;(t + At)) is given as follow:
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At
fi(t + At) = fl(t) - In [Fcond/evap,i+1/2 - Fcond/e1)ap,i—1/2:| .
An lz+1/2 lz+1/2
Fcon evap,i = |: 7 o Ju :|
d/evap,i+1/2 AL fi(t) — it figa(t)
i?,_i+1/2 = max((),]l ( i+1/2))
i;i+1/2 = mam(O,Il*(ci_H/Q))
th = max(Il,i’ixz‘Hm + ilii+1/2>)
2
+ _ Qi k k+1
I (Ciz12) = Zm[l— (1 —2¢)"]
k=0
2
- Ai+1,k —
I (Ciyr12) = Z 7% +J1r)2k+1 (—1)k [1 —(1- 2¢; )k+1]
k=0
1
aio = =5 (fir(t) = 26fi(t) + fia (1))

a1 = %(.fi-'rl(t) — fisa(t))
aio = %(fi—i—l(t) —2fi(t) + fi-1(t))

= :t(c?+1/2 + ‘0?4-1/2')/2
At
G = U (8.374)

Since the super saturation (S*)) can change during time step (At), we apply
a method shown below to reflect the change of supersaturation during At.
Time evolution of supersaturation can be given by equations:

d Sw o Qc/e bc/e Sw B Sy
dt<Si ) - <cc/e dc/e><si >A(5i ) (8.375)

ce = et (ot ) [ 1 mC myimGa )
bpe = (5“1)(;,*36;2%) MGZ / ) (m) O (m)dm (1)
e = ~SA D (ot ) [ 1 mC myimG
die = ~S40(y ) 3 [ 12meC minGi)

where ¢, is mixing ration of vapor.
Using eigen value of A (A4, A_ (Ay > A_)), and assuming a.e, bejes Cejes deje
is constant during At, average value of super saturation (S, ;(t)) during At is
given as:
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t+At €A+At_ eA_At_
S (t) = é /t Su(r)dr = bTAtl&(t) + bﬁuls_(t)
- 1 At eA+AL PAoat g
Si(t) = E/t Sindr = (As = @) =S () + (A — )5
(A= @)Su(t) —bSi)
Si(t) = T
5.0 (a— IZ?A)?M _(t)A I)bSZ-(t)

The averaged super saturation (S, ;(t)) is used to solve the eq. EZ373.

Collision/Coagulation/Riming/Aggregation

Collision/Coagulation process are calculated by solving Stochastic Collision
Equation (e.g. Pruppecher and Klett, 1997)Pruppacher and Kletd (1T997):

9f(m)
ot

m/2
= / F(m")f(m —mYK(m',m —m/)dm’

0
— f(m) /0 F") K (my "y (8.376)

where K (m,m’) is collection kernel function. Three types of the kernel
function, i.e. Long type kernel (Long, 1974Long (1974)), Golovin type kernel
(Golovin, 1963Galovir (T963)) and Hydro-dynamic dynamic kernel as shown eq.
BX77 are implemented into the SCALE-RM.

K(m,m") = 7w(r(m) —r(m') |[V(m) — V(m)| Ecor(m,m") Ecoaq(m, m')(8.377)

where r(m) is radius of hydrometeros whose mass is m, and V' (m) is terminal
velocity of hydrometeors. The terminal velocity of each species of hydrometeor
and each size are shown in Figure B2 F.,;, and Eyqq is collision effieiency and
coagulation efficiansy, respectively.

Although the stochastic collision equation can be apply for collision/coagulation

of one type of hydrometeros (i.e. liquid water), the SCALE-RM predicts 7
types of hydrometeors, and interactions of these types hydrometeors (i.e. rim-
ing/aggregation) must be calculated. To calculate the interaction of all 7 types
of hydrometeors, the extented stochastic collision equation:

{81‘ W (m)

ot :| coll/coag/rim/agg
m/2
S
A v Y0
) e
my [

m') f) (m —m') Ky, (m',m —m')dm/

—~

—~

m") K, (m,m”)dm” (8.378)
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Figure 8.12: Terminal velocity of Water (Plus), Plate-type ice (Cross),
Columnar-type ice (Asterisk), Dendrite-type ice(Open square), Snow(Closed
square), Graupel(Open circle), and Hail(Closed circle)

is applied (where p, v, A, K represent species of hydrometeor). The convina-
tions of u, v, A are shown in table E@.

Table 8.6: Catalog of interaction between 7 species. W, I, S, G, H shows water,
ice, snow, graupel, and hail, respectively. G/H shows graupel(hail) generates
when T is lower(higher) than 270.15
W I S G H

W W G/H G/H G/H G/H

I 1 S S I I

S S S S S S

G G/H G/H G G G/H

H G/H G/H G/H G/H H

To solve the stochastic collision equation, a scheme developed by Bott (1998)Botf
(T99R) was implemented into SCLAE-RM.
The Bott (1998)Botf (I99R) scheme calculate evolution of mass density distri-
bution (g(n) = mf(n), n = log(m)). The stochastic collision equation can be
transferred to
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m m2 ’ /A / /
99\ _ CEra g —n")K(n—n'.n")g(n")dn
1o

(m m)m

- / o) oy (8.379)

S

where 1, = log(m/2). Decreases of mass of i-th bin and j-th bin are given
by

(v)
09(“) (1) .95
L = _Ag"K,, LA .
b = A K 0) (5.350)
and
69(/4) ) gl(,u)
5 —Ag; " Ky (i, ]) An (8.381)

respectively. The terms corresponds to the second term of right-hand side
of eq.BZ379. The eq. EZ380 and eq. can transfer to

2
Ag#) = g [1 = exp(~ K i,1) - AnAt)| (8:382)
J

W _ W) g
Agl = g1 = exp(— Ko (i.5) 2

)] (8.383)

The sum of Agl(“) and Ag§y) corresponds to newley generated mass by col-
lision of hydrometeor whose mass is m; and m;. The newly generated mass
(¢ = Ag§“ ) 4+ Agj(»y), which is coresponding to first term of right-hand side of
eq.B37) added k-th bin (my = m; + m;). Since my, is not always bin center,
newly generated mass is devided to k-th and k+1-th bin as follow.

The production of k-th and k+1-th bin is represened:

A
AgN = g g —¢ (8.384)
Mgy = g +C (8.385)
gl ak,s k+1
= 1—(1-2¢c
¢ 9V g Z(s+1)2k+1[ ( k)
m — Mg
c, = ————
Mmrg41 — Mg
A A A
ako = 24(9231 — 269 +g)
1, o A
ag1 = 2(9]24.)1 g](g—)l)
1, o A A
w2 =~ — 20 + )
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These procedure is applied for all bin of all types of hydrometeors.
In addition, to calculate this process fastly, a scheme of Sato et al. (2009)Satd
ef-all (2009) are also implemented into SCALE-RM.

Freezing

The calculation of freezing process is based on a parameterization of Bigg
(1953)Bigg (T953). The parameterization is calculated number density of water

( féw)), wehich can be freezed:

9 (w) _ f™(m)
&f (m) = -~ (8.386)
. &P [br(To — T)]
fro = afrm

where ay, = 1074571, and bpr = 0.66°C~! are emperical parameters, and
Ty is 273.15 K.
The eq. can transfer to

dg(w)(m) g (m)
ot 1p(m) (8.387)
exp (bfr(To — T))
Tfri —
afrim

From this equation, The mass change of i-th bin during At is given as

o) (¢ + At) = g — Fre, (8.388)

ggplate)(t_FAt) _ gz(plate) + Frz; (re < 200pm)
gghazl)(t LA = gzghml) + Frz; (ry > 200um)

At

Tfri

(8.389)

)]

As shown in eq. B389, the mass of liuid is transfer from to plate type ice
(rv < 200pm) or hail (r,, > 200um).

%

Frz; = g(w)(t) {1 — exp(—

Melting

The calculation of melting process is too simple way, that is, all ice particles
(i.e. plate, columner, dendrite, snow, graupel and hail) melt immediately when
the temperature is larger than Ty = 273.15 K. This is too simply to represent
ice phase process, and we will modify this method near future.

8.4 Radiation

1TBD
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8.5 Surface flux

Corresponding author : Seiya Nishizawa

8.5.1 Monin-Obukhov similarity

The first of the all, we assume that in the boundary layer 1. fluxes are constant,
and 2. variables are horizontally uniform.
Relations between flux and vertical gradient are

%% —on(3), (8.390)
’Z{% = (%), (8.391)
%% =6, (3). (8.392)

where k is the Von Karman constant. L is the Monin-Obukhov scale height,
which is )
Ou
=— 8.393
g (8.393)
where ¢ is the gravity. The scaling velocity, u., temperature, 6,, and water
vapor, g, are defined from the vertical eddy fluxes of momentum, sensible heat
and water vapor:

ww = —Us Uy, (8.394)
Wl = —u,b,, (8.395)
W'q = —UsGx. (8.396)

The integration between the roughness length zg to the height z of the lowest
model level, eqs. (BZ390) and (BZ39) become

u(z) = % {In(2/20) — ®p(2/L) + B (20/L)} , (8.397)
Af = R%* {In(2/20) — ®p(2/L) + ®p(20/L)}, (8.398)

where A8 = 6 — 6y, and

B, (2) = / ’ %ﬁn('z/)dz’, (8.399)
Pp(z) = / ’ %Z’j(z/)dzﬁ (8.400)

8.5.2 Louis (1979) Model

Louis (1979) introduced a parametric model of vertical eddy fluxes.
The L becomes

_ Ou? In(z/29) — ®n(z/L) + ®p(20/L) .
9A0 {In(z/zp) — ®p(2/L) + B (2/L)}

(8.401)
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The bulk Richardson number for the layer Rip is

_ gzA0

Rip = =, =, (8.402)

and its form implies relationship with the Monin-Obukhov scale height L. Then
the fluxes could be written as

w2 = a2u®F,, (ZZ RiB) , (8.403)
0

wb. — Cunor, (2 Ri (8.404)
b = —u —, Rip |, .
R h 20 B

where R is ratio of the drag coefficients for momentum and heat in the neutral
limit, (the turbulent Prandtl number), and

k2
A= — (8.405)
{In(2/20)}
is the drag coefficient in neutral conditions.
For the unstable condition (Rip < 0), F;s (i = m, h) could be
bRi
Fi=1-—>2"8 (8.406)

’ _1—|—C“/|RZ’B‘7

under the consideration that F; must behave as 1/u (i.e. /|Rig|) in the free
convection limit (u — 0), and becomes 1 in neutral conditions (Rip — 0).
In the stable conditions (Rip), on the other hand, Louis (1979) adopted the

following form for Fj:

1
Fi=— . 8.407
" (1+ b Rig)? ( )

The constants are estimated as R = 0.74 by Businger et al. (1971), and
b=2b = 9.4 by Louis (1979). By the dimensional analysis,

¢ = Cra®h, | =, (8.408)
20

and C}, = 7.4,C; = 5.3, which result best fit curves.

8.5.3 Uno et al. (1995) Model

Uno et al. (1995) extended the Louis Model, which considers difference of the
roughness length between for momentum, zy, and temperature, z;.
The potential temperature difference between z = z and z = z;, Ay, is

A0, = R {inzn/ ) — @0/ L) + B/ L)} + Ady,

0.
= Rzln(zo/zt) + Adby,

— A, {mn(;}‘j/zt) + 1} , (8.409)
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where Ay =0, — 0,,(= Af),

Uy, = / qZ)—?dz’, (8.410)
20 z
and ¢y, is assumed to be R in the range z; < z < zg. Thus
RI1 -
Aby = Ab, {n(zo/zt) + 1} , (8.411)
Uy,
or equivalently,
Rl !
Rigo = Rip: {Ilf;()/zt) + 1} . (8.412)
h

From the egs. (B203) and (E204),

RO, z F,,
Afy = In(— A1
o= T (2) (3.13)
while 9
Afy = f\l/h, (8.414)
from eqs. (B39) and (B210). Therefore
U, = Rln <Z> VEn (8.415)
Z0 Fh

Because ¥, depends on Ripgg, Rigg cannot be calculated from Ripg; with eq.
(BZT2) directly, so numerical iteration is required to obtain Rigg ®. Starting
from Rip; as the first estimation of Ripg, the second estimate by the Newton-
Raphson iteration becomes

RipiRIn(20/2)
In(zo/2:) + ¥y,
where \ifh is the estimate of ¥}, using Ripg; instead of Ripg. Approximate values
for F,,, F}, and ¥, are re-calculated based on the Rigg, and then Afy, and the
surface fluxes u2 and u,0, are calculated from eqs. (EZ11), (R403), and (8204),

respectively.

R

Ripo = Ripy — (8.416)

8.5.4 Roughness length

Miller et al. (1992) provides the roughness length over the tropical ocean, based
on the numerical calculations by combining the smooth surface values with the
Charnock relation for the aerodynamic roughness length and the constant values
for heat and moisture in accordance with Smith (1988,1989) suggestions:

29 = 0.11u/v, + 0.018u? /g, (8.417)
2 = 0.40u/v, + 1.4 x 1075, (8.418)
2y = 0.62u /v, + 1.3 x 1074, (8.419)

where v, is the kinematic viscosity of air (~ 1.5 x 107°), and zo, 2, and z, are
the roughness length for the momentum, heat, and vapor, respectively.

3In the stable case, it can be solved analytically with eq. (BZ03), but the solution is too
complicated.
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8.5.5 Discretization

All the fluxes are calculated based on the velocity at the first full-level (k=1)
(z = Az/2). The absolute velocities U are

2 2
B { 2(pw)iy1 41 } N { (Pv)ij—1a+ (PV)ijria + (PV)ip1 10+ (P’U)i+1,j+;,1}

a0l 2(pi g1+ piv141)

Pig,1 t+ Pit141

2
(Pw)i ot + (PW)it1 141
+ i VIS 3 (8.420)
2(pij1 + pit11)
2
Ut (pu)i—1 ja+ (pu)igs s+ (Pu)ios ji1a+ (PWigs j110
Lital 2(pij1 + pij+11)

2 2
2(pv i.i4+L W); j 1+ W)si,j 3
+ {(p)ﬁzl} + { GITAES GO } ; (8.421)

Pija + Pij+1,1 2(pija + pi+1,1)

2 2 2
U { (pu)i—%,j,l + (pu)i-i-%,j,l } N { (pv)i,j—%,l + (pv)i,j+%,1 } n {(Pw)i,j,H; }
%,J,1 = 5

2pi,j,1 2pi,j,1 2/71‘,]',1
(8.422)
here it is note that (pw)m-)% = 0. The potential temperatures ¢ are
0)i;
0,1 = P (8.423)
Pi,j,1
o 0i i1+ 0ix151
Oipyjn = =" (8.424)
5 ij1+ 0411
Oijrin= T S 2 . (8.425)

The roughness lengthes, zg, z:, and z, are caluclated from the eqs. (8217),
(BZ1R), and (B4TY), in which the friction verociy w, is estimated as

e = /CrolU, (8.426)

where C,,o is a constant bulk coefficient, and we use 1.0 x 1072 as its value.
From eq. (B412) The Ript, which is the first guess of the Ripg, is

. 21 91 - 93 c
Rip; = %, (8.427)
with the assumption that 0., = 0,¢.. The estimation of the \i/h is calculated
with Rip; from the eqs. (8213), (820H), and (B204). The final estimation of
Ripo is obtained from the eq. (B218), and the final estimation of ¥, is obtaind
with the RiBQ.
Now we can calculate the bulk coefficients, C,,, C}, and C, for the moments,
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heat, and vapor:

k2 .
_ k2 ) Rln(zo/zt) !
Ch = th(RZBO) {‘I’h + 1} ) (8-429)
C. = Rln(zl/ZO)Fh(R B0) { T, + 1} . (8.430)

The fluxes are

pu'w’ = —CpUpu, (8.431)
pv'w’ = =Cy,Upv, (8.432)
pw'vw’ = —CpUpw, (8.433)
0w = —ChU{pb — psse}, (8.434)
pgw’ = —CUp(q — Gevap); (8.435)

where @eyqp is the saturation value at surface.

8.6 Aerosol

Corresponding author : Mizuo Kajino

8.7 Large scale sinking

Corresponding author : Seiya Nishizawa

In the DYCOMSO01 experiment, the large scale sinking is added to express
large scale downward motion corresponding to the Haddley circulation. The
motion converges virtually and results mass escape to out of the system.

The density loss rate is constant L:

6‘pr

L=—
0z’

(8.436)

where w; is vertical velocity corresponding to the large scale sinking. Then
vertical momentum with the sinking is

pwyp, = —Lz. (8.437)
Continuous equation is now

dp Opu  Ipv  Ip(w+wpr)
— — _L. .4
0z + Ox * oy * 0z (8.438)

Lagrangian conservation equation for scalar quantities are

o o Ao o9
P + P + pv a9y + p(w + wr,) 5y = 0, (8.439)
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and becomes with eq. (EZ38)

Opp  Opup  Ipvg n Ip(w + wr )¢

= —Lo. 44
ot ox oy 0z ¢ (8.440)
The equations for mixing ratio is
9pQ | 9pQu | 9pQu  9pQwtwi) _ o (8.441)

ot or oy 0z

Note that this is identical to that of scalar quantities.

The wy, at the top boundary is not zero while w is zero. The vertical flux
pwr¢ at the top layer interface could be determined as that convergence of the
flux is canceled with L¢.
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Appendix A

The detal numerics

A.1 4th order central differnce

The 4th order central difference is given by
09 _ —dit2 +8¢it1 —8pi_1 + Pito

= =0
ox 12Ax
where

O 5 a%) 4NAx3 (a%) 2Az4 (a%
ite = ¢ + 20z | — 2A — — —
itz = it x(ax)i—i_ v <8w2 * 3 Ox3 + 3

dé Ax? (029 Azx3 a3¢> Azt (03¢
i1 =6+ A = (=) +==
Pit1 = i+ x(@x)i+ 2 (8902) 6 Ox3 24 <8x4

bi = ¢;

S ¢ Az? [ 02%¢
$i-1=¢i— A (ax) +T(@) ot

24

O 5 a%) (8%) 2Az4 (a%
ito = ¢y — 20x | — 2A — — —
itz =0 x<81’>i+ * (8 2 3 ox3 * 3 8zr* /),
Therefore,
—@it2 + 8pit1 — 8Pi—1 + Pit2 o¢ 4
= (== A
12Ax ox /; +0(a)

(A1)

o) +olY)

—) + O(AZ%A.3)

(A.4)

(
AT (g:f) S <@>1 +O(aaAS)
AA L3

) +0(0nB)

(A7)

(=0it2 + Thit1 + T¢i = ¢i1) = (=bit1 + Thi + Thi—1 — $i—2) _ (3¢> E O(44%)

12Ax ox
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A.2 Flux Corrected Transport scheme

Equation (B-IOH) can be written as

1
n+1 _
(Pa)i 5 1 (PD)7 ;1 ~ AuAphz [
[ hﬁgh low ]
+ _CH-%,],I@ i+L.5k (1 1+27], ) Fz+%,j,k
_ [ hlgh low ]
Cl*wk 175,Jk+(1 = %M> LIS
[ hzgh low
+ _C hity e i+ 5,k (1 < hity k) Fi7j+§’k_
_ [ hzgh low ]
Cii-4 -3, kT (1 G, %k> Fiisik
[ hz h low
+ _C ikt 5, k+% + (1 Cis, k+%> By
_ [ high low
(G4 i %+(1 i %)Fi,j,k—%}
] (A.9)
where
high,low _ high,low
idok Ai&AyAz(pu)ZJr k1 Lk (A.10)
high,low _ high,low
ig+ik T AtAzAD(pu); iy 1 ik (A.11)
high,low _ high, low
Fz‘,j,k+% = AtAzAy(pu), RREBL Aclint 1 (A.12)
The anti-diffusive flux are defined as
_ hzgh _ low
Agar = FOYL T (a13)
_ high low
Aivjﬁ'%,k - i,j+%,k Fz ]Jr (A'14)
high low
Ai,j,kJr% = Yigk+l id k4L (A.15)
Equation (E) can be rewritten as
1
n+1 _ n _
(pa)7 1 (Pa)7 ;i AeAyAs [
low
+ _Fz+2,j kT Citl ik Ai+%,j,k_
low
R L R R R I S
low
* F it bk T Cigrd et
_ low
F,J** FCoi-taig-1.n)
low
* F,J,k+1+owk+1A,Jk+ }
_ low
Fir—3 T Ci,j,k,%Ai,j,k,%}
] (A.16)

In practice, we calculate Eq.(BETT8H) by the following steps:

1. The tentative values are calculated by using the low order flux:

()}, (PD)? 5 1

_ Flow + Flow

1 low low low lo
AzAyAz [+Fi+%,j, 1—7,J,k ,J+ F»J—*ak + Fi,j,k+1 ij(f’é_l]
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2. Allowable maximum and minimum values are calculated:

(p);

(p);

max

4,k

min
.4,k

max|

max((pq)! igko (PO k)
max( pq)z 1,5,k (pq)i— 1,9, k)
ax PQ)Z+1,],k » (pa z+1,J,k)
max
4,j+1, k)

max((pq)! b1 (PO k—1)5

(
(

(« )

(0] 11 (0751 )
max((pg)] ;.1 1.+ (PO}

(« )i

(« );

max pQ), k1 (pq 7JJﬁLl)

min]
min((pq )” ko (POL 1)
min((pg)]_; ;. (P07 1 ;1)
min((pa)] 41 ;5 (PO 1 54
min((pa)] ;1 4> (PO} 1.k)s
min((pq )”+1 ko (PO j411)5
min((pa)! ;1 _1 > (PO 5 5 1)»
( )

min((pg)] b1 (PO kg

]

3. Several values for the flux limiter are calculated:

+
Bk

Pk

Ri,j,k

— min(0, A.
—min(0, A
—min(0, A
—max(0,4,
—max(0, A, g+l ) +min

—max(0, A”k_‘_1)+min

{
{

min(1, Q:rjk/Pfjk)

0

min(1, Qi_’jyk/Pi,_j,k)

0

zj+ k

”k+1)+max

[(pq)'fl;"‘," ()}, k] AzAyAz
()] = ()i | Ay
+
if PJr >
if P k=
if P_ k>

lfPT]k
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=0

0
0

(A.18)

(A.19)

(A.20)

(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)



Cz‘+§,j,k

C,

5+ 5.k

Cz‘,j,lwé

min(R;

min(R;

4. The flux limters at the cell wall are calculated:
. + —
mln(RiJrlyjyk, Ri,j,k)

min(R;ijk, R

1,5,

min(R; -

itk Bijk)

ik Bijk)

ka1 B k)

min(R; -

ik Bij k)
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if Ai+%,jyk 20
if Ai—o—%,j,k <0
A e 20
if Ai,j+%,k <0
A s 20
if Ai,j,k-»—% <0

(A.27)

(A.28)

(A.29)



Appendix B

Notation
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Table B.1: Notation of symbols

P) total density kg/m?

qd mass concentration of dry air —

Qv mass concentration of water vapor —

q mass concentration of liquid water —

s mass concentration of solid water —

t time s

u velocity of air flow m/s

wy relative velocity of liquid water to the gas m/s

Wy relative velocity of solid water to the gas m/s
DIFF [z] Diffusion term by turbulene kg/m?[x] /s
Sy source term of water vapor kg/m3/s
S source term of liquid water kg/m3/s
Ss source term of solid water kg/m3/s
D pressure N/m?

g gravitational acceraration 9.8 m/s?
fi drag force due to water loading by liquid water kg/m? /s
fs drag force due to water loading by solid water kg/m?/s*
e, vertical unit vector ( upward ) -

Ry gas constant for dry air for uint mass J/kg

R, gas constant for water vapor for uint mass J/kg

T temperature K

Qq diabatic heating due to physical processes for dry air J/m?3/s
Q. diabatic heating due to physical processes for water vapor J/m?3/s
Q diabatic heating due to physical processes for liquid water .J/m?/s
Qs diabatic heating due to physical processes for solid water ~ J/m?/s
ed internal energy for dry air J/kg

€y internal energy for water vapor J/kg

el internal energy for liquid water J/kg

€s internal energy for solid water J/kg

e total internal energy J/kg

Cod specific heat at constant volume for dry air J/kg/K
Cow specific heat at constant volume for water vapor J/kg/K
Cpd specific heat at constant pressure for dry air J/kg/K
Cpuv specific heat at constant pressure for water vapor J/kg/K
a specific heat for liquid water J/kg/K
Cs specific heat for solid water J/kg/K
P00 standard pressure 1000.0 Pa
04 potential temperature for dry air K

0 total potential temperature K
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Appendix C

Variables in the source code

Table C.1: Variables in atmos/mod_atmos_dyn_fent_fct.f90.

DENS(k717J) Pi,j.k
MOMZ(k,i,j) (pw)i,j,k-&-%
MOMX(kvle) (pu)i—i-%,j,k’
MOMY(kvlv.]) (pv)i,j—i-%,k
RHOT(k71aJ) (pe)i,j,]f
QTRC(k’IaJan) qi,5,k
PRES(k,i,j) Pijk
VELZ(k,i,j) W; j i1
VELX(k,i,j) Ui 1 g
VELY (k,i,j) Ui jydk
POTT(k,i,j) ik
QDRY(kvlaJ) qd
Rtot(k.i,j) R*
num_diff(k,ij)  Fj 1

gfix hi(kij) gt
qfix_lo(k,i,j) gov
quls(k,i,j) :j,k
gjmns(k,i,j) ik
pjpls(k,i,j) 7J,rj,k
pjmns(k,i,j) Py
rjpls(k,i,j) Rij,k
rjmns(k,i,j) ik
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Table C.2: Variables in atmos/mod_atmos_phy_tb_smg.f90.

tke(k.1,)) TKE
nu(kaiaj)v nu**(kaiaj) VsGgs
Ri(k,i.j) Ri
Pr(k,i,j) Pr
833,* (k,l J) 533
Sll,*(k,iJ) 511
S22 *(k,ij) Soo
S31_*(k,i,j) Sa1
S12_*(k.i,j) S
S23_* (ki) Sas
qﬂXngS(kvivj) PTij, ﬁT;B
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