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Chapter 1

Introduction

1.1 What is SCALE

SCALE (Scalable Computing for Advanced Library and Environment), which
stands for Scalable Computing for Advanced Library and Environment, is a
basic library for weather and climate model of the earth and planets aimed
to be widely used in various models. The SCALE library is developed with
co-design by researchers of computational science and computer science.
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Chapter 2

Governing equations

Correnspoinding author : Hirofumi Tomita

2.1 Continuity equations

The continuity equations for each material can be described as the flux form:

∂ρqd
∂t

+∇ · (ρqdu) = DIFF [qd] (2.1)

∂ρqv
∂t

+∇ · (ρqvu) = Sv +DIFF [qv] (2.2)

∂ρql
∂t

+∇ · (ρqlu) +
∂ρqlwl

∂z
= Sl +DIFF [ql] (2.3)

∂ρqs
∂t

+∇ · (ρqsu) +
∂ρqsws

∂z
= Ss +DIFF [qs] (2.4)

The summation of the mass concentrations should be unit:

qd + qv + ql + qs = 1. (2.5)

The source terms of water substances should satisfy the following relation:

Sv + Sl + Ss = 0. (2.6)

The summation of Eqs.(2.1)-(2.4) gives the continuity equation of total density:

∂ρ

∂t
+∇ · (ρu) + ∂ρqlwl

∂z
+

∂ρqsws

∂z
= 0, (2.7)

For this derivation, we assume that the operator DIFF [] is distributive. Using
Eq.(2.5),

DIFF [qd] + DIFF [qv] + DIFF [ql] + DIFF [qs]

= DIFF [qd + qv + ql + qs] = DIFF [1] = 0 (2.8)
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2.2 Momentum equations

The momentum equations for the gas, liquid, and solid material are described
as

∂ρ (qd + qv)u

∂t
+∇ · [ρ (qd + qv)u⊗ u] (2.9)

= −∇p− [ρ (qd + qv) g + (fl + fs)] ez

+uSv +DIFF [(qd + qv)u] (2.10)

∂ρqlu

∂t
+∇ · (ρqlu⊗ u) +

∂ρqluwl

∂z
= − (ρqlg − fl) ez

+uSl +DIFF [qlu] (2.11)

∂ρqsu

∂t
+∇ · (ρqsu⊗ u) +

∂ρqsuws

∂z
= − (ρqsg − fs) ez

+uSs +DIFF [qsu] (2.12)

The pressure is derived from the equation of state as

p = ρ (qdRd + qvRv)T. (2.13)

The summation of Eqs.(2.10)-(2.12) gives the total momentum equation as

∂ρu

∂t
+∇ · (ρu⊗ u) +

(
∂ρqlwl

∂z
+

∂ρqsws

∂z

)
ez

= −∇p− ρgez +DIFF [u] (2.14)

Note that the drag forces by water loading does not appear in Eq.(2.14), because
those term are cancelled out through the summation.

2.3 Thermodynamics equations

The equations of the internal energies are described as

∂ρ(qded + qvev)

∂t
+∇ · [ρ(qded + qvev)u]

= −p∇ · u+Qd +Qv +DIFF [(qd + qv)T
∗] (2.15)

∂ρqlel
∂t

+∇ · (ρqlelu) +
∂ρqlelwl

∂z
= Ql +DIFF [qlT

∗] (2.16)

∂ρqles
∂t

+∇ · (ρqsesu) +
∂ρqsesws

∂z
= Qs +DIFF [qsT

∗] (2.17)

where T ∗ is some kind of potential temperature, discussed later. The internal
energies are defined as

ed = cvdT (2.18)

ev = cvvT (2.19)

el = clT (2.20)

es = csT, (2.21)
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The summation of Eqs.(2.15)-(2.17) gives the following internal energy equa-
tions:

∂ρe

∂t
+∇ · (ρeu) + ∂ρqlelwl

∂z
+

∂ρqsesws

∂z
+ p∇ · u

= Q+DIFF [T ∗] (2.22)

where

e = qded + qvev + qlel + qses, (2.23)

and the total diabatic heating is described as

Q = Qd +Qv +Ql +Qs. (2.24)

2.4 Conseptual seperation for solving the set of
equations

Eqs.(2.2)-(2.4),(2.7),(2.14), and (2.13) with Eq.(2.22) are the complete set of
equations. For solving them easily, we seperate the set of equations conceptually
as

∂ϕ

∂t
=

(
∂ϕ

∂t

)
dynamics

+

(
∂ϕ

∂t

)
physics

(2.25)

The falling proccess of liquid and solid waters, the source and sink process of
water vapor, and the diabatic heating process for energy equations are treated
as physical process, the others are treated as dynamical proccess.

According to this scheme, the dynamical process can be written as

∂ρqv
∂t

+∇ · (ρqvu) = 0 (2.26)

∂ρql
∂t

+∇ · (ρqlu) = 0 (2.27)

∂ρqs
∂t

+∇ · (ρqsu) = 0 (2.28)

∂ρ

∂t
+∇ · (ρu) = 0 (2.29)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p− ρgez (2.30)

∂ρe

∂t
+∇ · (ρeu) + p∇ · u = 0 (2.31)
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On the other hand, the physical processes are as follows:

∂ρqv
∂t

= Sv +DIFF [qv] (2.32)

∂ρql
∂t

+
∂ρqlwl

∂z
= Sl +DIFF [ql] (2.33)

∂ρqs
∂t

+
∂ρqsws

∂z
= Ss +DIFF [qs] (2.34)

∂ρ

∂t
+

∂ρqlwl

∂z
+

∂ρqsws

∂z
= 0 (2.35)

∂ρu

∂t
+

∂ρqluwl

∂z
+

∂ρqsuws

∂z
= DIFF [u] (2.36)

∂ρe

∂t
+

∂ρqlelwl

∂z
+

∂ρqsesws

∂z
= Q+DIFF [T ∗] (2.37)

2.5 Conservation of thermodynamics in the dy-
namical process

Equation (2.31) is not a complete flux form, because the internal energy itself
is not conserved both in the Euler sense and in the Lagrangian sense. In this
section, we consider the conservative quantity for thermodynamics equation.

In the dry atmosphere, the potential temperature for dry air, which is defined
as

θd = T

(
p00
p

)Rd/cpd

, (2.38)

is used as a conserved quantity it is conserved along the Lagrange trajectory
cpd Rd are the specific heats at constant pressure and However, it is no longer
satisfied when the water substances are included.

Sinece Eq.(2.29) is equivallent to

dρ

dt
+ ρ∇ · u = 0, (2.39)

Equation (2.31) is

ρ
de

dt
− p

ρ

dρ

dt
= 0. (2.40)

Dividing by ρ, this equation can be written as

de

dt
+ p

d

dt

(
1

ρ

)
= 0. (2.41)

Substiting Eq.(2.13) into Eq.(2.41),

dqdcvdT

dt
+ p

d

dt

[
qdRdT

p

]
+

dqvcvvT

dt
+ p

d

dt

[
qvRvT

p

]
+
dqlclT

dt
+

dqscsT

dt
= 0 (2.42)
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Since Eqs.(2.26)-(2.29) give

dqd
dt

=
dqv
dt

=
dql
dt

=
dqs
dt

= 0, (2.43)

Equation (2.42) gives the following form:

qd

[
dcvdT

dt
+ p

d

dt

[
RdT

p

]]
+ qv

[
dcvvT

dt
+ p

d

dt

[
RvT

p

]]
+ql

dclT

dt
+ qs

dcsT

dt
= 0 (2.44)

Dividing this equation by T ,

qd

[
cpd

1

T

dT

dt
+Rdp

d

dt

(
1

p

)]
+ qv

[
cpv

1

T

dT

dt
+Rvp

d

dt

(
1

p

)]
+qlcl

1

T

dT

dt
+ qscs

1

T

dT

dt
= 0 (2.45)

qdcpd

[
d lnT

dt
+

Rd

cpd

d

dt

[
ln

(
1

p

)]]
+ qvcpv

[
d lnT

dt
+

Rv

cpv

d

dt

[
ln

(
1

p

)]]
+qlcl

d lnT

dt
+ qscs

d lnT

dt
= 0 (2.46)

qdcpd
d ln θd
dt

+ qvcpv
d ln θv
dt

+ qlcl
d lnT

dt
+ qscs

d lnT

dt
= 0 (2.47)

d

dt

[
ln
(
θ
qdcpd
d θqvcpvv T qlclT qscs

)]
= 0 (2.48)

Thus,

d

dt

[
θ
qdcpd
d θqvcpvv T qlclT qscs

]
= 0 (2.49)

Thus, the following quantity is conserved along the flow trajectory;

Θ = θ
qdcpd
d θqvcpvv T qlclT qscs (2.50)

where θv is the potential temperature for water vapor, defined as

θv = T

(
p00
p

)Rv/cpv

(2.51)

The equation of state has the following expression using Θ.

Θ = T qdcpd

(
p00
p

)qdRd

T qvcpv

(
p00
p

)qvRv

T qlcl + T qscs (2.52)

= T qdcpd+qvcpv+qlcl+qscs

(
p00
p

)qdRd+qvRv

(2.53)

= T c∗p

(
p00
p

)R∗

, (2.54)

where

c∗p ≡ qdcpd + qvcpv + qlcl + qscs (2.55)

R∗ ≡ qdRd + qvRv (2.56)
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We define a new potential temperature

θ ≡ Θ1/c∗p = T

(
p00
p

)R∗/c∗p

(2.57)

The pressure expression is derived diagnostically as follows:

p = ρ(qdRd + qvRv)θ

(
p

p00

)R∗
c∗p

(2.58)

p
1−R∗

c∗p = ρR∗θ

(
1

p00

)R∗
c∗p

(2.59)

p = p00

(
ρθR∗

p00

) c∗p
c∗p−R∗

(2.60)

Note that

dθ

dt
=

1

a
Θ1/a−1 dΘ

dt
= 0 (2.61)

Therefore, ρθ can be employed for the prognostic varaiable!
Figure 2.1(a) gives the vertical profile of the temperature in the U.S.standard

atmosphere and Fig.2.1(b) shows the vetical profiles of θ/θd under this temper-
ature condition when we assume that qv is mass concentration of water vapor
at the saturation, ql + qs gives 0.0, 0.01, 0.02, and 0.04. The differnce between
θ and θd becomes larger with the height and it may not be negligible.

2.6 Diabatic heating in the physical process

If the prognostic variable for thermodynamics is changed from the internal
energy to the newly defined potential temperature θ, the diabatic heating in
Eq.(2.37) should be modified. Through the manupulation from Eq.(2.40) to
Eq.(2.48), Eq.(2.37) without turbulence term can be written as

d lnΘ

dt
=

Q

ρT
(2.62)

On the other hand, Eq.(2.61) gives

dθ

dt
=

1

c∗p
Θ1/a d lnΘ

dt
(2.63)

Substituting Eq.(2.62) into Eq.(2.63),

dθ

dt
=

1

c∗p

(
p

p00

)R∗
c∗p Q

ρ
(2.64)
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2.7 Summary of equations in the dynamical pro-
cess and physical process

2.7.1 The dynamical process

∂ρqv
∂t

+∇ · (ρqvu) =
(
∂ρqv
∂t

)
physics

(2.65)

∂ρql
∂t

+∇ · (ρqlu) =
(
∂ρql
∂t

)
physics

(2.66)

∂ρqs
∂t

+∇ · (ρqsu) =
(
∂ρqs
∂t

)
physics

(2.67)

∂ρ

∂t
+∇ · (ρu) =

(
∂ρ

∂t

)
physics

(2.68)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p− ρgez +

(
∂ρu

∂t

)
physics

(2.69)

∂ρθ

∂t
+∇ · (ρθu) =

(
∂ρθ

∂t

)
physics

(2.70)

p = p00

(
ρθR∗

p00

) c∗p
c∗p−R∗

(2.71)

where

c∗p ≡ qdcpd + qvcpv + qlcl + qscs (2.72)

R∗ ≡ qdRd + qvRv (2.73)

2.7.2 The physical process

(
∂ρqv
∂t

)
physics

= Sv +DIFF [qv] (2.74)(
∂ρql
∂t

)
physics

= −∂ρqlwl

∂z
+ Sl +DIFF [ql] (2.75)(

∂ρqs
∂t

)
physics

= −∂ρqsws

∂z
+ Ss +DIFF [qs] (2.76)(

∂ρ

∂t

)
physics

= −∂ρqlwl

∂z
− ∂ρqsws

∂z
(2.77)(

∂ρu

∂t

)
physics

= −∂ρqluwl

∂z
− ∂ρqsuws

∂z
+DIFF [u] (2.78)

(
∂ρθ

∂t

)
physics

=
1

c∗p

(
p

p00

)R∗
c∗p
[
Q− ∂ρqlelwl

∂z
− ∂ρqsesws

∂z

]
+DIFF [θ](2.79)
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Figure 2.1: Thee vertical profile of (a) U.S. standard atmosphere, (b) Several
profiles of θ/θd.
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Chapter 3

Descretization of the
dynamics

Corresponding author : Seiya Nishizawa

3.1 Temporal integration scheme

3.1.1 Runge-Kutta schemes

For the time integration of Eqs.(2.68)-(2.40), we adopt the full explicit scheme
with the p step Runge-Kutta scheme.

ϕ∗
0 = ϕt (3.1)

k1 = f(ϕt) (3.2)

k2 = f(ϕt + k1∆tα1) (3.3)

· · ·
kp = f(ϕt + kp−1∆tαp−1) (3.4)

ϕt+∆t = ϕt +∆t
∑
p

βpkp. (3.5)

The 3 and 4 step Runge-Kutta scheme are implemented.

The Heun’s three step scheme

k1 = f(ϕn), (3.6)

k2 = f

(
ϕn +

1

3
∆tk1

)
, (3.7)

k3 = f

(
ϕn +

2

3
∆tk2

)
, (3.8)

ϕn+1 = ϕn +
1

4
∆t(k1 + 3k3). (3.9)
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The Kutta’s three step scheme

k1 = f(ϕn), (3.10)

k2 = f

(
ϕn +

1

2
∆tk1

)
, (3.11)

k3 = f (ϕn −∆tk1 + 2∆tk2) , (3.12)

ϕn+1 = ϕn +
1

6
∆t(k1 + 4k2 + k3). (3.13)

The Wicker and Skamarock (2002)’s three step scheme

k1 = f(ϕn), (3.14)

k2 = f

(
ϕn +

1

3
∆tk1

)
, (3.15)

k3 = f

(
ϕn +

1

2
∆tk2

)
, (3.16)

ϕn+1 = ϕn +∆tk3. (3.17)

The four step scheme

k1 = f(ϕn), (3.18)

k2 = f

(
ϕn +

1

2
∆tk1

)
, (3.19)

k3 = f

(
ϕn +

1

2
∆tk2

)
, (3.20)

k4 = f (ϕn +∆tk3) , (3.21)

ϕn+1 = ϕn +
1

6
∆t(k1 + 2k2 + 2k3 + k4). (3.22)

The forward-backward scheme

In the short time step, the momentums are updated first and then density is
updated with the updated momentums.

ρun+1
i = ρun

i +∆tfρui
(ρn), (3.23)

ρn+1 = ρn +∆tfρ(ρu
n+1
i ). (3.24)
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3.1.2 Numerical stability

A fully compressive equations of a acoustic mode is considered. The continuous
and momentum equations is the followings:

∂ρ

∂t
= −∂ρui

∂xi
(3.25)

∂ρui

∂t
= − ∂p

∂xi
(3.26)

p = p0

(
Rρθ

p0

)cp/cv

, (3.27)

here the potential temperature θ is assumed to be constant.
In order to analize the numerical stability of equation, the equation of the

state is linearized.
p ≈ p̄+ c2ρ′, (3.28)

where c is the sound speed: c2 =
cpp̄
cv ρ̄

.
We descritize the governing equation with the 2th order central difference.

∂ρ

∂t

∣∣∣∣
i,j,k

= −
Ui+1/2 − Ui−1/2

∆x
−

Vj+1/2 − Vj−1/2

∆y
−

Wk+1/2 −Wk−1/2

∆z

(3.29)

∂U

∂t

∣∣∣∣
i+1/2

= −c2
ρi+1 − ρi

∆x
(3.30)

∂V

∂t

∣∣∣∣
j+1/2

= −c2
ρj+1 − ρj

∆y
(3.31)

∂W

∂t

∣∣∣∣
i+1/2

= −c2
ρk+1 − ρk

∆z
, (3.32)

where U, V , and W is the momentum at the stagared grid point in x, y, and z
direction, respectively.

The error of the spatial differenece of a wavenumber k component ϕ̂k is
{exp(ik∆x)− 1} ϕ̂, and the error of 2-grid mode is the largest: exp(iπ)−1 = −2.

The temporal differential of the 2-grid mode is

∂ρ

∂t
= −1− exp(−iπ)

∆x
U − 1− exp(−iπ)

∆y
V − 1− exp(−iπ)

∆z
W (3.33)

∂U

∂t
= −c2

exp(iπ)− 1

∆x
ρ (3.34)

∂V

∂t
= −c2

exp(iπ)− 1

∆y
ρ (3.35)

∂W

∂t
= −c2

exp(iπ)− 1

∆z
ρ. (3.36)

The mode of which the U, V and W has the same phase is the most unstable:

∂ρ

∂t
= −3

1− exp(−iπ)

∆x
U (3.37)

∂U

∂t
= −c2

exp(iπ)− 1

∆x
ρ (3.38)
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Writing matrix form, (
∂ρ
∂t
∂U
∂t

)
= D

(
ρ
U

)
, (3.39)

where

D =

(
0 − 6

∆x
2c2

∆x 0

)
. (3.40)

The Euler scheme

With the Euler scheme,
ϕn+1 = ϕn +∆tf(ϕn) (3.41)

The A is the matrix representing the time step, then

A = I + dtD, (3.42)

=

(
1 −6∆t

∆x
2c2∆t
∆x 1

)
. (3.43)

The eigen value of A is larger than 1, and the Euler scheme is instable for any
∆t.

The second step Runge-Kutta scheme

The Heun’s second step Runge-Kutta scheme is

k1 = f(ϕn), (3.44)

k2 = f(ϕn +∆tk1), (3.45)

ϕn+1 = ϕn +
∆t

2
(k1 + k2). (3.46)

A = I +
∆t

2
(K1 +K2), (3.47)

K1 = D, (3.48)

K2 = D(I +∆tK1). (3.49)

After all,

A =

(
1− 6ν2 − 6∆t

∆x
2c2∆t
∆x 1− 6ν2

)
, (3.50)

where ν is the Courant number for the sound speed: c∆t
∆x . The eigen value of A

is larger than 1, and the Euler scheme is instable for any ∆t.

The third step Runge-Kutta scheme

With the Heun’s third step Runge-Kutta scheme, the matrix A is written by

A = I +
∆t

4
(K1 + 4K3), (3.51)

=

(
1− 6ν2 − 6∆t

∆x (1− 2ν2)
2c2∆t
∆x (1− 2ν2) 1− 6ν2

)
, (3.52)
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where

K1 = D, (3.53)

K2 = D(I +
∆t

3
K1), (3.54)

K3 = D(I +
2∆t

3
K2). (3.55)

The condition that all the eigen values are less than or equal to 1 is

ν ≤ 1

2
. (3.56)

In the Kutta’s three step Runge-Kutta scheme, the matrix A is

A = I +
∆t

6
(K1 + 4K2 +K3), (3.57)

where

K1 = D, (3.58)

K2 = D

(
I +

∆t

2
K1

)
, (3.59)

K3 = D (I −∆tK1 + 2∆tK2) . (3.60)

It is the idential as that in the Heun’s scheme (eq. 3.52). Thus, the stable
condition is the same (eq. 3.56).

The Wicker and Skamarock (2002)’s Runge-Kutta scheme is described as

A = I +∆tK3, (3.61)

K1 = D, (3.62)

K2 = D

(
I +

∆t

3
K1

)
, (3.63)

K3 = D

(
I +

∆t

2
K2

)
. (3.64)

The A and the consequent stable condition are the identical as the above two
schemes.

The four step Runge-Kutta scheme

The matrix A is

A = I +
∆t

6
(K1 + 2K2 + 2K3 +K4), (3.65)

=

(
1− 6ν2 + 6ν4 − 6∆t

∆x (1− 2ν2)
2c2∆t
∆x (1− 2ν2) 1− 6ν2 + 64

)
, (3.66)
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where

K1 = D, (3.67)

K2 = D

(
I +

∆t

2
K1

)
, (3.68)

K3 = D

(
I +

∆t

2
K2

)
, (3.69)

K4 = D(I +∆tK3). (3.70)

The condition for stability is

ν ≤
√
6

3
. (3.71)

The number of floating opint operations with the four step Runge-Kutta
scheme is about 4/3 times larger than that with the three step scheme. Howere,
the time step can be 2

√
6/3 larger than that in the three step scheme. Since

2
√
6/3 > 4/3, the four step Runge-Kutta scheme is more cost effective than the

three step scheme in terms of numerical stability.

The forward-backward scheme

The stabitlity condition is

ν ≤ 1√
3
. (3.72)

The forward-backward scheme can be used in each step in the Runge-Kutta
schemes. The stability conditions are the followings:

The second step RK scheme

ν ≤ 1√
3
. (3.73)

The Heun’s three step RK scheme

ν ≤ 1

2
. (3.74)

The Kutta’s three step RK scheme

ν ≤ 1

2
. (3.75)

TheWicker and Skamarock (2002)’s three step RK scheme

ν ≤
√
6

4
. (3.76)

The four step RK scheme
ν ≤ 0.66 (3.77)

Corresponding author : Hirofumi Tomita
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3.2 Spatial descretization

We employ the Arakawa-C staggered grid with the 3-dimensional momentum
(ρu, ρv, ρw), density (ρ) and mass-weighted potentail temperature(ρθ) as the
prognostic variables. Figure 3.1(a) shows the structure of the control volume for
the mass, indicating the location of each of prognostic variables. Conceptually,
we use the 4th order central difference scheme for the advection or convection
terms and the 2nd order central difference scheme for the other terms. Before
the descretization of differential equations, we should diagnose several quantities
from the prognostic variables.

Full-level pressure and potential temperature

pi,j,k = p00

[
(ρθ)i,j,kR

∗

p00

] c∗p
c∗p−R∗

(3.78)

θi,j,k =
(ρθ)i,j,k
ρi,j,k

(3.79)

(3.80)

Half-level density

ρi+ 1
2 ,j,k

=
ρi+1,j,k + ρi,j,k

2
(3.81)

ρi,j+ 1
2 ,k

=
ρi,j+1,k + ρi,j,k

2
(3.82)

ρi,j,k+ 1
2
=

∆zkρi,j,k+1 +∆zk+1ρi,j,k
∆zk +∆zk+1

(3.83)

Half-level velocity

ui+ 1
2 ,j,k

=
(ρu)i+ 1

2 ,j,k

ρi+ 1
2 ,j,k

(3.84)

vi,j+ 1
2 ,k

=
(ρv)i,j+ 1

2 ,k

ρi,j+ 1
2 ,k

(3.85)

wi,j,k+ 1
2
=

(ρw)i,j,k+ 1
2

ρi,j,k+ 1
2

(3.86)

Full-level velocity

ui,j,k =
(ρu)i+ 1

2 ,j,k
+ (ρu)i− 1

2 ,j,k

2ρi,j,k
(3.87)

vi,j,k =
(ρv)i,j+ 1

2 ,k
+ (ρv)i,j− 1

2 ,k

2ρi,j,k
(3.88)

wi,j,k =
(ρw)i,j,k+ 1

2
+ (ρw)i,j,k− 1

2

2ρi,j,k
(3.89)
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3.2.1 Continuity equation

(
∂ρ

∂t

)
i,j,k

= −
(ρu)i+ 1

2 ,j,k
− (ρu)i− 1

2 ,j,k

∆x

−
(ρv)i,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k

∆y

−
(ρw)i,j,k+ 1

2
− (ρw)i,j,k− 1

2

∆z
(3.90)

3.2.2 Momentum equations

Figure 3.1(a) shows the structure of the control volume for the momentum in
the x direction. The momentum equation is descretized as(

∂ρu

∂t

)
i+ 1

2 ,j,k

= −
(ρu)i+1,j,kui+1,j,k − (ρu)i,j,kui,j,k

∆x

−
(ρu)i+ 1

2 ,j+
1
2 ,k

vi+ 1
2 ,j+

1
2 ,k

− (ρu)i+ 1
2 ,j−

1
2 ,k

vi+ 1
2 ,j−

1
2 ,k

∆y

−
(ρu)i+ 1

2 ,j,k+
1
2
wi+ 1

2 ,j,k+
1
2
− (ρu)i+ 1

2 ,j,k−
1
2
wi+ 1

2 ,j,k−
1
2

∆z

−pi+1,j,k − pi,j,k
∆x

, (3.91)

where

(ρu)i,j,k

=
−(ρu)i+ 3

2 ,j,k
+ 7(ρu)i+ 1

2 ,j,k
+ 7(ρu)i− 1

2 ,j,k
− (ρu)i− 3

2 ,j,k

12
(3.92)

(ρu)i+ 1
2 ,j+

1
2 ,k

=
−(ρu)i+ 1

2 ,j+2,k + 7(ρu)i+ 1
2 ,j+1,k + 7(ρu)i+ 1

2 ,j,k
− (ρu)i+ 1

2 ,j−1,k

12
(3.93)

(ρu)i+ 1
2 ,j,k+

1
2

=
−(ρu)i+ 1

2 ,j,k+2 + 7(ρu)i+ 1
2 ,j,k+1 + 7(ρu)i+ 1

2 ,j,k
− (ρu)i+ 1

2 ,j,k−1

12
(3.94)

and the velocities at the cell wall for the staggered control volume to x direction
are defined as

ui,j,k =
ui+ 1

2 ,j,k
+ ui− 1

2 ,j,k

2
(3.95)

vi+ 1
2 ,j+

1
2 ,k

=
vi,j+ 1

2 ,k
+ vi+1,j+ 1

2 ,k

2
(3.96)

wi+ 1
2 ,j,k+

1
2

=
wi,j,k+ 1

2
+ wi+1,j,k+ 1

2

2
(3.97)

In this form, the 4th order accuracy is guaranteed on the condition of the con-
stant velocity.
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The momentum equations in the y and z directions are descretized in the
same way:(

∂ρv

∂t

)
i,j+ 1

2 ,k

= −
(ρv)i+ 1

2 ,j+
1
2 ,k

ui+ 1
2 ,j+

1
2 ,k

− (ρv)i− 1
2 ,j+

1
2 ,k

ui− 1
2 ,j+

1
2 ,k

∆x

−
(ρv)i,j+1,kvi,j+1,k − (ρv)i,j,kvi,j,k

∆y

−
(ρv)i,j+ 1

2 ,k+
1
2
vi,j+ 1

2 ,k+
1
2
− (ρv)i,j+ 1

2 ,k−
1
2
vi,j+ 1

2 ,k−
1
2

∆z

−pi,j+1,k − pi,j,k
∆y

, (3.98)(
∂ρw

∂t

)
i,j,k+ 1

2

= −
(ρw)i+ 1

2 ,j,k+
1
2
ui+ 1

2 ,j,k+
1
2
− (ρw)i− 1

2 ,j,k+
1
2
ui− 1

2 ,j,k+
1
2

∆x

−
(ρw)i,j+ 1

2 ,k+
1
2
wi,j+ 1

2 ,k+
1
2
− (ρw)i,j− 1

2 ,k+
1
2
wi,j− 1

2 ,k+
1
2

∆y

−
(ρw)i,j,k+1wi,j,k+1 − (ρw)i,j,kwi,j,k

∆z

−pi,j,k+1 − pi,j,k
∆z

− ρi,j,k+ 1
2
g (3.99)

Pressure

Since the pressure pertubation is much smaller than the absolute value of the
pressure, truncation error of floating point value is relatively large and its preci-
sion could become smaller. Therefore, the pressure gradient terms are calculated
from the deviation from reference pressure field satisfing the hydrostatic balance.
Additionally, the calculation of the pressure (eq. 2.60) is linearlized avoiding a
power calculation, which numerically costs expensive.

p ≈ p̄+
c∗p

R∗C∗
v

(
ρθR∗

p00

)R∗
c∗v

{ρθ − ρθ}

= p̄+
c∗p
c∗v

p̄

ρθ
(ρθ)′ (3.100)

p− pref = p̄− pref +
c∗p
c∗v

p̄

ρθ
(ρθ)′ (3.101)

3.2.3 Energy equation

(
∂ρθ

∂t

)
i,j,k

= −
(ρu)i+ 1

2 ,j,k
θi+ 1

2 ,j,k
− (ρu)i− 1

2 ,j,k
θi− 1

2 ,j,k

∆x

−
(ρv)i,j+ 1

2 ,k
θi,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k
θi,j− 1

2 ,k

∆y

−
(ρw)i,j,k+ 1

2
θi,j,k+ 1

2
− (ρw)i,j,k− 1

2
θi,j,k− 1

2

∆z
(3.102)
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where

θi+ 1
2 ,j,k

=
−θi+2,j,k + 7θi+1,j,k + 7θi,j,k − θi−1,j,k

12
(3.103)

θi,j+ 1
2 ,k

=
−θi,j+2,k + 7θi,j+1,k + 7θi,j,k − θi,j−1,k

12
(3.104)

θi,j,k+ 1
2
=

−θi,j,k+2 + 7θi,j,k+1 + 7θi,j,k − θi,j,k−1

12
(3.105)

3.2.4 Tracer advection

The tracer advection process is done after the time integration of the dynamical
variables (ρ, ρu, ρv, ρw, and ρθ). We impose two constraints to tracer advection:

Consistency With Continuity ( CWC ) On the condition without any source/sink,
the mass concentration in the advection process should be conserved along
the trajectory. It is, at least, necessary that the spatially constant mass
concentration should be kept in any motion of fluid. In order to satisfy
this condition, we use the same mass flux at the last Runge-Kutta process
of Eqs.() and () for integration of tracers:

(ρq)
n+1
i,j,k − (ρq)

n
i,j,k

∆t
= −

(ρu)i+ 1
2 ,j,k

qi+ 1
2 ,j,k

− (ρu)i− 1
2 ,j,k

qi− 1
2 ,j,k

∆x

−
(ρv)i,j+ 1

2 ,k
qi,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k
qi,j− 1

2 ,k

∆y

−
(ρw)i,j,k+ 1

2
qi,j,k+ 1

2
− (ρw)i,j,k− 1

2
qi,j,k− 1

2

∆z
(3.106)

Monotonicity In order to satisfy the monotonicity of tracer advection, we
employ the Flux Corrected Trasport scheme, which is a hybrid scheme
with the 4th order central difference scheme and 1st order upwind scheme.
If The 4th order central difference is applied, q is descritized as

qhigh
i+ 1

2 ,j,k
=

−qi+2,j,k + 7qi+1,j,k + 7qi,j,k − qi−1,j,k

12
(3.107)

qhigh
i,j+ 1

2 ,k
=

−qi,j+2,k + 7qi,j+1,k + 7qi,j,k − qi,j−1,k

12
(3.108)

qhigh
i,j,k+ 1

2

=
−qi,j,k+2 + 7qi,j,k+1 + 7qi,j,k − qi,j,k−1

12
. (3.109)

On the other hand, in the 1st order upwind scheme q is described as

qlowi+ 1
2 ,j,k

=

{
qi,j,k ((ρu)i+ 1

2 ,j,k
> 0)

qi+1,j,k (otherwise)
(3.110)

qlowi,j+ 1
2 ,k

=

{
qi,j,k ((ρu)i,j+ 1

2 ,k
> 0)

qi,j+1,k (otherwise)
(3.111)

qlowi,j,k+ 1
2
=

{
qi,j,k ((ρu)i,j,k+ 1

2
> 0)

qi,j,k+1 (otherwise)
(3.112)
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The actual q is described as

qi+ 1
2 ,j,k

= Ci+ 1
2 ,j,k

qhigh
i+ 1

2 ,j,k
+
(
1− Ci+ 1

2 ,j,k

)
qlowi+ 1

2 ,j,k
(3.113)

qi,j+ 1
2 ,k

= Ci,j+ 1
2 ,k

qhigh
i,j+ 1

2 ,k
+
(
1− Ci,j+ 1

2 ,k

)
qlowi,j+ 1

2 ,k
(3.114)

qi,j,k+ 1
2

= Ci,j,k+ 1
2
qhigh
i,j,k+ 1

2

+
(
1− Ci,j,k+ 1

2

)
qlowi,j,k+ 1

2
(3.115)

See the appedix for the method to determine the flux limter.

3.3 boundary condition

The boundary condition only for the vertical velocity at the top and bottom
boundaries is needed:

wi,j,kmax+
1
2
= 0 (3.116)

wi,j,kmin− 1
2
= 0 (3.117)

This leads to the boundary condition of the prognostic variable as

(ρw)i,j,kmax+
1
2
= 0 (3.118)

(ρw)i,j,kmin− 1
2
= 0 (3.119)

3.4 Numerical filters

We impose an explicit numerical filter using the numerical viscosity and diffu-
sion. Although the filter is necessary for numerical stability, too strong a filter
could dampen any physically meaningful variability. In this subsection, we de-
scribe the numerical filters used in this model, and discuss the strength of the
filter.

In order to damp the higher wavenumber component selectively, we adopt
the hyperviscosity and diffusion in the traditional way. The hyperviscosity and
diffusion of the nth order is defined as

∂

∂x

[
νρ

∂n−1f

∂xn−1

]
, (3.120)

where f is an arbitrary variable (f ∈ ρ, u, v, w, θ, q).
The Laplacian of f is discretized as

∆fi =
1

∆xi

[
1

∆xi+ 1
2

fi+1 −

(
1

∆xi+ 1
2

+
1

∆xi− 1
2

)
fi +

1

∆xi− 1
2

fi−1

]
, (3.121)

and

∆n/2fi =
1

∆xi

[
1

∆xi+ 1
2

∆n/2−1fi+1 −

(
1

∆xi+ 1
2

+
1

∆xi− 1
2

)
∆n/2−1fi

+
1

∆xi− 1
2

∆n/2−1fi−1

]
. (3.122)
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Here we consider spatially dependent grid interval in calculating the Laplacian.
If it is calculated with constant ∆xi as

∆fi =
1

∆x2
i

(fi+1 − 2fi + fi−1) , (3.123)

∆n/2fi =
1

∆x2
i

(
∆n/2−1fi+1 − 2∆n/2−1fi +∆n/2−1fi−1

)
, (3.124)

non-negligible numerical noise appears where the grid spacing varies (e.g., stretch-
ing layer near the top boundary).

The hyperviscosity and diffusion can be discretized as

∂

∂x

[
νρ

∂n−1f

∂n−1x

]
∼

Fi+ 1
2
− Fi− 1

2

∆xi
, (3.125)

where

Fi+ 1
2

νi+ 1
2
ρi+ 1

2

∆xi+ 1
2

(
∆n/2−1fi+1 −∆n/2−1fi

)
. (3.126)

The coefficient, ν, is written as

νi+ 1
2
= (−1)n/2+1γ

∆xn
i+ 1

2

2n∆t
, (3.127)

where γ is a non-dimensional coefficient. One-dimensional sinusoidal two-grid
noise will decay to 1/e with 1/γ time steps. Note that the theoretical e-folding
time is 2n

πn
∆t
γ . However, it is ∆t

γ with the fourth-order central scheme used in
this model.

For the numerical stability of the numerical filter itself, it should satisfy

γ < 1 (3.128)

for the one-dimensional two-grid noise, and

γ <
1

3
(3.129)

for the three-dimensional two-grid noise. The conditions might be stricter for
other types of noise.

The flux, F , for the numerical filter is added to the advective flux as

(ρuf)†
i+ 1

2

= (ρuf)i+ 1
2
+ Fi+ 1

2
, (3.130)

where the first term of the right-hand side is the flux calculated by the advection
scheme. In the present model, the advection scheme is the fourth-order central
difference scheme. This concept is very important for the CWC condition in
the tracer equations. The modified mass flux of the numerical filter should be
used in the tracer advection, otherwise the CWC condition is violated.

The numerical viscosity and diffusion in the y and z directions are formulated
in the same way as in the x direction, although a special treatment for the
z direction is needed. At the top and bottom boundaries, the flux must be
zero, Fkmax+

1
2
= Fkmin− 1

2
= 0. In order to calculate the Fkmax− 1

2
and Fkmin+

1
2
,
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values beyond the boundaries, fkmax+1 and fkmin−1, are required, then the mirror
boundary condition is assumed; fkmax+1 = −fkmax

and fkmin−1 = −fkmin
. This

condition is appropriate to cause the decay the vertical two-grid noise.
Vertical profiles of density, potential temperature, and water vapor usually

have significant (e.g., logarithmic) dependencies on height. Eq. (3.125) has
a non-zero value even for the steady state, and the numerical filter produces
artificial motion. To reduce this artificial motion, we introduce a reference
profile which is a function of height, and deviation from the reference is used as
f instead of ρ, θ, and qv in calculating the numerical filter. The reference profile
can be chosen arbitrarily, but a profile under hydrostatic balance is usually
chosen.
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(a) Control volume for the mass

(b) Control volume for the momentum

Figure 3.1: Control volume
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Chapter 4

Terrain-following
Coordinates

Corresponding author : Hisashi Yashiro

4.1 Geometry and Definitions

We introduce a terrain following coordinate system with a new vertical coor-
dinate ξ. ξ-coordinate system is not deformable system. We use the relation
between z and ξ as

ξ =
ztoa(z − zsfc)

ztoa − zsfc
, (4.1)

Where ztoa is the top of the model domain and zsfc is the surface height, which
depends on the horizontal location.

The metrics are defined as

G
1
2 =

∂z

∂ξ
, (4.2)

Jξ
13 =

(
∂ξ

∂x

)
z

= −Jz
13

Jz
33

, (4.3)

Jξ
23 =

(
∂ξ

∂y

)
z

= −Jz
23

Jz
33

, (4.4)

Jξ
33 =

∂ξ

∂z
=

1

Jz
33

, (4.5)

where

Jz
13 =

(
∂z

∂x

)
ξ

, (4.6)

Jz
23 =

(
∂z

∂y

)
ξ

, (4.7)

Jz
33 = G

1
2 (4.8)
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If we use the Eqs.(4.1)-(4.5), we obtain following equations:

G
1
2∇ϕ =

(∂G
1
2ϕ

∂x

)
ξ

+
∂Jξ

13G
1
2ϕ

∂ξ

 êx +

(∂G
1
2ϕ

∂y

)
ξ

+
∂Jξ

23G
1
2ϕ

∂ξ

 êy

+

[
∂Jξ

33G
1
2ϕ

∂ξ

]
êz, (4.9)

G
1
2∇ · (ϕu) =

(
∂G

1
2ϕu

∂x

)
ξ

+

(
∂G

1
2ϕv

∂y

)
ξ

+
∂G

1
2ϕξ̇

∂ξ
(4.10)

where {êx, êy, êz} are unit vectors in Cartesian coordinate, and ξ̇ is the vertical
velocity component in the terrain following coordinate, giving by

ξ̇ ≡dξ

dt
= Jξ

13u+ Jξ
23v + Jξ

33w. (4.11)

4.2 Summary of modified equations in the dy-
namical process

Prognostic variables by multiplying G
1
2 are defined as

(ρQv)i,j,k = G
1
2

i,j,k(ρqv)i,j,k, (4.12)

(ρQl)i,j,k = G
1
2

i,j,k(ρql)i,j,k, (4.13)

(ρQs)i,j,k = G
1
2

i,j,k(ρqs)i,j,k, (4.14)

Ri,j,k = G
1
2

i,j,kρi,j,k, (4.15)

(ρU)i+ 1
2 ,j,k

= G
1
2

i+ 1
2 ,j,k

(ρu)i+ 1
2 ,j,k

, (4.16)

(ρV )i,j+ 1
2 ,k

= G
1
2

i,j+ 1
2 ,k

(ρv)i,j+ 1
2 ,k

, (4.17)

(ρW )i,j,k+ 1
2
= G

1
2

i,j,k+ 1
2

(ρw)i,j,k+ 1
2
, (4.18)

(ρΘ)i,j,k = G
1
2

i,j,k(ρθ)i,j,k, (4.19)

Pi,j,k = G
1
2

i,j,kpi,j,k. (4.20)

Eqs.(2.67)-(2.72) are modified using Eqs.(4.9)-(4.11),
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∂ρQv

∂t
+

∂

∂xj
(ρQvuj) = 0, (4.21)

∂ρQl

∂t
+

∂

∂xj
(ρQluj) = 0, (4.22)

∂ρQs

∂t
+

∂

∂xj
(ρQsuj) = 0, (4.23)

∂R

∂t
+

∂

∂xj
(Ruj) = 0, (4.24)

∂ρU

∂t
+

∂

∂xj
(ρUuj) = −

(
∂P

∂x

)
ξ

− ∂Jξ
13P

∂ξ
, (4.25)

∂ρV

∂t
+

∂

∂xj
(ρV uj) = −

(
∂P

∂y

)
ξ

− ∂Jξ
23P

∂ξ
, (4.26)

∂ρW

∂t
+

∂

∂xj
(ρWuj) = −∂Jξ

33P

∂ξ
−Rg, (4.27)

∂ρΘ

∂t
+

∂

∂xj
(ρΘuj) = 0, (4.28)

where Einstein summation has been used to implicitly sum over repeated indices,
and (x1, x2, x3) = (x, y, ξ), (u1, u2, u3) = (u, v, ξ̇).

4.3 Spatial descretization

4.3.1 Continuity equation(
∂R

∂t

)
i,j,k

= −

[
(ρU)i+ 1

2 ,j,k
− (ρU)i− 1

2 ,j,k

∆x

+
(ρV )i,j+ 1

2 ,k
− (ρV )i,j− 1

2 ,k

∆y

+
(Jξ

13)i,j,k+ 1
2
(̃ρU)

xz

i,j,k+ 1
2
− (Jξ

13)i,j,k− 1
2
(̃ρU)

xz

i,j,k− 1
2

∆ξ

+
(Jξ

23)i,j,k+ 1
2
(̃ρV )

yz

i,j,k+ 1
2
− (Jξ

23)i,j,k− 1
2
(̃ρV )

yz

i,j,k− 1
2

∆ξ

+
(Jξ

33)i,j,k+ 1
2
(ρW )i,j,k+ 1

2
− (Jξ

33)i,j,k+ 1
2
(ρW )i,j,k− 1

2

∆ξ

]
(4.29)

where

(̃ρU)
xz

i,j,k+ 1
2
= G

1
2

i,j,k+ 1
2

(̃ρu)
x

i,j,k+1 + (̃ρu)
x

i,j,k

2
, (4.30)

(̃ρV )
yz

i,j,k+ 1
2
= G

1
2

i,j,k+ 1
2

(̃ρv)
y

i,j,k+1 + (̃ρv)
y

i,j,k

2
, (4.31)

(̃ρu)
x

i,j,k and (̃ρv)
y

i,j,k are obtained by same manner in eq.(3.20)
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4.3.2 Momentum equations

(
∂ρU

∂t

)
i+ 1

2 ,j,k

= −

[
(̃ρU)

x

i+1,j,kui+1,j,k − (̃ρU)
x

i,j,kui,j,k

∆x

+
(̃ρU)

y

i+ 1
2 ,j+

1
2 ,k

vi+ 1
2 ,j+

1
2 ,k

− (̃ρU)
y

i+ 1
2 ,j−

1
2 ,k

vi+ 1
2 ,j−

1
2 ,k

∆y

+
(Jξ

13)i+ 1
2 ,j,k+

1
2
(̃ρU)

z

i+ 1
2 ,j,k+

1
2
u
z
i+ 1

2 ,j,k+
1
2
− (Jξ

13)i+ 1
2 ,j,k−

1
2
(̃ρU)

z

i+ 1
2 ,j,k−

1
2
u
z
i+ 1

2 ,j,k−
1
2

∆ξ

+
(Jξ

23)i+ 1
2 ,j,k+

1
2
(̃ρU)

z

i+ 1
2 ,j,k+

1
2
vy

xz

i+ 1
2 ,j,k+

1
2
− (Jξ

23)i+ 1
2 ,j,k−

1
2
(̃ρU)

z

i+ 1
2 ,j,k−

1
2
vy

xz

i+ 1
2 ,j,k−

1
2

∆ξ

+
(Jξ

33)i+ 1
2 ,j,k+

1
2
(̃ρU)

z

i+ 1
2 ,j,k+

1
2
w

x
i+ 1

2 ,j,k+
1
2
− (Jξ

33)i+ 1
2 ,j,k−

1
2
(̃ρU)

z

i+ 1
2 ,j,k−

1
2
w

x
i+ 1

2 ,j,k−
1
2

∆ξ

+
Pi+1,j,k − Pi,j,k

∆x

+
(Jξ

13)i+ 1
2 ,j,k+

1
2
P

xz

i+ 1
2 ,j,k+

1
2
− (Jξ

13)i+ 1
2 ,j,k−

1
2
P

xz

i+ 1
2 ,j,k−

1
2

∆ξ

]
,

(4.32)

where (̃ρU)
x

i,j,k, (̃ρU)
y

i+ 1
2 ,j+

1
2 ,k

and (̃ρU)
z

i+ 1
2 ,j,k+

1
2
is obtained according to

the method of eq(3.20)-(3.22). The velocities at the cell wall for the staggered
control volume to x direction are defined by eq(3.23)-(3.25). u

z
and vy

xz
are

defined as

u
z
i+ 1

2 ,j,k+
1
2
=

ui+ 1
2 ,j,k+1 + ui+ 1

2 ,j,k

2
, (4.33)

vy
xz

i+ 1
2 ,j,k+

1
2
=

vyi+1,j,k+1 + vyi+1,j,k + vyi,j,k+1 + vyi,j,k
4

. (4.34)

P
xz

is defined as

P
xz

i+ 1
2 ,j,k+

1
2
= G

1
2

i+ 1
2 ,j,k+

1
2

pi+1,j,k+1 + pi+1,j,k + pi,j,k+1 + pi,j,k
4

. (4.35)

The momentum equations in the y and z directions are descretized in the
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same way:

(
∂ρV

∂t

)
i,j+ 1

2 ,k

= −

[
(̃ρV )

x

i+ 1
2 ,j+

1
2 ,k

ui+ 1
2 ,j+

1
2 ,k

− (̃ρV )
x

i− 1
2 ,j+

1
2 ,k

ui− 1
2 ,j+

1
2 ,k

∆x

+
(̃ρV )

y

i,j+1,kvi,j+1,k − (̃ρV )
y

i,j,kvi,j,k

∆y

+
(Jξ

13)i,j+ 1
2 ,k+

1
2
(̃ρV )

z

i,j+ 1
2 ,k+

1
2
uxyz

i,j+ 1
2 ,k+

1
2
− (Jξ

13)i,j+ 1
2 ,k−

1
2
(̃ρV )

z

i,j+ 1
2 ,k−

1
2
uxyz

i,j+ 1
2 ,k−

1
2

∆ξ

+
(Jξ

23)i,j+ 1
2 ,k+

1
2
(̃ρV )

z

i,j+ 1
2 ,k+

1
2
v
z
i,j+ 1

2 ,k+
1
2
− (Jξ

23)i,j+ 1
2 ,k−

1
2
(̃ρV )

z

i,j+ 1
2 ,k−

1
2
v
z
i,j+ 1

2 ,k−
1
2

∆ξ

+
(Jξ

33)i,j+ 1
2 ,k+

1
2
(̃ρV )

z

i,j+ 1
2 ,k+

1
2
w

y

i,j+ 1
2 ,k+

1
2
− (Jξ

33)i,j+ 1
2 ,k−

1
2
(̃ρV )

z

i,j+ 1
2 ,k−

1
2
w

y

i,j+ 1
2 ,k−

1
2

∆ξ

+
Pi,j+1,k − Pi,j,k

∆y

+
(Jξ

23)i,j+ 1
2 ,k+

1
2
P

yz

i,j+ 1
2 ,k+

1
2
− (Jξ

23)i,j+ 1
2 ,k−

1
2
P

yz

i,j+ 1
2 ,k−

1
2

∆ξ

]
,

(4.36)

(
∂ρW

∂t

)
i,j,k+ 1

2

= −

[ ˜(ρW )
x

i+ 1
2 ,j,k+

1
2
ui+ 1

2 ,j,k+
1
2
− ˜(ρW )

x

i− 1
2 ,j,k+

1
2
ui− 1

2 ,j,k+
1
2

∆x

+

˜(ρW )
y

i,j+ 1
2 ,k+

1
2
vi,j+ 1

2 ,k+
1
2
− ˜(ρW )

y

i,j− 1
2 ,k+

1
2
vi,j− 1

2 ,k+
1
2

∆y

+
(Jξ

13)i,j,k+1
˜(ρW )

z

i,j,k+1u
x
i,j,k+1 − (Jξ

13)i,j,k
˜(ρW )

z

i,j,ku
x
i,j,k

∆ξ

+
(Jξ

23)i,j,k+1
˜(ρW )

z

i,j,k+1v
y
i,j,k+1 − (Jξ

23)i,j,k
˜(ρW )

z

i,j,kv
y
i,j,k

∆ξ

+
(Jξ

33)i,j,k+1
˜(ρW )

z

i,j,k+1w
z
i,j,k+1 − (Jξ

33)i,j,k
˜(ρW )

z

i,j,kw
z
i,j,k

∆ξ

+
(Jξ

33)i,j,k+1Pi,j,k+1 − (Jξ
33)i,j,kPi,j,k

∆ξ

]
. (4.37)
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4.3.3 Energy equation

(
∂ρΘ

∂t

)
i,j,k

= −

[
(ρU)i+ 1

2 ,j,k
θi+ 1

2 ,j,k
− (ρU)i− 1

2 ,j,k
θi− 1

2 ,j,k

∆x

+
(ρV )i,j+ 1

2 ,k
θi,j+ 1

2 ,k
− (ρV )i,j− 1

2 ,k
θi,j− 1

2 ,k

∆y

+
(Jξ

13)i,j,k+ 1
2
(̃ρU)

xz

i,j,k+ 1
2
θi,j,k+ 1

2
− (Jξ

13)i,j,k− 1
2
(̃ρU)

xz

i,j,k− 1
2
θi,j,k− 1

2

∆ξ

+
(Jξ

23)i,j,k+ 1
2
(̃ρV )

yz

i,j,k+ 1
2
θi,j,k+ 1

2
− (Jξ

23)i,j,k− 1
2
(̃ρV )

yz

i,j,k− 1
2
θi,j,k− 1

2

∆ξ

+
(Jξ

33)i,j,k+ 1
2
(ρW )i,j,k+ 1

2
θi,j,k+ 1

2
− (Jξ

33)i,j,k+ 1
2
(ρW )i,j,k− 1

2
θi,j,k− 1

2

∆ξ

]
(4.38)

where θi+ 1
2 ,j,k

, θi,j+ 1
2 ,k

and θi,j,k+ 1
2
are obtained according to the method of

eq(3.29)-(3.31).
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Chapter 5

Map factor

Corresponding author : Seiya Nishizawa

5.1 Coordinate transform

A orthogonal rectangular coordinate (x, y, z). A orthogonal curvilinear coordi-
nate (ξ, η, ζ).

The transform is defined by

eξ =
∂x

∂ξ
êx +

∂y

∂ξ
êy +

∂z

∂ξ
êz, (5.1)

eη =
∂x

∂η
êx +

∂y

∂η
êy +

∂z

∂η
êz, (5.2)

eζ =
∂x

∂ζ
êx +

∂y

∂ζ
êy +

∂z

∂ζ
êz. (5.3)

Reverse transform is

êx =
∂ξ

∂x
eξ +

∂η

∂x
eη +

∂ζ

∂x
eζ , (5.4)

êy =
∂η

∂y
eξ +

∂η

∂y
eη +

∂ζ

∂y
eζ , (5.5)

êz =
∂ζ

∂z
eξ +

∂η

∂z
eη +

∂ζ

∂z
eζ . (5.6)

The Jacobian matrix is {∂ξk

∂xi }.
The reverse transform after the transform of the transform after the reverse

transform make a vector to the original vector;

∂ξk

∂xi

∂xi

∂ξl
= δkl , (5.7)

∂xi

∂ξk
∂ξk

∂xj
= δij , (5.8)

where index which appares upper and lower suffix in a single term implies sum-
mation of the term over set 1, 2, 3 (Einstein notation).
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Spatial parial derivative is tranformed with the Jacobian matrix (covariant
transform);

∂

∂ξk
=

∂xi

∂ξk
∂

∂xi
, (5.9)

∂

∂xi
=

∂ξk

∂xi

∂

∂ξk
. (5.10)

Velocity is transformed with the inverse of the Jacobian matrix (cotravariant
transform);

dξk =
∂ξk

∂xi
dxi, (5.11)

dxi =
∂xi

∂ξk
dξk. (5.12)

The metric tensor, gkl is defined by

gkl = ek · el =
(
∂xi

∂ξk
êi

)
·
(
∂xj

∂ξl
êj

)
=

∂xi

∂ξk

∂xi

∂ξl
. (5.13)

For orthogonal curvilinear coordinates, the matrix gkl is diagonal. Metric
factor, hk is defined as

h2
k = gkk =

∑
i

(
∂xi

∂ξk

)2

. (5.14)

Here we define the matrix, Eξ is

Eξ = (eξ eη eζ) ·H−1 = Ex ·
{
∂xi

∂ξk

}
·H−1, (5.15)

where Ex = (êx êy êz), and

H =

 h1 0 0
0 h2 0
0 0 h3

 . (5.16)

The vector 1
hk

ek is unit vector and orthogonal each other, so the inverse of the

Eξ is ET
ξ . (

Ex ·
{
∂xi

∂ξk

}
·H−1

)−1

=

(
Ex ·

{
∂xi

∂ξk

}
·H−1

)T

,

H ·
{
∂ξi

∂xk

}
·E−1

x = H−1 ·
{
∂xi

∂ξk

}T

·ET
x ,

{
∂ξi

∂xk

}
= H−2 ·

{
∂xi

∂ξk

}T

·ET
x ·Ex

= H−2 ·
{
∂xk

∂ξi

}
. (5.17)
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That is
∂ξk

∂xi
=

1

h2
k

∂xi

∂ξk
. (5.18)

5.2 Governing equations

5.2.1 Continuous equiation

Divergence of ρu is

∂

∂xi
(ρdxi) =

∂ξk

∂xi

∂

∂ξk

(
ρ
∂xi

∂ξl
dξl
)

=
∂ξk

∂xi

∂xi

∂ξl
∂

∂ξk
(ρdξl) + ρdξl

∂ξk

∂xi

∂2xi

∂ξk∂ξl

=
∂

∂ξk
(ρdξk) +

∑
k

1

h2
k

ρdξl
∂xi

∂ξk
∂2xi

∂ξk∂ξl

=
∂

∂ξk
(ρdξk) +

∑
k

1

2h2
k

ρdξl
∂

∂ξl

(
∂xi

∂ξk

)2

=
∂

∂ξk
(ρdξk) +

∑
k

1

2h2
k

ρdξl
∂

∂ξl
h2
k

=
∂

∂ξk
(ρdξk) +

∑
k

1

2
ρdξl

∂

∂ξl
lnh2

k

=
∂

∂ξk
(ρdξk) + ρdξk

∂

∂ξk
ln(
∏
l

hl)

= J

{
J−1 ∂

∂ξk
(ρdξl) + ρdξk

∂

∂ξk
J−1

}
= J

∂

∂ξk
(J−1ρdξk), (5.19)

where J is the Jacobian of the Jacobian matrix and

J =
1∏
k hk

. (5.20)

The continuous equation is

∂ρ

∂t
+ J

∂

∂ξk
ρdξk

J
= 0. (5.21)

5.2.2 Momentum equation

∂ρdξk

∂t
=

∂ξk

∂xi

∂ρdxi

∂t
. (5.22)
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Advection term

∂ξk

∂xi

∂ρdxidxj

∂xj

=
∂ξk

∂xi

(
dxj ∂ρdx

i

∂xj
+ ρdxi ∂dx

j

∂xj

)
=

∂ξk

∂xi

(
∂xj

∂ξl
dξl
)

∂ξm

∂xj

∂

∂ξm

(
ρ
∂xi

∂ξn
dξn
)
+

∂ξk

∂xi
ρ

(
∂xi

∂ξl
dξl
)

∂ξm

∂xj

∂

∂ξm

(
∂xj

∂ξn
dξn
)

= dξl
∂ξk

∂xi

∂

∂ξl

(
ρ
∂xi

∂ξn
dξn
)
+ ρdξk

∂ξm

∂xj

∂

∂ξm

(
∂xj

∂ξn
dξn
)

= dξl
∂ξk

∂xi

{
∂xi

∂ξn
∂

∂ξl
(ρdξn) + ρdξn

∂2xi

∂ξl∂ξn

}
+ ρdξk

∂ξm

∂xj

(
∂xj

∂ξn
∂dξn

∂ξm
+ dξn

∂2xj

∂ξm∂ξn

)
= dξl

∂

∂ξl
(
ρdξk

)
+ ρdξldξn

∂ξk

∂xi

∂2xi

∂ξl∂ξn
+ ρdξk

∂dξm

∂ξm
+ ρdξkdξn

∂ξm

∂xj

∂2xj

∂ξm∂ξn

=
∂

∂ξl
(
ρdξkdξl

)
+ ρdξldξn

∂ξk

∂xi

∂2xi

∂ξl∂ξn
+ ρdξkdξl

∂ξm

∂xi

∂2xi

∂ξl∂ξm

= J

{
J−1 ∂

∂ξl
(ρdξkdξl) + ρdξkdξl

∂J−1

∂ξl

}
+ ρdξldξm

∂ξk

∂xi

∂2xi

∂ξl∂ξm

= J
∂

∂ξl
J−1ρdξkdξl + ρdξldξmΓk

lm, (5.23)

where Γ is the Christoffel symbols of the second kind, and

Γk
lm =

∂ξk

∂xi

∂2xi

∂ξl∂ξm

=
1

2
gkn

(
∂gmn

∂ξl
+

∂gln
∂ξm

− ∂glm
∂ξn

)
=

1

h2
k

(
hk

∂hk

∂ξl
δkm + hk

∂hk

∂ξm
δkl − hl

∂hl

∂ξk
δlm

)
, (5.24)

where {gkn} is inverse matrix of {gkn}.

Coriolis term

∂ξk

∂xi
ϵijpf jρdxp = ϵklm

1

hkhlhm
f̂ ldξm, (5.25)

where ϵ is the Levi-Civita symbol, and

f̂ l =
∂ξl

∂xj
f j . (5.26)

Pressure gradient term

∂ξk

∂xi

∂p

∂xi
=

∂ξk

∂xi

(
∂ξl

∂xi

∂p

∂ξl

)
=

1

h2
k

∂xi

∂ξk
∂ξl

∂xi

∂p

∂ξl

=
1

h2
k

∂p

∂ξk
. (5.27)
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After all, momentum equation is

∂

∂t
ρdξk + J

∂

∂ξl
(
J−1ρdξkdξl

)
+ ρdξldξmΓk

lm + ϵklm
1

hkhlhm
f̂ lρdξm

= − 1

h2
k

∂p

∂ξk
+ ρgp

∂ξk

∂xp
. (5.28)

5.3 Map factor

We introduce Map factor m,n.

1

m

a+ z

a
= h1, (5.29)

1

n

a+ z

a
= h2, (5.30)

1 = h3, (5.31)

where is a is radius of the planet. Assuming shallow atmospher,

m = h−1
1 , (5.32)

n = h−1
2 . (5.33)

Normalized velocity is defined as

û = h1
dξ

dt
=

1

m

dξ

dt
, (5.34)

v̂ = h2
dη

dt
=

1

n

dη

dt
, (5.35)

ŵ = h3
dζ

dt
=

dζ

dt
. (5.36)

The continuous equation becomes

∂ρ

∂t
+mn

∂

∂ξ

ρû

n
+mn

∂

∂η

ρv̂

m
+

∂

∂ζ
ρŵ = 0 (5.37)

The momentum equations are

∂ρûk

∂t
+mn

∂

∂ξ

ρûûk

n
+mn

∂

∂η

ρv̂ûk

m
+

∂

∂ζ
ρŵûk

+mmkρûû
k ∂

∂ξ

1

mk
+ nmkρv̂û

k ∂

∂η

1

mk

−mmkρû
2 ∂

∂ξk
1

m
− nmkρv̂

2 ∂

∂ξk
1

n
+ ϵklmmlf̂

lρûm

= −mk
∂p

∂ζk
+ ρgδ3k. (5.38)
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This equation can also be written as

∂ρu

∂t
+mn

∂

∂ξ

ρuu

n
+mn

∂

∂η

ρuv

m
+

∂

∂ζ
ρuw

− fρv −mnρv

{
v
∂

∂ξ

(
1

n

)
− u

∂

∂η

(
1

m

)}
= −m

∂p

∂ξ
, (5.39)

∂ρv

∂t
+mn

∂

∂ξ

ρuv

n
+mn

∂

∂η

ρvv

m
+

∂

∂ζ
ρvw

+ fρu+mnρu

{
v
∂

∂ξ

(
1

n

)
− u

∂

∂η

(
1

m

)}
= −n

∂p

∂η
, (5.40)

∂ρw

∂t
+mn

∂

∂ξ

ρuw

n
+mn

∂

∂η

ρvw

m
+

∂

∂ζ
ρww = −∂p

∂ζ
− ρg. (5.41)

The thermodynamical and tracer equations

∂ρϕ

∂t
+mn

∂

∂ξ

ρûϕ

n
+mn

∂

∂η

ρv̂ϕ

m
+

∂ρŵϕ

∂ζ
= 0. (5.42)
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Chapter 6

Horizontal explicit virtical
implicit

Corresponding author : Seiya Nishizawa

6.1 Equations

∂G
1
2 ρ

∂t
= −∂J33G

1
2 ρw

∂ξ
+G

1
2Sρ, (6.1)

∂G
1
2 ρw

∂t
= −∂J33G

1
2 p

∂ξ
−G

1
2 ρg +G

1
2Sρw, (6.2)

∂G
1
2 ρθ

∂t
= −∂J33G

1
2 ρwθ

∂ξ
+G

1
2Sρθ, (6.3)

p = P00

(
Rρθ

P00

)cp/cv

, (6.4)

where

G
1
2Sρ = −G

1
2
∂ρu

∂x
−G

1
2
∂ρv

∂y

= −∂G
1
2 ρu

∂x∗ − ∂G
1
2 ρv

∂y∗
− ∂J13G

1
2 ρu+ J23G

1
2 ρv

∂ξ
, (6.5)

G
1
2Sρw = −G

1
2
∂uρw

∂x
−G

1
2
∂vρw

∂y
−G

1
2
∂wρw

∂z

= −∂G
1
2uρw

∂x∗ − ∂G
1
2 vρw

∂y∗
− ∂

∂ξ
(J13G

1
2uρw + J23G

1
2 vρw + J33G

1
2wρw),

(6.6)

G
1
2Sρθ = −G

1
2
∂uρθ

∂x
−G

1
2
∂vρθ

∂y

= −∂G
1
2uρθ

∂x∗ − ∂G
1
2 vρθ

∂y∗
− ∂J13G

1
2uρθ + J23G

1
2 vρθ

∂ξ
. (6.7)
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6.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave in vertical direction.

ρn+1 − ρn

∆t
= −G− 1

2
∂

∂ξ
{J33G

1
2 (ρw)n+1}+ Sn

ρ , (6.8)

(ρw)n+1 − (ρw)n

∆t
= −G− 1

2
∂

∂ξ
(J33G

1
2 pn+1)− gρn+1 + Sn

ρw, (6.9)

pn+1 − pn

∆t
=

cnp
cnv

pn

(ρθ)n
∂ρθ

∂t
, (6.10)

∂ρθ

∂t
= −G− 1

2
∂

∂ξ
{J33G

1
2 θn(ρw)n+1}+ Sn

ρθ. (6.11)

Note that the potential temperature at previous step, θn, is used.
Eliminating pn+1, (ρθ)n+1, and ρn+1, the Helmholtz equation for (ρw)n+1 is

obtained:

(ρw)n+1 − ∆t2g

G
1
2

∂

∂ξ
{J33G

1
2 (ρw)n+1} − ∆t2

G
1
2

∂

∂ξ

(
J33

cnpp
n

cnv (ρθ)
n

∂J33G
1
2 θn(ρw)n+1

∂ξ

)

= (ρw)n − ∆t

G
1
2

∂

∂ξ

{
J33G

1
2 pn

(
1 +

∆tcnpS
n
ρθ

cnv (ρθ)
n

)}
−∆tg(ρn +∆tSn

ρ ) + ∆tSn
ρw.

(6.12)

Vertical differencials are discritized as follows:

(ρw)n+1
k+1/2 −

∆t2g

(∆zk+1 +∆zk)G
1
2

k+1/2

{
J33G

1
2 (ρw)n+1

k+3/2 − J33G
1
2 (ρw)n+1

k−1/2

}

− ∆t2

∆zk+1/2G
1
2

k+1/2

{(
J33

cpp

cvρθ

)
k+1

J33G
1
2 (ρw)k+3/2θ̂k+3/2 − J33G

1
2 (ρw)k+1/2θ̂k+1/2

∆zk+1

−
(
J33

cpp

cvρθ

)
k

J33G
1
2 (ρw)k+1/2θ̂k+1/2 − J33G

1
2 (ρw)k−1/2θ̂k−1/2

∆zk

}
= (ρw)nk+1/2

− ∆t

∆zk+1/2G
1
2

k+1/2

{
J33G

1
2 pk+1

(
1 +

∆tcpSρθ

cvρθ

)
k+1

− J33G
1
2 pk

(
1 +

∆tcpSρθ

cvρθ

)
k

}

− ∆tg

2
{(ρ+∆tSρ)k+1 + (ρ+∆tSρ)k}+∆tSρw, (6.13)

where

θ̂k+1/2 =
1

12
(−θk+2 + 7θk+1 + 7θk − θk−1) . (6.14)
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Finally we obtained

− 1

G
1
2

k+1/2

{
θ̂k+3/2

∆zk+1/2
Ak+1 +Bk+1/2

}
(ρw)n+1

k+3/2 (6.15)

+

1 +
θ̂k+1/2

∆zk+1/2G
1
2

k+1/2

(Ak+1 +Ak)

 (ρw)n+1
k+1/2 (6.16)

− 1

G
1
2

k+1/2

{
θ̂k−1/2

∆zk+1/2
Ak −Bk+1/2

}
(ρw)n+1

k−1/2 (6.17)

= Ck+1/2, (6.18)

where

Ak =
∆t2J33G

1
2

∆zk

(
J33

cpp

cvρθ

)
k

, (6.19)

Bk+1/2 =
∆t2gJ33G

1
2

∆zk+1 +∆zk
, (6.20)

Ck+1/2 = (ρw)nk+1/2

−∆t
J33G

1
2 pk+1

(
1 + ∆t

cpSρθ

cvρθ

)
k+1

− J33G
1
2 pk

(
1 + ∆t

cpSρθ

cvρθ

)
k

∆zk+1/2G
1
2

k+1/2

−∆tg
(ρ+∆tSρ)k+1 + (ρ+∆tSρ)k

2
+ ∆tSρw. (6.21)

40



Chapter 7

Horizontally and virtically
implicit

Corresponding author : Seiya Nishizawa

7.1 Equations

The governing equation is the followings:

∂G
1
2 ρ′

∂t
= −∂G

1
2 ρu

∂x∗ − ∂G
1
2 ρv

∂y∗
− ∂J33G

1
2 ρw

∂ξ
+G

1
2Sρ, (7.1)

∂G
1
2 ρu

∂t
= −∂G

1
2 p′

∂x∗ +G
1
2Sρu, (7.2)

∂G
1
2 ρv

∂t
= −∂G

1
2 p′

∂y∗
+G

1
2Sρv, (7.3)

∂G
1
2 ρw

∂t
= −∂J33G

1
2 p′

∂ξ
−G

1
2 ρ′g +G

1
2Sρw, (7.4)

∂G
1
2 ρθ

∂t
= −∂G

1
2uρθ

∂x∗ − ∂G
1
2 vρθ

∂y∗
− ∂J33G

1
2wρθ

∂ξ
+G

1
2Sρθ, (7.5)

p = P00

(
Rρθ

P00

)cp/cv

, (7.6)
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where

G
1
2Sρ = −∂J13G

1
2 ρu+ J23G

1
2 ρv

∂ξ
, (7.7)

G
1
2Sρu = −∂G

1
2uρu

∂x∗ − ∂G
1
2 vρu

∂y∗
− ∂

∂ξ
(J13G

1
2uρu+ J23G

1
2 vρu+ J33G

1
2wρu)

− ∂

∂ξ
(J13G

1
2 p′), (7.8)

G
1
2Sρv = −∂G

1
2uρv

∂x∗ − ∂G
1
2 vρv

∂y∗
− ∂

∂ξ
(J13G

1
2uρv + J23G

1
2 vρv + J33G

1
2wρv),

− ∂

∂ξ
(J23G

1
2 p′), (7.9)

G
1
2Sρw = −∂G

1
2uρw

∂x∗ − ∂G
1
2 vρw

∂y∗
− ∂

∂ξ
(J13G

1
2uρw + J23G

1
2 vρw + J33G

1
2wρw),

(7.10)

G
1
2Sρθ = −∂J13G

1
2uρθ + J23G

1
2 vρθ

∂ξ
. (7.11)

Prime describes deviation from a reference state, and the reference state depends
only z and satisfies in hydrostatic barance:

p′ = p− p̄, (7.12)

ρ′ = ρ− ρ̄, (7.13)

dp̄(z)

dz
= −ρ̄(z)g. (7.14)

7.2 Descritization

For the temporal discritization, backward temporal integrations are employed
for the terms related to acoustic wave.

ρ′n+1 − ρ′n

∆t
= −G− 1

2
∂

∂x∗ {G
1
2 (ρu)n+1} −G− 1

2
∂

∂y∗
{G 1

2 (ρv)n+1}

−G− 1
2
∂

∂ξ
{J33G

1
2 (ρw)n+1}+ Sn

ρ , (7.15)

(ρu)n+1 − (ρu)n

∆t
= −G− 1

2
∂

∂x∗ (G
1
2 p′n+1) + Sn

ρu, (7.16)

(ρv)n+1 − (ρv)n

∆t
= −G− 1

2
∂

∂y∗
(G

1
2 p′n+1) + Sn

ρv, (7.17)

(ρw)n+1 − (ρw)n

∆t
= −G− 1

2
∂

∂ξ
(J33G

1
2 p′n+1)− gρ′n+1 + Sn

ρw, (7.18)

p′n+1 − p′n

∆t
= P00

(
R

P00

)κn

κn(ρθ)n
κn−1 ∂ρθ

∂t
= κn pn

(ρθ)n
∂ρθ

∂t
, (7.19)

∂ρθ

∂t
= −G− 1

2
∂

∂x∗ {G
1
2 θn(ρu)n+1} −G− 1

2
∂

∂y∗
{G 1

2 θn(ρv)n+1}

−G− 1
2
∂

∂ξ
{J33G

1
2 θn(ρw)n+1}+ Sn

ρθ, (7.20)
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where κ = cp/cv. Note that the potential temperature at previous step, θn, is
used.

In order to obtain Helmholtz equation, a linearlized equation for the density
is used instead of Eq. 7.15.

ρ′n+1 ∼ ρ′n +
1

κn

ρn

pn
{
p′n+1 − p′n

}
. (7.21)

Here we assume that the potential temperature does not change during a tem-
poral step due to acoustic wave.

Eliminating (ρu)n+1, (ρv)n+1(ρw)n+1,, and ρ′n+1, the Helmholtz equation
for p′n+1 is obtained.

∂

∂x∗

(
θn

∂G
1
2 p′n+1

∂x∗

)
+

∂

∂y∗

(
θn

∂G
1
2 p′n+1

∂y∗

)
+

∂

∂ξ

(
J33θ

n ∂J33G
1
2 p′n+1

∂ξ

)

+ g
∂

∂ξ

(
J33G

1
2 θnp′n+1

C2n
s

)
− G

1
2 θnp′n+1

∆t2C2n
s

=
1

∆t

[
∂G

1
2 θn

{
(ρu)n +∆tSn

ρu

}
∂x∗ +

∂G
1
2 θn

{
(ρv)n +∆tSn

ρv

}
∂y∗

+
∂J33G

1
2 θn

{
(ρw)n +∆tSn

ρw

}
∂ξ

]

+ g
∂

∂ξ

{
J33G

1
2 θnp′n

C2n
s

− J33G
1
2 (ρ′θ)n

}
+

G
1
2Sρθ

∆t
− G

1
2 θnp′n

∆t2C2n
s

, (7.22)

where

C2
s = κ

p

ρ
. (7.23)
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Spatial differentials are descritized.

1

∆xi

(
θ̂i+1/2

(G
1
2 p′n+1)i+1 −G

1
2 p′n+1

∆xi+1/2
− θ̂i−1/2

G
1
2 p′n+1 − (G

1
2 p′n+1)i−1

∆xi−1/2

)

+
1

∆yj

(
θ̂j+1/2

(G
1
2 p′n+1)j+1 −G

1
2 p′n+1

∂yj+1/2
− θ̂j−1/2

G
1
2 p′n+1 − (G

1
2 p′n+1)j−1

∂yj−1/2

)

+
1

∆zk

{
(J33)k+1/2θ̂k+1/2

J33G
1
2 p′n+1

k+1 − J33G
1
2 p′n+1

∆zk+1/2
− (J33)k−1/2θ̂k−1/2

J33G
1
2 p′n+1 − J33G

1
2 p′n+1

k−1

∆zk−1/2

)

+ g
1

∆k+1/2 +∆zk−1/2

{
J33G

1
2 θp′n+1

k+1

C2
sk+1

−
J33G

1
2 θp′n+1

k−1

C2
sk−1

}
− G

1
2 θp′n+1

∆t2C2
s

=
1

∆t

G 1
2

i+1/2θ̂i+1/2

{
(ρu)i+1/2 +∆t(Sρu)i+1/2

}
−G

1
2

i−1/2θ̂i−1/2

{
(ρu)i−1/2 +∆t(Sρu)i−1/2

}
∆xi

+
G

1
2

j+1/2θ̂j+1/2

{
(ρv)j+1/2 +∆t(Sρv)j+1/2

}
−G

1
2

j−1/2θ̂j−1/2

{
(ρv)j−1/2 +∆t′Sρv)j−1/2

}
∆yj

+
J33G

1
2 θ̂k+1/2

{
(ρw)k+1/2 +∆t(Sρw)k+1/2

}
− J33G

1
2 θ̂k−1/2

{
(ρw)k−1/2 +∆t(Sρw)k−1/2

}
∆zk

]

+ g
1

∆zk+1/2 +∆zk−1/2

{
J33G

1
2 θp′nk+1

C2
sk+1

−
J33G

1
2 θp′nk−1

C2
sk−1

− J33G
1
2 {(ρ′θ)k+1 − (ρ′θ)k−1}

}

+
G

1
2Sρθ

∆t
− G

1
2 θp′n

∆t2C2
s

. (7.24)
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Chapter 8

The physical
parameterization

8.1 Turbulence

Correnspoinding author : Seiya Nishizawa

8.1.1 Spatial filter

The governing euqations are the followings:

∂ρ

∂t
+

∂uiρ

∂xi
= 0 (8.1)

∂ρui

∂t
+

∂ujρui

∂xj
= − ∂p

∂xi
+ gρδi3 (8.2)

∂ρθ

∂t
+

∂uiρθ

∂xi
= Q (8.3)

Spatial filtering the continuity equation yields

∂ρ

∂t
+

∂uiρ

∂xi
= 0, (8.4)

where ϕ means the spatial filtered quantity of an arbitrary variable ϕ. The
Favre filtering (Favre, 1983) defined by

ϕ̃ =
ρϕ

ρ
(8.5)

makes the equation (8.4)
∂ρ

∂t
+

∂ũiρ

∂xi
= 0. (8.6)
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The momentam equations become

∂ρui

∂t
+

∂ujρui

∂xj
= − ∂p

∂xi
+ ρgδi3 (8.7)

∂ρũi

∂t
+

∂ũj ρũi

∂xj
= − ∂p

∂xi
+ gρδi3 −

∂

∂xj
(uiρuj − ũjρũi) (8.8)

∂ρũi

∂t
+

∂ũj ρũi

∂xj
= − ∂p

∂xi
+ gρδi3 −

∂

∂xj
ρ (ũiuj − ũj ũi) . (8.9)

As the same matter, the thermal equation becomes

∂ρθ̃

∂t
+

∂ũiρθ̃

∂xi
= Q− ∂

∂xi
ρ
(
ũiθ − ũiθ̃

)
. (8.10)

Then, the govering equations for the prognositic variables (ρ, ρũi, and ρθ̃)
are

∂ρ

∂t
+

∂ũiρ

∂xi
= 0, (8.11)

∂ρũi

∂t
+

∂ũjρũi

∂xj
= − ∂p

∂xi
+ gρδi3 −

∂ρτij
∂xj

, (8.12)

∂ρθ̃

∂t
+

∂ũiρθ̃

∂xi
= Q− ∂ρτDi

∂xi
, (8.13)

where

τij = ũiuj − ũiũj , (8.14)

τDi = ũiθ − ũiθ̃. (8.15)

Hereafter, we omite overline and tilde representing spatial and the Favre
filters.

8.1.2 SGS model

Smagorinsky-Lilly model

The eddy momentum flux is

τij −
1

3
τkkδij = −2νSGS

(
Sij −

1

3
Skkδij

)
, (8.16)

where Sij is the strain tensor,

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (8.17)

and
νSGS = (Csλ)

2 |S| . (8.18)

Cs is the Smagorinsky constant, λ is a characteristic SGS length scale, and |S|
is scale of the tensor S,

|S| =
√
2SijSij . (8.19)
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Then the eddy momentum flux is

τij = −2νSGS

(
Sij −

1

3
Skkδij

)
+

2

3
TKEδij , (8.20)

where

TKE =
1

2
τii =

(
νSGS

Ckλ

)2

, (8.21)

where Ck is a SGS constant and assumed to be 0.1 by following Deardorff (1980)
and Moeng and Wyngaard (1988).

The eddy heat flux is

τDi = −DSGS
∂θ

∂xi
, (8.22)

where

DSGS =
1

Pr
νSGS . (8.23)

Pr is the turbulent Prandtl number. For the other scalar constants such as
water vaper, DSGS is also used as their diffusivity.

To include buoyancy effects, the extension of the basic Smagorinsky devel-
oped by Brown et al. (1994) is used.

νSGS = (Csλ)
2|S|

√
1−Rf, (8.24)

where Rf is the flux Richardson number (Rf = Ri/Pr). Ri is the local (point-
wise) gradient Richardson number,

Ri =
N2

|S|2
, (8.25)

and N2 is the Brunt-Visala frequency,

N2 =
g

θ

∂θ

∂z
. (8.26)

The Prandtl number is an unknow parameter, and it depends on the Richardson
number, while it is offten assumed a constant value. For the unstable conditions
(Ri < 0),

νSGS = (Csλ)
2 |S|

√
1− cRi, (8.27)

DSGS =
1

PrN
(Csλ)

2 |S|
√
1− bRi, (8.28)

where PrN is the Prandtl number in neutral condtions. The values of c, b, PrN
are set 16, 40, and 0.7, respectively. Then the Prandtl number is

Pr = PrN

√
1− cRi

1− bRi
. (8.29)

For the stable condtions, when the Richardson number is smaller than the crit-
ical Richardson number, Ric(= 0.25),

νSGS = (Csλ)
2 |S|

(
1− Ri

Ric

)4

, (8.30)

DSGS =
1

PrN
(Csλ)

2 |S|
(
1− Ri

Ric

)4

(1− gRi) . (8.31)
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The constant g is determined as the Prandtl number becomes 1 in the limit of
Ri → RiC and then is (1− PrN )/Ric. The Prandtl number is

Pr = PrN

{
1− (1− PrN )

Ri

Ric

}−1

. (8.32)

For the strongly stable condistions (Ri > Ric), the eddy viscosity and the
diffusivity for scalars are 0;

νSGS = 0, (8.33)

DSGS = 0. (8.34)

The Prandtl number is Pr = 1.
Scotti et al. (1993) suggested that the length scale should depend on the

grid aspect ratio. In the equilibrium condition with the universal Kolmogorov
spectrum, energy cascaded to the SGS turbulence, which equals to SGS dissi-
pation, must not depend on grid aspect ratio. The energy flux or dissipation
can be written as function of Sij and the length scale, λ. The Sij depends on
the grid aspect ratio, so the length scale should have dependency on the aspect
ratio which cancels the dependency of the Sij . With some approximations, they
obtained an approximate function of the length scale 1 :

λ = f(a)∆, (8.35)

where f(a) is a function of grid aspect ratio, a, and

f(a) = 1.736a1/3{
4P1(b1)a

1/3 + 0.222P2(b1)a
−5/3 + 0.077P3(b1)a

−11/3

− 3b1 + 4P1(b2) + 0.222P2(b2) + 0.077P3(b2)− 3b2

}−3/4. (8.36)

Here b1 = arctan(1/a), b2 = arctan(a) = π/2− b1, and

P1(z) = 2.5P2(z)− 1.5(cos(z))2/3 sin(z), (8.37)

P2(z) = 0.98z + 0.073z2 − 0.418z3 + 0.120z4, (8.38)

P3(z) = 0.976z + 0.188z2 + 1.169z3 + 0.755z4 − 0.151z5. (8.39)

For instance, f(2) = 1.036, f(5) = 1.231, f(10) = 1.469, and f(20) = 1.790. ∆
is the filter length, and is defined to be proportional to (∆x∆y∆z)1/3 here. In
this model, we introduce a numerical filter to reduce two-grid noise discussed
above. This filter reduces two-grid scale physical variability as well. This means
that two-grid scale would be preferred for the filter length in this model rather
than grid spacing itself, that is,

∆ = 2(∆x∆y∆z)1/3. (8.40)

1They considered two grid aspect ratios, while we here think only one, i.e. ∆x = ∆y.
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Terrain-following coordinate

Tendencies representing effect of the sub-grid scale turbulence with the terrain-
following coordinate are following 2;

∂G
1
2 ρu

∂t
= −∂G

1
2 ρτ11
∂x∗ − ∂G

1
2 ρτ12
∂y∗

− ∂J13G
1
2 ρτ11 + J23G

1
2 ρτ12 + J33G

1
2 ρτ13

∂ξ
,

(8.41)

∂G
1
2 ρv

∂t
= −∂G

1
2 ρτ21
∂x∗ − ∂G

1
2 ρτ22
∂y∗

− ∂J13G
1
2 ρτ21 + J23G

1
2 ρτ22 + J33G

1
2 ρτ23

∂ξ
,

(8.42)

∂G
1
2 ρw

∂t
= −∂G

1
2 ρτ31
∂x∗ − ∂G

1
2 ρτ32
∂y∗

− ∂J13G
1
2 ρτ31 + J23G

1
2 ρτ32 + J33G

1
2 ρτ33

∂ξ
,

(8.43)

∂G
1
2 ρθ

∂t
= −∂G

1
2 ρτD1
∂x∗ − ∂G

1
2 ρτD2
∂y∗

− ∂J13G
1
2 ρτD1 + J23G

1
2 ρτD2 + J33G

1
2 ρτD3

∂ξ
(8.44)

G
1
2S11 =

∂G
1
2u

∂x∗ +
∂J13G

1
2u

∂ξ
, (8.45)

G
1
2S22 =

∂G
1
2 v

∂y∗
+

∂J23G
1
2 v

∂ξ
, (8.46)

G
1
2S33 =

∂J33G
1
2w

∂ξ
, (8.47)

G
1
2S12 =

1

2

(
∂G

1
2u

∂y∗
+

∂G
1
2 v

∂x∗ +
∂J23G

1
2u+ J13G

1
2 v

∂ξ

)
, (8.48)

G
1
2S23 =

1

2

(
∂G

1
2w

∂y∗
+

∂J33G
1
2 v + J23G

1
2w

∂ξ

)
, (8.49)

G
1
2S31 =

1

2

(
∂G

1
2w

∂x∗ +
∂J13G

1
2w + J33G

1
2u

∂ξ

)
, (8.50)

G
1
2 τD1 = −DSGS

(
∂G

1
2 θ

∂x∗ +
∂J13G

1
2 θ

∂ξ

)
, (8.51)

G
1
2 τD2 = −DSGS

(
∂G

1
2 θ

∂y∗
+

∂J23G
1
2 θ

∂ξ

)
, (8.52)

G
1
2 τD3 = −DSGS

∂J33G
1
2 θ

∂ξ
, (8.53)

G
1
2N2 =

g

θ

∂J33G
1
2 θ

∂ξ
. (8.54)

2Equations which are not changed in the terrain-following coordinate are ommited.
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8.1.3 descretization

Spatial descretization

We use the 4th order differnce scheme for the advection term as mentioned in
the chapter 3. The τij and τDi are propotional to the square of the grid spacing
(∆2). Due to the consistency with the advection term in terms of order for
spatial difference, the second order central difference scheme is used for terms of
the sub-grid scale turburence. In the following part in this sub-section, overline,
and i, j, k mean as they are in the chapter 3.

Momentam equation The tendencies in the momentam equation related to
the sub-grid scale mode are

∂G
1
2 ρu

∂t i+ 1
2 ,j,k

=− (G
1
2 ρτ11)i+1,j,k − (G

1
2 ρτ11)i,j,k

∆x

−
(G

1
2 ρτ12)i+ 1

2 ,j+
1
2 ,k

− (G
1
2 ρτ12)i+ 1

2 ,j−
1
2 ,k

∆y

−
{G 1

2 ρ(J13τ11 + J23τ12 + J33τ13)}i+ 1
2 ,j,k+

1
2
− {G 1

2 ρ(J13τ11 + J23τ12 + J33τ13)}i+ 1
2 ,j,k−

1
2

∆z
,

(8.55)

∂G
1
2 ρv

∂t i,j+ 1
2 ,k

=−
(G

1
2 ρτ21)i+ 1

2 ,j+
1
2 ,k

− (G
1
2 ρτ21)i− 1

2 ,j+
1
2 ,k

∆x

− (G
1
2 ρτ22)i,j+1,k − (G

1
2 ρτ22)i,j,k

∆y

−
{G 1

2 ρ(J13τ21 + J23τ22 + J33τ23)}i,j+ 1
2 ,k+

1
2
− {G 1

2 ρ(J13τ21 + J23τ22 + J33τ23)}i,j+ 1
2 ,k−

1
2

∆z
,

(8.56)

∂G
1
2 ρw

∂t i,j,k+ 1
2

=−
(G

1
2 ρτ31)i+ 1

2 ,j,k+
1
2
− (G

1
2 ρτ31)i− 1

2 ,j,k+
1
2

∆x

−
(G

1
2 ρτ32)i,j+ 1

2 ,k+
1
2
− (G

1
2 ρτ32)i,j− 1

2 ,k+
1
2

∆y

− {(G 1
2 ρ(J13τ31 + J23τ32 + J33τ33)}i,j,k+1 − {(G 1

2 ρ(J13τ31 + J23τ32 + J33τ33)}i,j,k
∆z

.

(8.57)

The ρ is

ρi,j+ 1
2 ,k+

1
2
=

ρi,j+1,k+1 + ρi,j+1,k + ρi,j,k+1 + ρi,j,k
4

, (8.58)

ρi+ 1
2 ,j,k+

1
2
=

ρi+1,j,k+1 + ρi+1,j,k + ρi,j,k+1 + ρi,j,k
4

, (8.59)

ρi+ 1
2 ,j+

1
2 ,k

=
ρi+1,j+1,k + ρi+1,j,k + ρi,j+1,k + ρi,j,k

4
. (8.60)
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Thermal equation The tendency in the thermal equation related to the sub-
grid scale model is

∂G
1
2 ρθ

∂t i,j,k
=−

(G
1
2 ρτD1 )i+ 1

2 ,j,k
− (G

1
2 ρτD1 )i− 1

2 ,j,k

∆x

−
(G

1
2 ρτD2 )i,j+ 1

2 ,k
− (G

1
2 ρτD2 )i,j− 1

2 ,k

∆y

−
{G 1

2 ρ(J13τ
D
1 + J23τ

D
2 + J33τ

D
3 )}i,j,k+ 1

2
− {G 1

2 ρ(J13τ
D
1 + J23τ

D
2 + J33τ

D
3 )}i,j,k− 1

2

∆z
.

(8.61)

The ρ at half-level is eq.(3.81)-(3.83).
The eddy diffution flux, τD, at half-level is

(G
1
2 τD1 )i+ 1

2 ,j,k
= −DSGS,i+ 1

2 ,j,k

{
(G

1
2 θ)i+1,j,k − (G

1
2 θ)i,j,k

∆x
+

(J13G
1
2 θ)i+ 1

2 ,j,k+
1
2
− (J13G

1
2 θ)i+ 1

2 ,j,k−
1
2

∆z

}
,

(8.62)

(G
1
2 τD2 )i,j+ 1

2 ,k
= −DSGS,i,j+ 1

2 ,k

{
(G

1
2 θ)i,j+1,k − (G

1
2 θ)i,j,k

∆y
+

(J23G
1
2 θ)i,j+ 1

2 ,k+
1
2
− (J23G

1
2 θ)i,j+ 1

2 ,k−
1
2

∆z

}
,

(8.63)

(G
1
2 τD3 )i,j,k+ 1

2
= −DSGS,i,j,k+ 1

2

J33G
1
2 θi,j,k+1 − J33G

1
2 θi,j,k

∆z
. (8.64)

Strain tensor All the strain tensor, eq.(8.17), have to be calculated at full-
level (grid cell center), and some of them are at cell edges.
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• cell center (i, j, k)

(G
1
2S11)i,j,k =

(G
1
2u)i+ 1

2 ,j,k
− (G

1
2u)i− 1

2 ,j,k

∆x
+

(J13G
1
2u)i+ 1

2 ,j,k+
1
2
− (J13G

1
2u)i+ 1

2 ,j,k−
1
2

∆z
,

(8.65)

(G
1
2S22)i,j,k =

(G
1
2 v)i,j+ 1

2 ,k
− (G

1
2 v)i,j− 1

2 ,k

∆y
+

(J23G
1
2 v)i,j+ 1

2 ,k+
1
2
− (J23G

1
2 v)i,j+ 1

2 ,k−
1
2

∆z
,

(8.66)

(G
1
2S33)i,j,k =

J33G
1
2wi,j,k+ 1

2
− J33G

1
2wi,j,k− 1

2

∆z
, (8.67)

(G
1
2S12)i,j,k =

1

2

{
(G

1
2u)i,j+ 1

2 ,k
− (G

1
2u)i,j− 1

2 ,k

∆y
+

(G
1
2 v)i+ 1

2 ,j,k
− (G

1
2 v)i− 1

2 ,j,k

∆x

+
(J23G

1
2u)i,j,k+ 1

2
− (J23G

1
2u)i,j,k− 1

2
+ (J13G

1
2 v)i,j,k+ 1

2
− (J13G

1
2 v)i,j,k− 1

2

∆z

}
,

(8.68)

(G
1
2S23)i,j,k =

1

2

{
(G

1
2w)i,j+ 1

2 ,k
− (G

1
2w)i,j− 1

2 ,k

∆y

+
J33G

1
2 vi,j,k+ 1

2
− J33G

1
2 vi,j,k− 1

2
+ (J23G

1
2w)i,j,k+ 1

2
− (J23G

1
2w)i,j,k− 1

2

∆z

}
,

(8.69)

(G
1
2S31)i,j,k =

1

2

{
(G

1
2w)i+ 1

2 ,j,k
− (G

1
2w)i− 1

2 ,j,k

∆x

+
J33G

1
2ui,j,k+ 1

2
− J33G

1
2ui,j,k− 1

2
+ (J13G

1
2w)i,j,k+ 1

2
− (J13G

1
2w)i,j,k− 1

2

∆z

}
.

(8.70)

• z edge (i+ 1
2 , j +

1
2 , k)

(G
1
2S12)i+ 1

2 ,j+
1
2 ,k

=
1

2

{
(G

1
2u)i+ 1

2 ,j+1,k − (G
1
2u)i+ 1

2 ,j,k

∆y
+

(G
1
2 v)i+1,j+ 1

2 ,k
− (G

1
2 v)i,j+ 1

2 ,k

∆x

+
(J23G

1
2u)i+ 1

2 ,j+
1
2 ,k+

1
2
− (J23G

1
2u)i+ 1

2 ,j+
1
2 ,k−

1
2
+ (J13G

1
2 v)i+ 1

2 ,j+
1
2 ,k+

1
2
− (J13G

1
2 v)i+ 1

2 ,j+
1
2 ,k−

1
2

∆z
.

}
(8.71)

• x edge (i, j + 1
2 , k + 1

2 )

(G
1
2S23)i,j+ 1

2 ,k+
1
2
=

1

2

{
(G

1
2w)i,j+1,k+ 1

2
− (G

1
2w)i,j,k+ 1

2

∆y

+
J33G

1
2 vi,j+ 1

2 ,k+1 − J33G
1
2 vi,j+ 1

2 ,k
+ (J23G

1
2w)i,j+ 1

2 ,k+1 − (J23G
1
2w)i,j+ 1

2 ,k

∆z
.

}
(8.72)
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• y edge (i+ 1
2 , j, k + 1

2 )

(G
1
2S31)i+ 1

2 ,j,k+
1
2
=

1

2

{
(G

1
2w)i+1,j,k+ 1

2
− (G

1
2w)i,j,k+ 1

2

∆x

+
J33G

1
2ui+ 1

2 ,j,k+1 − J33G
1
2ui+ 1

2 ,j,k
+ (J13G

1
2w)i+ 1

2 ,j,k+1 − (J13G
1
2w)i+ 1

2 ,j,k

∆z
.

}
.

(8.73)

velocity Calculattion of the strain tensor requires value of velocity at cell
center, plane center, edge center, and vertex. The velocities at cell center (full-
level) are eq.(3.87-3.89).

• x-y plane center (i, j, k + 1
2 )

ui,j,k+ 1
2
=

ui,j,k+1 + ui,j,k

2
, (8.74)

vi,j,k+ 1
2
=

vi,j,k+1 + vi,j,k
2

, (8.75)

wi,j,k+ 1
2
=

(ρw)i,j,k+ 1
2

ρi,j,k+ 1
2

. (8.76)

• y-z plane center (i+ 1
2 , j, k)

ui+ 1
2 ,j,k

=
(ρu)i+ 1

2 ,j,k

ρi+ 1
2 ,j,k

, (8.77)

vi+ 1
2 ,j,k

=
vi+1,j,k + vi,j,k

2
, (8.78)

wi+ 1
2 ,j,k

=
wi+1,j,k + wi,j,k

2
. (8.79)

• z-x plane center (i, j + 1
2 , k)

ui,j+ 1
2 ,k

=
ui,j+1,k + ui,j,k

2
, (8.80)

vi,j+ 1
2 ,k

=
(ρv)i,j+ 1

2 ,k

ρi,j+ 1
2 ,k

, (8.81)

wi,j+ 1
2 ,k

=
wi,j+1,k + wi,j,k

2
. (8.82)

• x edge center (i, j + 1
2 , k + 1

2 )

ui,j+ 1
2 ,k+

1
2
=

ui,j+1,k+1 + ui,j+1,k + ui,j,k+1 + ui,j,k

4
, (8.83)

vi,j+ 1
2 ,k+

1
2
=

vi,j+ 1
2 ,k+1 + vi,j+ 1

2 ,k

2
, (8.84)

wi,j+ 1
2 ,k+

1
2
=

wi,j+1,k+ 1
2
+ wi,j,k+ 1

2

2
. (8.85)
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• y edge center (i+ 1
2 , j, k + 1

2 )

ui+ 1
2 ,j,k+

1
2
=

ui+ 1
2 ,j,k+1 + ui+ 1

2 ,j,k

2
, (8.86)

vi+ 1
2 ,j,k+

1
2
=

vi+1,j,k+1 + vi+1,j,k + vi,j,k+1 + vi,j,k
4

, (8.87)

wi+ 1
2 ,j,k+

1
2
=

wi+1,j,k+ 1
2
+ wi,j,k+ 1

2

2
. (8.88)

• z edge center (i+ 1
2 , j +

1
2 , k)

ui+ 1
2 ,j+

1
2 ,k

=
ui+ 1

2 ,j+1,k + ui+ 1
2 ,j,k

2
, (8.89)

vi+ 1
2 ,j+

1
2 ,k

=
vi+1,j+ 1

2 ,k
+ vi,j+ 1

2 ,k

2
, (8.90)

wi+ 1
2 ,j+

1
2 ,k

=
wi+1,j+1,k + wi+1,j,k + wi,j+1,k + wi,j,k

4
. (8.91)

• vertex (i+ 1
2 , j +

1
2 , k + 1

2 )

ui+ 1
2 ,j+

1
2 ,k+

1
2
=

ui+ 1
2 ,j+1,k+1 + ui+ 1

2 ,j+1,k + ui+ 1
2 ,j,k+1 + ui+ 1

2 ,j,k

4
,

(8.92)

vi+ 1
2 ,j+

1
2 ,k+

1
2
=

vi+1,j+ 1
2 ,k+1 + vi+1,j+ 1

2 ,k
+ vi,j+ 1

2 ,k+1 + vi,j+ 1
2 ,k

4
,

(8.93)

wi+ 1
2 ,j+

1
2 ,k+

1
2
=

wi+1,j+1,k+ 1
2
+ wi+1,j,k+ 1

2
+ wi,j+1,k+ 1

2
+ wi,j,k+ 1

2

4
.

(8.94)

Eddy viscosity/diffusion coefficient The eddy viscosity/diffusion coeffi-
cient, νSGS / DSGS , is calculated at full-level with S and Ri at full-level and it
at half level is interporated one at full-level.

Brunt-Visala frequency The Brunt-Visala frequency, N2 is required to cal-
culate the Richardson number at full-level.

(G
1
2N2)i,j,k =

g

θi,j,k

J33G
1
2 θi,j,k+1 − J33G

1
2 θi,j,k−1

2∆z
. (8.95)

8.2 Boundary layer turbulence model

Correnspoinding author : Seiya Nishizawa

8.2.1 Mellor-Yamada Nakanishi-Niino model

level 2.5
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∂ρu

∂t
= − ∂

∂z
ρu′w′, (8.96)

∂ρv

∂t
= − ∂

∂z
ρv′w′, (8.97)

∂ρθl
∂t

= − ∂

∂z
ρθ′lw

′, (8.98)

∂ρqa
∂t

= − ∂

∂z
ρq′aw

′, (8.99)

∂

∂t
ρq2 = −2

(
ρu′w′ ∂u

∂z
+ ρv′w′ ∂v

∂z

)
+ 2

g

θ0
ρθ′vw

′ − ∂

∂z
ρq2w′ − 2ρϵ, (8.100)

where
qa = qv + qc + qr + qi + qs + qg, (8.101)

and q2 is doubled tubulence kinetic energy;

q2 = u′2 + v′2 + w′2. (8.102)

The higher order moments and the disipation term are parameterized as
followings:

u′w′ = −LqSM
∂u

∂z
, (8.103)

v′w′ = −LqSM
∂v

∂z
, (8.104)

θ′lw
′ = −LqSH

∂θl
∂z

, (8.105)

q′aw
′ = −LqSH

∂qa
∂z

, (8.106)

q2w′ = −3LqSM
∂q2

∂z
, (8.107)

θ′vw
′ = βθθ′lw

′
+ βqq′aw

′, (8.108)

ϵ =
q3

B1L
, (8.109)

where

SM = αcA1
Φ3 − 3C1Φ4

D2.5
, (8.110)

SH = αcA2
Φ2 + 3C1Φ5

D2.5
, (8.111)

βθ = 1 + 0.61qa − 1.61Ql − R̃abc, (8.112)

βq = 0.61θ + R̃ac. (8.113)
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D2.5 = Φ2Φ4 +Φ5Φ3, (8.114)

Φ1 = 1− 3α2
cA2B2(1− C3)GH , (8.115)

Φ2 = 1− 9α2
cA1A2(1− C2)GH , (8.116)

Φ3 = Φ1 + 9α2
cA

2
2(1− C2)(1− C5)GH , (8.117)

Φ4 = Φ1 − 12α2
cA1A2(1− C2)GH , (8.118)

Φ5 = 6α2
cA

2
1GM , (8.119)

αc =

{
q/q2, q < q2
1, q ≥ q2

, (8.120)

GM =
L2

q2

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}
, (8.121)

GH = −L2

q2
N2, (8.122)

R =
1

2

{
1 + erf

(
Q1√
2

)}
, (8.123)

R̃ = R− Ql

2σs

1√
2π

exp

(
−q21

2

)
, (8.124)

Ql = 2σs

{
RQ1 +

1√
2π

exp

(
−Q2

1

2

)}
, (8.125)

Q1 =
a

2σs
(qa −Qsl), (8.126)

σ2
s =

1

4
a2L2αcB2SH

(
∂qa
∂z

− b
∂θl
∂z

)2

, (8.127)

δQsl =
∂Qs

∂T

∣∣∣∣
T=Tl

, (8.128)

a =

(
1 +

L

Cp
δQsl

)−1

, (8.129)

b =
T

θ
δQsl, (8.130)

c = (1 + 0.61qa − 1.61Ql)
θ

T

Lv

Cp
− 1.61θ, (8.131)

and Qsl is the satulation specific humidity at the temperature Tl(= θlT/θ).
The buoyancy flux term, which is the third term of the left hand side in eq.

8.100 is

2
g

θ0
θ′vw

′ = 2
g

θ0

(
−βθLqSH

∂θl
∂z

− βqLqSH
∂qa
∂z

)
= −2LqSH

g

θ0

(
βθ

∂θl
∂z

+ βq
∂qa
∂z

)
= −2LqSH

g

θ0

∂θv
∂z

= −2LqSHN2, (8.132)
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where N2 is square of the Brunt-Vaisala frequency.

∂

∂t
ρq2 = 2ρLqSM

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}

− 2ρLqSHN2 +
∂

∂z

(
3ρLqSM

∂

∂z
q2
)
− 2ρ

q3

B1L
(8.133)

SM2, SH2, and q2 is for level 2 scheme corresponding to SM , SH , and q,
respectively;

SM2 =
A1F1

A2F2

Rf1 −Rf

Rf2 −Rf
SH2, (8.134)

SH2 = 3A2(γ1 + γ2)
Rfc −Rf

1−Rf
, (8.135)

q22 = B1L
2SM2(1−Rf)

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}
. (8.136)

Rf and Rfc are the flux Richardson number and the critical flux Richardson
number, respectively. The gradient Richardson number, Ri, is

Ri = Rf
SM2

SH2
. (8.137)

Then the Rf is

Rf =
1

2

A2F2

A1F1

Ri+
A1F1

A2F2
Rf1 −

√
Ri2 + 2

A1F1

A2F2
(Rf1 − 2Rf2)Ri+

(
A1F1

A2F2
Rf1

)2
 ,

(8.138)

RfC =
γ1

γ1 + γ2
, (8.139)

(8.140)

where

Rf1 = B1
γ1 − C1

F1
, (8.141)

Rf2 = B1
γ1
F2

. (8.142)

The turbulent length scale, L, is determined by the smallest length scale
among the three length scales;

1

L
=

1

Ls
+

1

LT
+

1

LB
. (8.143)

he surface layer scale, Ls, the boundary layer scale, LT , and buoyancy length
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scale, TB ;

LS =

 kz/3.7, ζ ≥ 1
kz/(1 + 2.7ζ), 0 ≤ ζ < 1
kz(1− 100ζ)0.2, ζ < 0

, (8.144)

LT = 0.23

∫∞
0

qzdz∫∞
0

qdz
, (8.145)

LB =


q/N, ∂θv/∂z > 0 and ζ ≥ 0
{1 + 5(qc/LTN)1/2}q/N, ∂θv/∂z > 0 and ζ < 0
∞, ∂θv/∂z ≤ 0

, (8.146)

where ζ is the dimensionless height;

ζ =
z

LM
. (8.147)

LM is the Monin-Obukhov length;

LM = − θ0u
3
∗

kgθ′vw
′
g

, (8.148)

where u∗ is the friction velocity, and the subscript g denotes the ground surface.
qc is a velocity scale defined similarly as the convective velocity w∗, except that
the depth zi of the convective boundary layer is replaced by Lt;

qc =

{
g

θ0
θ′vw

′
gLT

}1/3

(8.149)

A1 = B1
1− 3γ1

6
, (8.150)

A2 =
1

3γ1B
1/3
1 PrN

, (8.151)

B1 = 24.0, (8.152)

B2 = 15.0, (8.153)

C1 = γ1 −
1

3A1B
1/3
1

, (8.154)

C2 = 0.75, (8.155)

C3 = 0.352, (8.156)

C5 = 0.2, (8.157)

γ1 = 0.235, (8.158)

γ2 =
2A1(3− 2C2) +B2(1− C3)

B1
, (8.159)

F1 = B1(γ1 − C1) + 2A1(3− 2C2) + 3A2(1− C2)(1− C5), (8.160)

F2 = B1(γ1 + γ2)− 3A1(1− C2), (8.161)

PrN = 0.74. (8.162)
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descretization

The diffusion equations for q2a is solved implicitly.

ρk
(q2k)

n+1 − (q2k)
n

∆t
= 2ρk

[
(LqSM )k

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}

+ (LqSHN2)k

]

+
1

∆zk

{
(3ρLqSM )k+ 1

2

(q2k+1)
n+1 − (q2k)

n+1

∆zk+ 1
2

− (3ρLqSM )k− 1
2

(q2k)
n+1 − (q2k−1)

n+1

∆zk− 1
2

}

− 2ρkqk
B1Lk

(q2k)
n+1. (8.163)

ak(q
2
k+1)

n+1 + bk(q
2
k)

n+1 + ck(q
2
k−1)

n+1 = dk, (8.164)

where

ak = − ∆t

∆zk+ 1
2
∆zkρk

(3ρLqSM )k+ 1
2
, (8.165)

bk = −ak − ck + 1 +
2∆tqk
B1L

, (8.166)

ck = − ∆t

∆zk∆zk− 1
2
ρk

(3ρLqSM )k− 1
2
, (8.167)

dk = (q2k)
n + 2∆t

[
LqSM

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}

− LqSHN2

]
(8.168)

(q2k)
n+1 = ek(q

2
k+1)

n+1 + fk, (8.169)

where

ek = − ak
bk + ckek−1

, (8.170)

fk =
dk − ckfk−1

bk + ckek−1
. (8.171)

Vertical flux for ρu, ρv, ρθ, ρqx is also solved implicitly. For instance, the flux
for ρu, Fu is calculated by

Fu,k+ 1
2
= (ρLqSM)k+ 1

2

un+1
k+1 − un+1

k

∆zk+ 1
2

. (8.172)

un+1 is calculated as the same way with the q2, but

ak = − ∆t

∆zk+ 1
2
∆zkρk

(ρLqSM )k+ 1
2
, (8.173)

bk = −ak − ck + 1, (8.174)

ck = − ∆t

∆zk∆zk− 1
2
ρk

(ρLqSM )k− 1
2
, (8.175)

dk = un
k . (8.176)
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8.3 Microphysics

Corresponding author : Yousuke Sato
The SCALE-RM has three types of cloud microphysics models. We will show
description of these models below.

8.3.1 Kessler Parameterization

An one-moment bulk microphysical scheme, which treats only warm cloud (cloud
and rain), is implemented in SCALE. This scehem predicts mixing ratio of cloud
(Qcloud) and rain (Qrain). Cloud microphysical processes treated in this scheme
is saturation adjustment (corresponding to nucleatioin, evaporation, and con-
densation of cloud), evaporation, auto-conversion, accretion, and sedimentation.
The tendency of Qcloud, Qrain, and Qv (vapor mixing ratio) is given as

∂Qcloud

∂t
= dQ|sat − dQ|auto − dQ|acc (8.177)

∂Qrain

∂t
= dQ|auto + dQ|acc − dQ|evap − FQr

|sed (8.178)

∂Qv

∂t
= dQ|evap − dQ|sat (8.179)

where dQ|sat, dQ|auto, dQ|acc, and dQ|evap represents tendency of mixing
ratio by saturation adjustment, auto-conversion, accretion, and evaporation,
respectively. FQr |sed represents flux of Qr by sedimentation.
dQ|auto, dQ|acc, and dQ|evap are given as

dQauto =

{
Qcloud ∗ 10−3 (Qcloud > 10−3)
0 (else)

(8.180)

dQacc = 2.2×Qcloud ×Q0.875
rain (8.181)

dQevap =

{
fvent

qs−Qcloud

qsρ
(ρ∗Qrain)

0.525

5.4×105+ 2.55×108

pqs

(qs > Qcloud)

0 (else)
(8.182)

where fvent is ventiration factor (fvent = 1.6+124.9(ρQrain)
0.2046), and unit

of dQ∗∗∗ is [kg/kg/s]. p, qs, and ρ is pressure, saturation vapor mixing ratio,
and total density.
The dQ|sat is given as

dQ|sat = Qv − qs. (8.183)

Terminal velocity of cloud (Vt,c) and rain (Vt,r) is given as

Vt,c = 0 (8.184)

Vt,r = 36.34(ρQrain)
0.1364[m/s] (8.185)
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8.3.2 Double-Moment BulkSeiki and Nakajima (2014)

Treatment of hydrometeors

Generally, characteristics of cloud particles are determined by their size, shape
and chemical properties of solute in them. Representation of these character-
istics needs a multi-dimensional parameter space of size, shape and chemical
compositions. Since development of a cloud resolving model (CRM) coupled
with an aerosol transport model is beyond the scope of this study, we consider a
two-dimensional parameter space of size and shape of cloud particles. We then
categorize cloud models into two major groups according to their representation
of cloud particles. One is the bin method, with discretized particle size bins,
predicting the population density of particles in each bin. The other is the bulk
method in which the particle size distributions are approximated by several pre-
scribed modes, predicting the total populations of partilces of each mode. The
treatment of hydrometeors adopted in this study is described in the following
sections.

Droplet Size Distribution

The Seiki and Nakajima (2014)Seiki and Nakajima (2014) scheme is designed
to maintain the self-consistency of the assumptions regarding droplet size dis-
tribution (DSD) and the shapes of ice particles among the cloud microphysi-
cal processes. Following Seifert and Beheng (2006; hereafter, SB06), Seiki and
Nakajima(2014)Seiki and Nakajima (2014) predicts the moments of the DSDs of
each hydrometeor assuming the generalized gamma distribution to analytically
formulate the cloud microphysics as follows:

fa(r) = αax
νa exp(−λx) (8.186)

where the index a ∈ (c,r,i,s,g) represents cloud water, rain, cloud ice, snow,
and graupel. For a given DSD, the k-th moment of a DSD can be defined as
follows:

M (k)
a ≡

∫ ∞

0

xkfa(r)dx, (k ∈ R) (8.187)

For example, the 0-th moment of a DSD is the number concentrationNa, and
the 1st moment of a DSD is the mass concentration La = ρqa. The evolutions
of DSDs are represented by updating αa and λa using Na and La with two fixed
parameters, νa and µa, respectively. The diagnostic parameters αa and λa are
calculated as follows:

αa =
µaλa

Γ
(

νa+1
µa

)λ νa+1
µa

a (8.188)

λa =
[Γ(νa+1

µa

)
Γ
(

νa+2
µa

)]−νa
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where the mean particle mass x̄ ≡ La/Na. We maintain the self-consistency
of the shape of ice particles by assuming power law relationships between: 1)
the particle mass and the maximum dimension D and 2) the particle mass and
the projected area to the flow A as follows:

D = amxbm (8.189)

A = aaxx
bm (8.190)

where am, bm, aax, and bax are constant coefficients. We chose to use con-
stant parameters in the representations of DSDs following SB06 for cloud water,
cloud ice, snow, and graupel; and following Seifert (2008) for rain (assuming the
collisional-breakup equilibrium condition). The shapes of ice particles are those
given by Mitchell (1996) assuming cloud ice as hexagonal plates, snow as assem-
blages of planer polycrystals in cirrus clouds, and graupel as lump graupel. The
abovementioned constant parameters for each hydrometeor are summarized in
Table 8.1.

Table 8.1: Constant parameters chosen for the generalized gamma distribution;
power law coefficients used for maximum dimensions and the projected area;
and ranges of lower- and upper limits of mean mass.

cloud water rain cloud ice snow graupel

ν 1 -1/3 1 1 1
µ 1 1/3 1/3 1/3 1/3

am[m kg−bm] 0.124 0.124 1.24 1.24 0.346
bm 1/3 1/3 0.408 0.408 0.357

aax[m
2kg−bA] 0.0121 0.0121 0.178 0.196 0.0599
bax 2/3 2/3 0.755 0.768 0.714
¯xmin[kg] 4.2× 10−12 4.2× 10−12 4.2× 10−12 4.2× 10−12 4.2× 10−12

¯xmax[kg] 2.6× 10−10 2.6× 10−10 2.6× 10−10 2.6× 10−10 2.6× 10−10

Terminal velocity of hydrometeors

In the same manner as in Seifert and Beheng (2006a), the terminal velocities of
particles are formulated in power laws except for the gravitational sedimentation
which is described in accurate formula, because the gravitational sedimentation
is directly compared with precipitation data. The terminal velocities of hydrom-
eteors are determined by the balance between the drag force and gravitational
force. Traditionally, the terminal velocity for small spherical particles, small
Reynolds number (NRe), are described by Stokes Law,

νt,stokes(r) =
2g(ρw − ρ)

9ηa
r2 (8.191)

where g = 9.80616 [ms−2] is the gravitational acceleration, ρw = 1000 kgm−3

is the density of liquid water, ρ is the density of air and ηa is the dynamic viscos-
ity of air. Laboratory experiments showed that the terminal velocity departed
from Stokes Law as the Reynolds number increases (Gunn and Kinzer, 1948;
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Beard and Pruppacher, 1969). Thus, other formulas are required for larger
droplets such as rain droplets and ice crystals.
In the case of liquid water droplets, the terminal velocity is well determined by
laboratory experiments because of simplicity of the shape. In contrast, in the
case of ice particles, there are many observation data of the terminal velocity for
various shapes of ice crystals. Bohm (1989), Bohm (1992) and Mitchell (1996)
proposed the general formulations of the terminal velocities of ice particles based
on the boundary layer theory and their studies showed good agreement with
observational data. In this study, we calculated terminal velocities for each ice
particle based on Mitchell (1996) and then made a fitting curve by a power law
in the suitable range of diameter.
In the theoretical formulas, the terminal velocities of hydrometeors are depen-
dent on diameter, shape, the Reynolds number and the Best (or Davies) number
(NX). Application of these dependencies to cloud microphysics are so compli-
cated that here we have applied a simplified approach suggested by Beard (1980),
1. The terminal velocity is calculated for the reference atmosphere.
2. The terminal velocity in the atmosphere are adjusted from the reference
value.
In the following paragraphs, we describe the terminal velocities for the reference
atmosphere and the adjustment technique.

Terminal velocity of liquid water droplets for the reference atmo-
sphere

In the case of liquid water droplets, absence of shape variability makes for-
mulation easier than ice particles. Here, we only consider the dependency on
the diameter of droplets. Seifert and Beheng (2006) applied the formulation of
Rogers et al. (1993), which is the analytical approximation to the observation
data of Gunn and Kinzer (1948),

νt(D) =

 aRs
D(1− exp(−bRs

D)), (D < D0,r)
aRl

− bRl
exp(−cRl

D), (D > D0,r) (8.192)

where aRs
= 4000s−1, bRs

= 12000m−1, aRl
= 9.65ms−1, bRl

= 10.43ms−1,
cRl

= 600m−1, and D0, r = 7.45 × 10−4 m. This formulation approaches the
quadratic form of Stokes Law in the limit for small diameter. In addition, the
data of Gunn and Kinzer (1948) agrees well with the terminal velocities cal-
culated by theoretical formulation based on the boundary layer theory (Bohm,
1992). Therefore, we applied eq.8.192 for the sedimentation of rain (Fig. 8.12
11). Here it is mentioned that the reference atmosphere of the formulation is
T = 293K, p = 1000hPa, and relative humidity is 0.5 (Gunn and Kinzer, 1948).

Terminal velocity of solid water particles for the reference atmosphere

In the case of ice particles, we derive the theoretical formulation of the terminal
velocity following to Mitchell (1996). In general the aerodynamic drag force FD

on a particle is expressed as follows,

FD ≡ 1

2
ρν2tACD (8.193)
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where CD is the drag coefficient. Terminal velocity is determined by the
equilibrium condition between the drag force and the gravitational acceleration,

νt =
( 2xg

ρACD

)1/2
(8.194)

The problem of derivation of the terminal velocity is reduced to derivation of
the drag coefficient indepenently on the terminal velocity. In practice, Mitchell
(1996) and many other researchers calculated the terminal velocity by the defi-
nition of the Best number (NX) as follows,

Nx ≡ CDN2
Re

=
2xgρD2

Aη2a
(8.195)

Where NRe
is the Reynolds number. The terminal velocity can be calcu-

lated after the relationship between the Best number and the Reynolds number
is determined. In the relationship, it is convenient that the drag coefficient is
determined by the Reynolds number although the dependency of the drag co-
efficient is complicated. A theoretical formulation of the drag coefficient was
proposed by Abraham (1970). The drag coefficient is the dimensionless number
defined by the drag force, the dynamic pressure and the projection area of the
particle (see eq.8.193). Abraham (1970) assumed that the effective projection
area of the particle contained the projection area of the particle itself and also
the boundary layer surrounding the particle as follows,

FD =
1

2
ρν2tC0A

(
1 +

δb
rA

)2
(8.196)

where C0 is the drag coefficient which is due to the pressure of the fluid and
should be determined independently of the shape, δb is the boundary layer depth
and rA is the radius of a circle with the equivalent projection area. Furthermore,
the ratio of the boundary layer depth to the radius is expressed as follows,

δb
rA

=
δ0

N
1/2
Re

(8.197)

where δ0 is non-dimensional constant. Substituting eq.8.197 into eq.8.196,
the drag coefficient which also includes the effect of the boundary layer is cor-
responding to the following,

CD = C0

(
1 +

δ0

N
1/2
Re

)2
(8.198)

Thus the drag coefficient is expressed by the Reynolds number. The re-
lationship between the Reynolds number and the Best number is derived by
substituting eq.8.198 into eq.8.195

NRe
=

δ20
4

[(
1 +

4N
1/2
X

δ20C
1/2
0

)1/2 − 1
]2

(8.199)
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Here we use C0 = 0.6 and δ0 = 5.83 as provided by Bohm (1989). Finally
the terminal velocity of ice particles is calculated by substituting eq.8.195 and
eq.8.199 into the definition of the Reynolds number,

νt =
NReηa
Dρ

=
ηa
Dρ

δ20
4

[[
1 +

4

δ20C
1/2
0

(2xgρD2

Aη2a

)1/2]1/2 − 1
]2

(8.200)

In this formulation, required variables are mass, projection area, maximum
dimension of ice particles and thermodynamical variables. Here we use several
piecewise-constant mass-maximum dimension and projection area-maximum di-
mension relationships provided by Mitchell (1996). The terminal velocities of
various ice particles are plotted in Fig.8.2. As shown in Fig.8.1 there is less
difference between hexagonal plates and stellar crystals with broad arms with
the diameter less than a few hundred micrometers. Therefore we only consider
hexagonal column and hexagonal plate as representatives of the category of ice.

Adjustment factor of terminal velocity

Beard (1980) suggested that calculation of the terminal velocity using the Best
number could be simplified with use of an adjustment factor (fvt) defined as,

νt = νt0fvt (8.201)

where vt0 is a reference terminal velocity. He demonstrated that fvt was not
sensitive to the shape of hydrometeors. When electrical force is not considered
in the cloud microphysics, formulas of fvt are as follows,

fvt = fvt0 (NRe0 ≤ 0.2) (8.202)

fvt = fvt∞ (NRe0 ≥ 1000) (8.203)

fvt = fvt0

+ (fvt∞ − fvt0)(1.61 + lnNRe0)/8.52 (NRe0 < 1000) (8.204)

fvt0 ≡ (η0/η) (8.205)

fvt∞ ≡ (ρ0/ρ)
0.5 (8.206)

NRe0 ≡ ρ0Dvt0/η0 (8.207)

The upper limit of the Reynolds number ( NRe
= 1000 ) corresponds to

a diameter of several milimeters and the lower limit of the Reynolds number
( NRe

= 0.2 ) corresponds to a diameter of tens of micrometers. Seifert and
Beheng (2006) applied a further simplified adjustment factor based on eq.8.205
and eq.8.206 as follows,

fvt,n = (ρ0/ρ)
γn , (n = c, r, i, s, g) (8.208)

where γc = 1.0 and γr = γi = γs = γg = 0.5 This simplification formula of the
adjustment factor is intended to avoid the dependency on the Reynolds num-
ber. However, γn = 0.5 is valid only for high Reynolds number particles whose
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diameters are more than several millimeters as shown in eq.8.200. Therefore,
the above formula always underestimates the terminal velocity of cirrus clouds.
Another simplified formula for cirrus clouds was suggested by Heymsfield and
Iaquinta (2000) as follows,

fvt = (p/p0)
−0.178(T/T0)

−0.394 (8.209)

where T0 = 233 K and p0 = 300 hPa. By using these adjustment factors, we
can only consider the terminal velocity for the reference atmosphere. Adjust-
ment factors used for each hydrometeor in this study are summarized in Table
8.2.

Table 8.2: Adjustment factor for the reference terminal velocity.

cloud rain Ice snow graupel

fvt 1 (ρ0/ρ)
0.5 (p/p0)

−0.178(T/T0)
−0.394 (p/p0)

−0.178(T/T0)
−0.394 (p/p0)

−0.178(T/T0)
−0.394

Weightend mean terminal velocity

In gravitational sedimentation, the mean terminal velocity weighted by the k-th
moments of DSD ( ¯vk,nq) is calculated straightforward as follows

¯vk,nq =

∫ ∞

0

xkfnq(x)vt,nq(x)dx (8.210)

However, the formulas of the terminal velocities, eq.8.193 and eq.8.200 are
too complicated to analytically integrate eq.8.210. Seifert and Beheng (2006)
and Seifert (2008) approximately used the large branch of eq.8.193 for rain
droplets and simple power laws derived by observation for other hydrometeors.
Here we made more accurate formulations to calculate the weighted terminal
velocities.
As shown above, the dependency of the terminal velocity on the diameter varies
among the aerodynamical regimes. In other words, the dependency varies among
the range of diameter. Therefore, firstly we prepared two branches of the ter-
minal velocities of hydrometeors except for cloud droplets so as to integrate the
DSDs analytically. For cloud droplets, we use the same power law provided by
Seifert and Beheng (2006) which is based on Stokes law. For the rain droplets,
we directly use the formulation of eq.8.193 because we can integrate each branch
analytically. In contrast, we need to derive two fitting curves for ice particles.
The formulation of the terminal velocity of ice particles is described as a power
law of the diameter made by the least-square method as follows,
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vt,js = av,jsx
bv,js , (js = i, s, g) (8.211)

(RMSE)k,js =

idmax∑
id=1

(
ln ¯vk,js,true(D̄id)− ln ¯vk,js(D̄id)

)2
(8.212)

∂(RMSE)k,js
∂av,js

= 0,
∂(RMSE)k,js

∂bv,js
= 0

¯vk,js(D̄id) =

∫ ∞

0

av,jsx
bv,js+kf(x, D̄id, L)dx/L

= av,js
Γ
( vjs+bv,js+k+1

µjs

)
Γ
(vjs+k+1

µjs

) [Γ( vjs+1
µjs

)
Γ
( vjs+2

µjs

)]bv,js ¯
x
bv,js

id,js (8.213)

¯vk,js,true(D̄id) =

imax∑
i=1

xkvt,js,trueflogD(lnDi, D̄id, L)∆lnD/L

where D1 = 10µm, Dimax = 10mm, imax = 1000, and L is arbitrary con-
stant. The fitting ranges of the mean volume diameter in eq.8.212 are from 20
to 400 µm for the small branch and from 200 to 2000 µm for the large branch.
The derived parameters are summarized in Table 8.3.
Secondly the terminal velocity with a certain mean diameter is calculated by
interpolating between the two branches in the logaritgmic scale of the diameter.
Here we practically use the mean diameter weighted by the kth moments of
DSD in the interpolation. The formulation of the weighted terminal velocities
of the rain droplets and solid particles are as shown in the following,

¯vk,nq = wk,nq
¯vk, lrg, nq + (1− wk,nq) ¯vk,lrg,nq, (nq = r, i, s, g) (8.214)

wk,r = 0.5(1 + tanh(πln( ¯Dk,r/D0,k,r)))

wk,js = max(0.0, min(1.0, 0.5(1 + ln( ¯Dk,js/D0,k,js)))) (js = i, s, g)

¯Dk,nq =

∫∞
0

Dnq(x)x
kfnq(x)dx∫∞

0
xkfnq(x)dx

= D̄nq

Γ
( vnq+bm,nq+k+1

µnq

)
Γ
( vnq+k+1

µnq

) [Γ( vnq+1
/munq

)
Γ
( vnq+2

µnq

) ]bm,nq

(8.215)

¯vk,sml,r =
fvt,r
Mk

r

∫ ∞

0

[
aRsD(1− exp(−bRsD))

]
xkNr(D)dD

= aRs

(1 + µD,r + 3k)

λD,r

×
[
1−

(
1 +

bRs

λD,r

)−2−µD,r−3k
](ρ0

ρ

)1/2
(8.216)

¯vk,lrg,r =
fvt,r
Mk

r

∫ ∞

0

[
aRl − bRlexp(−cRlD)

]
xkNr(D)dD

= aRl − bRl

(
1 +

cRl

λD,r

)−1−µD,r−3k(ρ0
ρ

)1/2
(8.217)

Nr(D) = N0,rD
−µD,rexp(−λD,rD) (8.218)
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where D0,r and D0,js are the branch points of the fitting curves (see Ta-
ble 8.4). Here we apply the form of the modified gamma distribution for the
diameter as a DSD of rain droplets. Derivation and correspondences of the co-
efficient N0,r the slope parameter λD,r and shape parameter µD appeared in
the modified gamma distribution are described in Appendix B. Weighted ter-
minl velocities of ice particles for two branches, and, are calculated by eq.8.213.
Fig.8.3 shows the terminal velocity of rain droplets weighted by number and
mass concentration. Our method gives better results than the results by the
approximated method applied in Seifert and Beheng (2006) in the range within
their upper and lower limit. Fig.8.4 shows terminal velocities of ice particles
weighted by the number and the mass concentration.

Table 8.3: Coefficients and exponents of the relationship between the mass and
the terminal velocity of each hydrometeor used in the gravitational sedimenta-
tion and other processes.

Hydrometeors Sedimentation of mass Sedimentation of mass Sedimentation of number Sedimentation number other process

Small Large Small Larg
Cloud av = 3.75× 105, bv = 2/3 av = 3.75× 105, bv = 2/3 av = 3.75× 105, bv = 2/3 av = 3.75× 105, bv = 2/3 av = 3.75× 105, bv = 2/3
Rain 8.193 8.193 8.193 8.193 8.193

Hexagonal plate av = 5800, bv = 0.505 av = 167, bv = 0.325 av = 1.24× 105, bv0.549 av = 422, bv = 0.385 av = 5800, bv = 0.505
Hexagonal columns av = 2900, bv = 0.466 av = 32.2, bv = 0.224 av = 9698, bv0.531 av = 64.2, bv = 0.274 av = 2900, bv = 0.466

Aggregates of planar polycrystals av = 1.52× 105, bv = 0.528 av = 306.0, bv = 0.330 av = 2.93× 105, bv0.567 av = 818, bv = 0.394 av = 1.52× 105bv = 0.528
Lump graupel av = 1.55× 105, bv = 0.535 av = 312.0, bv = 0.330 av = 2.76× 105, bv0.571 av = 698, bv = 0.387 av = 1.55× 105bv = 0.535

Table 8.4: Branch points of the weighted terminal velocity.
Hydrometeors Branch points of the weighted terminal velocity [m]

Cloud Not used
Rain D0,r = 7.45× 10−4

Hexagonal plates D0,0,i = 262× 10−6, D0,1,i = 399× 10−6

Hexagonal columns D0,0,i = 240.5× 10−6, D0,1,i = 330× 10−6

Aggrgates of planar polycrystals D0,0,s = 270× 10−6, D0,1,s = 270× 10−6

Lump graupel D0,0,g = 269× 10−6, D0,1,g = 376× 10−6

Detailed description of cloud microphysics

Cloud microphysics is mainly categorized into two physics. One is phase change
among the gas, liquid, and solid phases. Another is the collection process among
all the particles. In addition, all the hydrometeors are vertically transported by
gravitational sedimentation. Phase change depends on the thermodynamics of
environment air and affects thermodynamics itself through latent heat release.
In contrast, collection is an internal growth process with less interaction with
the atmosphere. Since the growth speed of the collection process is much faster
than that of phase change, the role of the collection process is a key to determine
the lifetime of cloud (e.g. lifetime effect). Finally, gravitational sedimentation
determines the removal rate of cloud from the atmosphere. Directly it removes
cloud by transportation, and indirectly by the collection process via collision
volume (swept volume).
The cloud microphysics scheme developed in this study basically follows Seifert
and Beheng (2006). Their two-moment bulk cloud microphysics scheme is re-
markable in improvement of the collection process by using a bin cloud mi-
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Figure 8.1: Dependency of terminal velocity of liquid water droplet on diameter.
Marks are from Gunn and Kinzer (1948), red line is from Rogers et al. (1993)
and blue line is calculated by Stokes law (eq.8.191) under the condition T=293K,
p=1000hPa.

Figure 8.2: Dependency of terminal velocity of liquid water droplet in maximum
dimension. Each color of solid line is corresponding to different ice particle type
based on Mitchell (1996). Hexagonal columns is blue, hexagonal plates is green,
stellar crystal with broad arms is red, Aggregates of planar polycrystals in cirrus
clouds is purple and lump graupel is light blue.
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Figure 8.3: Dependencies of number weighted terminal velocity (vtN ) (left) and
mass weighted terminal velocity (vtL) (right) of rain droplets on mean volume
diameter (Dm). Abscissa is the mean volume diameter and vertical axis is
the terminal velocity. Dots show exactly integrated value and solid lines show
approximated value by this study (red, green and blue) and Seifert and Beheng
(2006) (purple). Red and purple ones are calculated with µD = 0, green ones
are calculated with µD = 1 and blue ones are calculated with µD = 31.

Figure 8.4: Dependencies of number weighted terminal velocity (vtN ) (left) and
mass weighted terminal velocity (vtL) (right) of ice particles on mean volume
diameter (Dm). Abscissa is the mean volume diameter and vertical axis is the
terminal velocity. Dots show the exact value calculated by Mitchell (1996) and
solid lines show the fitting curves. Red, green, blue and purple denote lump
graupels, assemblages of planar polycrystals, hexagonal columns and hexagonal
plates respectively.
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crophysics scheme. After their works, we modify the cloud nucleation process
(Twomey 1959; and Lohmann 2002), the condensation process (Morrison et al.
2005), and the formulation of the terminal velocities (Mitchell, 1996) with ex-
pectation of the application to global cloud resolving simulations. We describe
production and reduction terms of the mass concentration and the number con-
centration in the following sub-sections.

Phase change

Condensation/evaporation

Theoretical formulation of condensation or evaporation is basically derived by
balance equation of vapor and thermal diffusion above the surface of a single
particle (Rogers and Yau, 1989; Pruppacher and Klett, 1997). The growth rate
of liquid droplet mass xil is described as follows,

dxjl

d
= 2πD(xjl)Glv(T, p)Fvf (x(jl))Sw, (jl = c, r) (8.219)

Glv =
[ RvT

psw(T )Dv
+

Lv0

KTT

(Lv0

Rv
T − 1

)]−1

(8.220)

Fvf (xr) = avf,r + bvf,rN
1/3
Sc

N
1/2
Re

(8.221)

Here Glv is a coefficient related with vapor and thermal diffusion, Dv is dif-
fusivity of water vapor and KT is thermal conductivity, and Fvf is the so-called
ventilation coefficient. This is a correction factor for assumption that the water
vapor field surrounding each droplet is spherically symmetrical. Formulation of
Fvf was experimentally determined by Pruppacher and Klett (1997) and it de-
pends on Schmidt number (NSc

) and Reynolds number (NRe
). This formulation

for single droplets is transformed into that for moments following to Seifert and
Beheng (2006). With assumption of DSD as a generalized Gamma distribution
and neglecting the change of DSD caused by other process in a time step, we
can derive the growth rate of moments,

∂Mk
jl

∂t

∣∣∣
cnd,evp

∼=
∫ ∞

0

fjl(x)x
k−1 ∂x

∂t

∣∣∣
cnd,evp

dx (8.222)

we can consider eq.8.222 from a different view point as follows,

∂Mk
jl

∂t

∣∣∣
cnd,evp

∼=
∫ ∞

0

fjl(x)x
k
[ 1
x

∂x

∂t

∣∣∣
cnd,evp

]
dx

=

∫ ∞

0

fjl(x)x
k

τ
dx, τ ≡ x

∂x
∂t

∣∣
cnd,evp

(8.223)

Here, we mention that the theoretical treatment of condensation or evapo-
ration change droplet mass only. Then, we diagnose the growth rates of other
moments by the change ratio of droplet mass with time scale τ . Thus, we can
derive the growth equation for arbitrary moments,
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∂Mk
jl

∂t

∣∣∣
cnd,evp

= 2πGlvSw

∫ ∞

0

Djl(x)Fvf,jl(x)fjl(x)x
k−1dx

= 2πGlvSwNjlDjl(x̄jl)F̄vf,k,jl(x̄jl)x̄
k−1
jl (8.224)

where F̄vf,k,il is an averaged ventilation factor for the k-th moment of DSD.
This formulation seems to be valid unless reduction of number concentration oc-
curs. Because reduction of number concentration occurs only in the case of the
smallest droplet being completely dissipated by evaporation, the formulation by
change ratio is not suitable for complete dissipation. Therefore this formulation
is incomplete to derive the reduction tendency of number concentration by evap-
oration (condensation never changes number concentration). Temporarily, we
assumed that the number concentration of cloud droplets never reduces unless
their mean mass of cloud (x̄c) falls below the lower limit x̄c,min. The treatment
of rain droplets is discussed in the following section.

Evaporation of rain droplets

Only in the case of rain droplets, Seifert (2008) attempted to overcome the
incompleteness for the reduction of number concentration in evaporation. He
reformulated eq.8.224 as follows,

∂Nr

∂t

∣∣∣
evp

≡ γevp
Nr

Lr

∂Lr

∂t
=

γevp
x̄

2πGlvSwNrDr(x̄r)F̄vf,l(x̄r) (8.225)

Here evaporation parameter γevp means the evaporation efficiency of number
concentration towards to mean mass x̄r. According to Seifert (2008), γevp and
µm,r are parameterized as follows,

γevp =
Deq

D(x̄r)
exp(−0.2µm,r) (8.226)

µm,r =

{
6tauh[cevp,1(D(x̄r)−Deq)

2
] + 1 (D(x̄r) ≤ Deq)

30tauh[cevp,2(D(x̄r)−Deq)
2
] + 1 (D(x̄r) ≤ Deq)

(8.227)

where Deq = 1.1×10−3m is the equilibrium diameter in breakup-coalescence
processes and the cevp,1 and cevp,2 are set to 4000 m−1 and 1000 m−1, respec-
tively. In this study, we apply eq.8.224 for mass and eq.8.225 with γevp = 1 for
number concentration as a default setting (refer to SB06-run).

Deposition/sublimation for solid water

Theoretical formulation of deposition or sublimation is the same as that of
condensation or evaporation except for the definition of surface area. The shape
of ice particles is not spherical and varies widely as is shown in section 2.1.2.
Therefore, vapor and thermal transfer over the particle surface is expressed
by the analogy between the diffusion equation and equations in electrostatics
(Pruppacher and Klett, 1997). Replacing diameter Djs by capacitance Cjs ≡
Djs/cjs, we can derive the growth equation of a single particle as follows,

72



dxjs

dt

∣∣∣
dep,sbl

= 4πCjsGsv(T, p)Fvf (xjs)Si, (js = i, s, g) (8.228)

Gsv =
[ RvT

psi(T )Dv
+

Ls,0

KTT

( Ls0

RvT
− 1
)]−1

(8.229)

Here Cjs = Djs/2 for sphere, Cjs = Djs/π for circular plate, and capac-
itances of other typical shapes such as oblate spheroid crystals and columnar
crystals are expressed by,

Cjs =
Djsε

2sin−1ε
, ε ≡

(
1− b2

a2
)
, (for spheroid) (8.230)

Cjs =
A

ln[(a+A)/b]
, A ≡= (a2 − b2)1/2, (for columnar) (8.231)

where a is semi-major axis and b is semi-minor axis. For simplification,
cloud, rain, snow and graupel are assumed as sphere and hexagonal plate ice is
assumed as circular plate here. In the same manner as condensation (evapora-
tion), we can derive the growth equation of arbitrary moments as follows,

∂Mk
js

∂t

∣∣∣
dep,sbl

=
4π

cjs
GsvSiNjsDjs(x̄js)F̄vf,k(x̄js)x̄

k−1
js (8.232)

Discussion concerning the reduction term of number concentration is the
same as that for rain droplets. Therefore, we applied eq.8.232 for mass concen-
tration of solid particles. For snow and graupel, the reduction rate of number
concentration is as follows,

∂Nk
js

∂t

∣∣∣
sbl

≡ Njs

Ljs

∂Ljs

∂t

∣∣∣
sbl

=
1

x̄js

4π

cjs
GsvSiNjsDjs(x̄js)F̄vf,1(x̄js)(js = s, g) (8.233)

This formulation corresponds to γevp = 1 in the reduction term for rain
droplets. That means sublimation occurs so as not to change the mean mass of
DSD (x̄js). Number concentration of ice never reduces in sublimation unless the
mean mass of ice (x̄i) falls below the lower limit. The formulations of the reduc-
tion rate for the number concentration of ice particles are somewhat temporary
and will be improved by the insights drawn from the results of microphysics bin
schemes and observations in future work.

Accurate integration method to solve condensation/evaporation and
deposition/sublimation

The condensation/evaporation process for cloud droplets usually requires a
smaller time step than rain droplets or other particles because of its timescale.
When we apply the time integration with the first ordered Euler method, the
accuracy of the condensation/evaporation and the deposition/sublimation pro-
cesses are worse unless we resolve their timescale. We estimate the timescale
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with the exact thermodynamic definition in NICAM initially and then formu-
late an accurate method to apply the condensation process and the evaporation
process for cloud droplets similar to Khvorostyanov and Sassen (1998) and Mor-
rison et al., (2005). Since the supersaturated condition is achieved by updraft
of air mass, we consider a Lagrangian parcel model with constant updraft ve-
locity and no mixing with external air mass. Basic formulation is based on the
Lagrangian change rate of supersaturation (δsw = qv − qsw) as follows,

dδsw
dt

=
(dqv
dt

− dqsw
dt

)
(8.234)

Hereafter we consider the tendency of specific humidity and saturation spe-
cific humidity by dynamics, cloud microphysics and radiative heating.
At first, assuming an adiabatically ascending/descending parcel with no phase
change (qv/dt = 0), eq.(8.234) becomes

dδsw
dt

= −
(∂qsw
∂T

)
p

dT

dt
−
(∂qsw

∂p

)
T

dp

dt
(8.235)

Here the tendencies of temperature and pressure are described as follows,

dT

dt
=

1

ρc̄p

dp

dt
,

dp

dt
≈ −ρgw (8.236)

where c̄p ≡ qdcpd+qvcpv+qliqcl+qsolci is the mean specific heat at constant
pressure. We can derive the dynamic component of the tendency of δsw by
substituting eq. 8.236 into eq.8.235 as follows

dδsw
dt

∣∣∣
DYN

= wg
( 1

c̄p

(∂qsw
∂T

)
p
+ ρ
(∂qsw

∂p

)
T

)
(8.237)

Assuming air parcel with only cooling/heating by latent heat release, eq.
8.234 becomes

dδsw
dt

=
dqv
dt

−
(∂qsw
∂T

)dT
dt

(8.238)

The tendency of temperature is caused by latent heat release with conden-
sation/evaporation and deposition/sublimation

dT

dt
=

Lv,00 + (cvv − cl)T

c̄va

dqliq
dt

+
Lv,00 + Lf,00 + (cv − ci)T

c̄va

dqsol
dt

=
Lv,00 + (cvv − cl)T

c̄va

jlmax∑
jl=1

dqjl
dt

∣∣∣
cnd,evp

+
Lv,00 + Lf,00 + (cvv − ci)T

c̄va

jsmax∑
js=1

dqjs
dt

∣∣∣
dep,sbl

(8.239)
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The tendency of specific humidity is caused by condensation/evaporation
and deposition/sublimation,

dqv
dt

= −
jlmax∑
jl=1

dqjl
dt

∣∣∣
cnd,evp

−
jsmax∑
js=1

dqjs
dt

∣∣∣
dep,sbl

(8.240)

Then, we can derive the cloud microphysics component of the tendency of
δsw by substituting eq.8.239 and eq.8.240 into eq.8.238,

dδsw
dt

∣∣∣
MP

= −
(
1 +

Lv,00 + (cvv − cl)T

c̄v

(∂qsw
∂T

)
p

) jlmax∑
jl=1

∂dqjldt
∣∣∣
cnd,evp

−
(
1 +

Lv,00 + Lf,00 + (cvv − ci)T

c̄v

(∂qsw
∂T

)
p

) jsmax∑
js=1

dqjs
dt

∣∣∣
dep,sbl
(8.241)

By replacing the source term of the mixing ratio of hydrometeors in eq.8.241
with eq.8.224 and eq.8.232

dqjl
dt

∣∣∣
cnd,evp

=
δsw

τcnd,jl
, or

dqjl
dt

∣∣∣
cnd,evp

=
δsi

τcnd,jl
− qsw − qsi

τcnd,jl
, (jl = c, r) (8.242)

dqjs
dt

∣∣∣
de,sbl

=
δsi

τdep,js
, or

dqjs
dt

∣∣∣
dep,sbl

=
δsw

τdep,js
+

qsw − qsi
τdep,js

, (js = i, s, g) (8.243)

τcnd,jl ≡
( 1

ρqsw
2πGlvDjl(x̄jl)NjlF̄vf,1

)−1

(8.244)

τdep,js ≡
( 1

ρqsi

4π

cjs
GsvDjs(x̄js)NjsF̄vf,1

)−1

(8.245)

We can rewrite eq.8.241 as a function of super saturation itself,

∂δsw
∂t

∣∣∣
MP

= −
(aliq,liq
τcnd,c

+
aliq,liq
τcnd,r

+
asol,liq
τdep

+
asol,liq
τdep,s

+
asol,liq
τdep,g

)
δsw

−
( 1

τdep,i
+

1

τdep,s
+

1

τdep,g

)
(qsw − qsi) (8.246)

aliq,liq ≡ 1 +
Lv00 + (cvv − cl)T

c̄v

(∂qsw
∂T

)
p

(8.247)

asol,liq ≡ 1 +
Lv00 + Lf00 + (cvv − ci)T

c̄v

(∂qsw
∂T

)
p

(8.248)

Here, we can find that τcnd,jl and τdep,js in eq.8.246 are considered as the
characteristic time scale to relax the super saturation condition by the condensa-
tion/evaporation and deposition/sublimation processes. The timescale of each
hydrometeor is modified by coefficient aliq,liq orasol,liq, which means the effect of
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latent heat release. The second term on the right hand side in eq.8.246 means
the transfer of vapor from liquid droplets to solid particles. The Bergeron-
Findeisen process is implicitly formulated by the difference of saturation vapor
pressure between liquid and solid.
Finally assuming an air parcel with radiative heating (cooling), eq.8.234 be-
comes

dδsw
dt

∣∣∣
RAD

= −
(∂qsw
∂T

)
ρ

(dT
dt

)
RAD

(8.249)

All the components in the Lagrangian ascending/descending parcel model
are described by eq.8.237, eq.8.246 and eq.8.249,

dδsw
dt

= Acnd −
δsw
τcnd

(8.250)

Acnd ≡ dδsw
dt

∣∣∣
DYN

+
dδsw
dt

∣∣∣
RAD

−
( 1

τdep,i
+

1

τdep,s
+

1

τdep,g

)
(qsw − qsi) (8.251)

τcnd ≡
(aliq,liq
τcnd,c

+
aliq,liq
τcnd,r

+
asol,liq
τdep,i

+
asol,liq
τdep,s

+
asol,liq
τdep,g

)−1
(8.252)

Here, we can see that Acnd is a production term of super saturation and cnd
is a characteristic timescale of all the phase changes. From their formulation
(eq.8.244 and eq.8.245), we can find that the timescale of each hydrometeor is
in inverse proportion to its number concentration. The timescales under various
conditions are shown in Fig.8.7.
Assuming that time variance of the production term and the timescale in a sim-
ulation time step dont vary much within a model timestep, we can analytically
solve eq.8.250,

δsw(t) = Acndτcnd + (δsw(t0)−Acndτcnd)exp
(
− t

τcnd

)
(8.253)

where t = t0 + ∆t and t0 = 0. Then, the condensation (evaporation) rate
of cloud and rain are reformulated by substituting eq.8.253 into eq.8.224 and
integrating them,

∆Ljl

∆t

∣∣∣
cnd,evp

= ρAcnd
τcnd
τcnd,jl

− ρ
(δsw(t0)−Acndτcnd)

∆t

τcnd
τcnd,jl

[
exp
(
− ∆t

τcnd

)
− 1
]
(8.254)

This semi-analytical formulation takes time variability of super saturation
into condensation (evaporation) growth. Therefore, it is better than direct time
integration with a first order Euler method.
In the same manner, we can also derive the semi-analytical formulation for
deposition (sublimation) with super saturation for solid water (δsi),
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δsi(t) = Adepτdep + (δsi(t0)−Adepτdep)exp
(
− t

τdep

)
(8.255)

∆Ljs

∆t

∣∣∣
dep,sbl

= ρAdep
τdep
τdep,js

− ρ
(δsi(t0)−Adepτdep)

∆t

τdep
τdep,js

[
exp
(
− ∆t

τdep

)
− 1
]
(8.256)

where

Adep ≡ dδsi
dt

∣∣∣
DYN

+
dδsi
dt

∣∣∣
RAD

+
( 1

τcnd,c
+

1

τcnd,r

)
(qsw − qsi) (8.257)

τdep ≡
(aliq,sol
τcnd,c

+
aliq,sol
τcnd,r

+
asol,sol
τdep,i

+
asol,sol
τdep,s

+
asol,sol
τdep,g

)−1
(8.258)

aliq,sol ≡ 1 +
Lv00 + (cvv − cl)T

c̄v

(∂qsi
∂T

)
p

asol,sol ≡ 1 +
Lv00 + Lf00 + (cvv − ci)T

c̄v

(∂qsi
∂T

)
p

dδsi
dt

∣∣∣
DYN

= wg
( 1

c̄p

(∂qsi
∂T

)
p
+ ρ
(∂qsi
∂p

)
T

)
dδsi
dt

∣∣∣
RAD

= −
(∂qsi
∂T

)
ρ

(dT
dt

)
RAD

Finally we applied eq.8.254 and eq.8.256 for the prediction of mass concen-
tration and eq.8.225 and eq.8.233 for the prediction of number concentrations
of rain, snow and graupel. Number concentrations of cloud and ice are assumed
not to change by evaporation and sublimation.

Nucleation of cloud droplets

Seifert and Beheng (2006) applied traditional empirical formulation as an aerosol
activation spectrum as follows,

Nc(Sw,100) = CccnS
κccn
w,100 (8.259)

where super saturation ratio Sw,100 is in . They use Cccn = 1.26 × 109m−3

and κccn = 0.308 in continental conditions and Cccn = 1.0×108m−3 and κccn =
0.462 in maritime conditions. Further, Seifert and Beheng (2006) transformed
eq.8.259 into a tendency formulation by time differentiation of the activation
spectrum,

∂Nc

∂t
=


CccnκccnS

κccn−1
w,100

∂Sw,100

∂z w

(Sw,100 > 0, w
∂Sw,100

∂z > 0, and Sw,100 < 1.1)
0, (else)

∂Lc

∂t

∣∣∣
nuc

= xc,nuc
∂Nc

∂t

∣∣∣
nuc

(8.260)
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where xc,nuc = 10−12kg is an arbitrary mass of nucleated droplets. Because
the aerosol activity spectrum is a function of supersaturation and unbounded
by the total aerosol number concentration, we chose an upper limit of activated
aerosols as 1.5 × Cccn, as similarly chosen by SB06: The maximum acticated
aerosol number concentration is 1.5 times of the activated aerosol number con-
centration at ssw = 1 o/o. Here, we should mention that this formulation
depends on the grid value of super saturation ratio, vertical velocity and verti-
cal derivation of the super saturation ratio. Since super saturation significantly
varies in tens of meters above cloud base (see Fig.8.9), accurate prediction of
super saturation and its vertical derivation is quite difficult. In this study, we
applied a traditional nucleation scheme (Twomey, 1959; Rogers and Yau, 1989)
following Morrison et al. (2005),

Nc,nuc(weff ) = 0.88C2/(κccn+2)
ccn (0.07w

3/2
eff )

κccn/(κccn+2) (8.261)

weff ≡ w + wTB − c̄p
g

(dT
dt

)
RAD

(8.262)

where weff is effective vertical velocity for nucleation and wTB is the sub-grid
variability of terminal velocity. This is an analytical formulation of maximum
number concentration around the cloud base for the Twomey equation with
aerosol activated spectrum by eq.8.259 (see Fig.8.6). By using this scheme we do
not have to resolve the vertical variability of super saturation around the cloud
base. Furthermore, applying sub-grid turbulence effects on vertical velocity
reduces under estimation of nucleated cloud number concentration caused by
low horizontal resolution (Ghan, et al., 1997; Lohmann, 2002; Morrison and
Pinto, 2005). In this study, implementation of the sub-grid turbulence effect
follows Lohmann (2002),

wTB = cTB

(2
3
TKE

)1/2
(8.263)

N̄c,nucl = 0.1×Nc,nuc(weff )
1.27 (8.264)

where cTB = 1 is used in this study, N̄c,nuc cm
−3 is a grid averaged nucleated

cloud number concentration and Nc,nuc(weff )cm
−3 is maximum cloud number

concentration in turbulent air. By substituting eq.8.261, eq.8.262 and eq.8.263
into eq.8.264, the tendency of cloud number concentration is calculated by,

∂Nc

∂t

∣∣∣
nucl

=


Nc,nu(weff )−Nc

∆t , (Sw > 0, N̄c,nuc > Nc and at cloud base)
0, (else) (8.265)

∂Lc

∂t

∣∣∣
nuc

= min
(
xc,min

∂Nc

∂t

∣∣
nuc

,
δsw
∆t

)
(8.266)

Since nucleation is usually limited around the cloud base within several tens
of meters (see Fig.8.9), we define cloud base layer (kcbase) where the nucleation
scheme works as follows,

1.5× Cccn > N̄c,nu(kcbase) > 0, and N̄c,nu(kcbase − 1) < 106 (8.267)
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In addition, we prepare the option (NO-TB) to switch off the effect of tur-
bulence by substituting eq.8.261, eq.8.262 with wTB = 0 into eq.8.265. There
remain some problems to be solved in future,
1.Definition of cloud base is empirical and arbitrary
2.Implementation of sub-grid scale is empirical and cTB is a kind of tuning
parameter. In particular, the TKE approach only considers isotropic eddies.
Sub-grid should be expressed as sub-grid cloud dynamics.
3.Formulation of eq.8.264 does not converge with the NO-TB option when TKE
= 0.
We need to investigate the above problems by using a large eddy simulation
(LES) cloud model.

Nucleation of cloud ice

This study employed two simple ice nucleation schemes, which dont require the
properties of ice nuclei. One is the depositional and condensational freezing
nucleation scheme parameterized by Meyers et al. (1992),

NIN = 103exp(−0.639 + 12.96Ssol)

where NIN is nucleated ice nuclei, and Ssol is supersaturation for solid wa-
ter. While this scheme is widely used in CRMs (e.g., Walko et al. 1995; Khain
et al., 2000; Seifert and Beheng, 2006), this scheme could not be acceptable for
conditions at temperature below -20 degC or supersaturation over 0.25 where
observational data were not available in their study. For simulating cirrus clouds
around the tropopause, application of this scheme to CRMs may cause signif-
icant error. Phillips et al. (2007) proposed an alternative scheme to modify
Meyerss scheme by fitting to observational data at temperature between -30
degC and -80 degC taken by Demott et al. (2003),

NIN = 103exp[0.3× 12.96(Si − 0.1)] (8.268)

In this study, the nucleation rate is formulated by the newly nucleated ice
nuclei with the tendency of supersaturation in the same manner as Murakami
(1990),

∆Ni

∆t
=

{
∂NIN

∂Ssol

∂Ssol

∂t , (Ssol > 0 and ∂Ssol

∂t > 0)

0, (else)
(8.269)

∂Ssol

∂t
≈

[∂Ssol

∂z
w +

(∂Ssol

∂T

)(∂T
∂t

)
RAD

]
∆Li

∆t

∣∣∣
nuc

=
∆Ni

∆t

∣∣∣
nuc

xIN (8.270)

where xIN = 10−12kg is an arbitrary parameter for a nucleated ice nuclei
mass. Here, we assume the change of supersaturation comes from the vertical
motion of airmass and the radiative cooling. Meyerss scheme produces the
number concentration of cloud ice more than Phillipss scheme, and the departure
becomes large as supersaturation increases. This difference would come from
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the sampled air masses used in observational data that their schemes referred
to, and also implicit dependencies of their schemes on temperature and aerosol
species. It is expected that Phillipss scheme is appropriate for the simulation
of mid-latitude cirrus clouds because Phillipss scheme is based on the air mass
sampled in the free troposphere at the mid-latitude while Meyerss scheme is
based on the air mass sampled in the atmospheric boundary layer where ice
nuclei is rich.

Freezing

The freezing process consists of two types of mechanisms. One is the homoge-
nous freezing which is freezing of supercooled water droplets for themselves
without the other agents. Another is the heterogeneous freezing, which is freez-
ing of supercooled water droplets with insoluble part of aerosols dissolved in
cloud droplets. We apply the same parameterizations of both the homogeneous
freezing and the heterogeneous freezing as Seifert and Beheng (2006a). Cotton
and Field (2002) parameterized homogeneous freezing rate for a single droplet
by a fitting to the theoretical estimation by Jeffery and Austin (1997). We apply
their parameterization as Seifert and Beheng (2006a),

1

fc(x)

∂fc(x)

∂t

∣∣∣
hom

= −xJhom(Tc) (8.271)

where Jhom is a homogeneous freezing rate (kg−1s−1) and Tc is centigrade
temperature. Jhom is formulated as a function of temperature as follows,

log10(10
−3Jhom) =

 25.63− 243.4− 14.75Tc − 0.307T 2
c , (−65oC > Tc)

−0.00287T 3
c − 0.0000102T 4

c , (−65oC ≤ Tc < −30oC)
−7.63− 2.996(Tc + 30), (−30oC < Tc)

Based on the equation for a single droplet, we can derive the equation for
moments by integrating eq.8.271 as follows

∂Nc

∂t

∣∣∣
hom

= −LcJhom = −Ncx̄cJhom (8.272)

∂Lc

∂t

∣∣∣
hom

= −ZcJhom = −
Γ
(
νc+3
µc

)
Γ
(
νc+1
µc

)
Γ
(
νc+2
µc

)2 Lcx̄cJhom (8.273)

Here, we mention that eq.8.272 and eq.8.273 are expressed via filtered x̄c

in order to avoid artificial value of the prognostic variables. The homogeneous
freezing for rain is not considered because it is negligible compared with the
heterogeneous freezing due to their largeness. Although Cotton and Field (2002)
considered also freezing point depression in freezing due to soluble aerosols, we
dont consider the effect because Seiki and Nakajima (2014) is not yet coupled
with aerosol transport models. Heterogeneous freezing is based on the empirical
formulation by Biggs (1953) which is widely used in CRMs.

1

f(x)

∂f(x)

∂t
= −xJhet(Tc) (8.274)
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where Jhet is the heterogeneous freezing rate. Jhet is formulated as a function
of temperature as follows,

Jhet = Ahetexp(−BhetTc − 1) (8.275)

whare Ahet = 0.2kg−1s−1 and Bhet = 0.65K−1 are empirically determined
parameters. Similar to the homogeneous freezing, we can derive the equation
for moments as follows,

∂Nil

∂t

∣∣∣
het

= −Nilx̄ilJhet (il = c, r)sn126) (8.276)

∂Lil

∂t

∣∣∣
het

= −
Γ
(
νil+3
µil

)
Γ
(
νil+1
µil

)
Γ
(
νilL2
µil

)2 Lilx̄ilJhet (il = c, r) (8.277)

Although the heterogeneous freezing should be also formulated as a function
of aerosol concentration, here we apply simple formulation because our model
is not yet coupled with an aerosol transport model.
Thus, these parameterizations dont include the information of aerosols and it is
considered that they assume background aerosols. The validity of the parame-
terization was demonstrated by Khain et al. (2001). Nevertheless their model
also applied the same simple freezing parameterizations, they could represented
the observational features of supercooled liquid water by Rosenfeld and Woodley
(2000). Both freezing rates are shown in Fig. 8.10. The heterogeneous freez-
ing is dominated at temperature over -35 degrees Celsius. At the temperature,
supercooled liquid water is mixed with ice particles. In contrast, the homoge-
neous freezing rate suddenly increase below -35 degrees Celsius. Liquid water
droplets have been hardly observed below the temperature of -40 degrees Cel-
sius (Rosenfeld and Woodley, 2000). The feature can be represented by using
the parameterization.

Melting

Melting process is the same as Seifert and Beheng (2006a) based on Pruppacher
and Klett (1997). Theoretical treatment of this process is similar to the con-
densation process. The differences are
1.Time scale of evaporation of a single particle is replaced by that of fusion of
a single particle.
2.Vaporization of melted particle is considered in a balance equation of vapor
and thermal diffusion.
As a result, the melting rate of a single ice particle is described as follows,

dxjs

dt

∣∣∣
mlt

= − 2πDjs

Lf0

[
KT (T − T0)

DT

Dv
Fvf (xjs)

+
DvLv0

Rv

(pv
T

− psw(T0)

T

)
Fvf (xjs)

]
(js = i, s, g) (8.278)

where DT is diffusivity of heat, and T0 = 273.15K is melting point. The
growth rate of moments can be formulated by using a melting time scale τmlt

defined as follows,
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τmlt ≡ xjs(dxjs

dt

)
mlt

(8.279)

∂Mk
js

∂t

∣∣∣
mlt

= −
∫ ∞

0

xkfjs(x)

τmlt
dx

= − 2π

Lf0

[KTDT

Dv
(T − T0) +

DvLv0

Rv

(pv
T

− psw(T0)

T0

)]
× NjsDjs(x̄js)x

n−1
js F̄vf,js (8.280)

We mention that this scheme allows the existence of ice particles over the
melting point (T > 273.15K) since the melting time scale of large particles can
be longer than a simulation time step. Actually, ice particles are transitionally
converted into liquid droplets and the type of hydrometeor is not changed in the
transition. However, here we assume that ice water mass is converted into liquid
water mass in a certain melting time scale and the part of liquid water mass is
categorized as the other hydrometeors. Here, graupel and snow is converted into
rain, and ice is converted into cloud. This formulation has a possibility to cause
an artificial production of cloud or rain in melting. Validation experiments and
impact assessment are necessary in future.

Collection process

The collection processes are the same as Seifert and Beheng (2001), Seifert and
Beheng (2006a) and Seifert (2008). The collection processes among hydrom-
eteors are summarized in Table 8.5. In this section, the formulations of the
collection processes, auto-conversion, accretion, aggregation, riming, and their
related processes are described.

Table 8.5: Hydrometeors that result from binary collision. Collecting hydrom-
eteors are written in the 1st row and collected hydrometeors are written in the
1st column.

cloud water rain cloud ice snow graupel
cloud water rain - - - -

rain rain rain rain(T > 273K), graupel(T < 273K) rain(T > 273K), graupel(T < 273K) rain(T > 273K)
cloud ice cloud ice - snow - -
snow snow - - snow -

graupel graupel graupel(T < 273K) graupel graupel -

Self-collection, auto-conversion, and accretion

With a few assumptions and a little algebra, Seifert and Beheng (2001) derived
the analytical formulations of the self-collection, auto-conversion, and accretion
processes as follows,
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∂Nc

∂t

∣∣∣
aut+sle

= −kcc
(νc + 2)

(νc + 1)

ρ0
ρ
L2
c (8.281)

∂Lc

∂t

∣∣∣
aut

= − kcc
20x∗

(νc + 2)(νc + 4)

(νc + 1)2
ρ0
ρ
L2
cx

2
c (8.282)

∂Nc

∂t

∣∣∣
aut

=
2

x∗
∂Lc

∂t

∣∣∣
aut

(8.283)

∂Nr

∂t

∣∣∣
aut

= −1

2

∂Nc

∂t

∣∣∣
aut

= − 1

x∗
∂Lc

∂t

∣∣∣
aut

(8.284)

∂Nc

∂t

∣∣∣
acc

= −kcrNcLr

(ρ0
ρ

)1/2
(8.285)

∂Lc

∂t

∣∣∣
acc

= −kcrLcLr

(ρ0
ρ

)1/2
(8.286)

∂Nr

∂t

∣∣∣
slc

= −krrLrLr

(ρ0
ρ

)1/2
(8.287)

with krr = 4.33m3kg−1s−1, and where density factors are introduced by Seifert
and Beheng (2006a) in order to correct the effect of terminal velocity on the
collision efficiency. In addition to the analytical derivation, Seifert and Be-
heng (2001) made corrections depending on the development stage by using
the dimensionless internal time scale. Since moment bulk methods cannot rep-
resented complicated changes of high-order moments, the corrections are nec-
essary as DSD undergoes evolution by the collection processes. Firstly, the
auto-conversion rate is represented by τ by substituting eq.?? to eq.8.282,

∂τ

∂t

∣∣∣
aut

=
kcc
20x∗

(νc + 2)(νc + 4)

(νc + 1)2
ρ0
ρ
x2
cL(1− τ2) (8.288)

The assumptions used in the derivation of eq.8.288 are valid for the initial
stage of collisional growth. Therefore, the additional collection by a universal
function ϕaut was introduced by Seifert and Beheng (2001) as follows,

∂τ

∂t

∣∣∣
aut

=
kcc
20x∗

(νc + 2)(νc + 4)

(νc + 1)2
ρ0
ρ
x2
cL

2
cx

2
c

[
(1− τ2) + ϕaut(τ)

]
(8.289)

Similarly, the correction for the accretion rate is also made by a universal
function ϕacc,

∂τ

∂t

∣∣∣
acc

= kcrL
(ρ0
ρ

)1/2
(1− τ)τϕacc(τ) (8.290)

In contrast to the correction for the auto-conversion rate, the assumptions
used in the derivation of the accretion rate is valid for the mature stage of the
collisional growth. Therefore a correction function is multiplied so that ϕaut

becomes zero for the beginning of the collisional growth and one for the mature
stage of the collisional growth. Here, it is recognized that the growth rate of the
dimensional internal time scale is proportional to LWC in eq.8.289 and eq.8.290.
Therefore, the parameterizations developed by Seifert and Beheng (2001) satisfy
the similarity included in the SCE. Finally, the universal functions are derived
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by fitting to the results by a bin cloud microphysics model,

ϕaut(τ) = 400τ0.7(1− τ0.7)3 (8.291)

ϕacc(τ) =
( τ

τ + 5× 10−5

)4
(8.292)

These functions are shown in Fig.8.9.
Here, we mention that the fitting curves of the universal functions highly depend
on the calculation by a bin cloud microphysics model. In fact, the functions pro-
posed by Seifert and Beheng (2006a) were modified from the original functions
by Seifert and Beheng (2001) with the progresses in the estimation of the collec-
tion kernel. We have to update the parameterizations when more sophisticated
collection kernel will be estimated than the one used by Seifert and Beheng
(2006a)

Break-up

Large rain droplets are not always stable in the collision process. It was ob-
served that large rain droplets could break up into many small droplets after
the collision ( Low and Lists, 1982 ). Collisional break-up sustain mean droplet
size so as not to grow extremely larger and cause strong precipitation. As dis-
cussed by Hu and Srivastava (1995), the system of collision, coalescence and
break-up reaches the equilibrium condition between coalescence and break-up
after the sufficient long time. Consequently the form of the DSD of rain is led
to the self-similar equilibrium DSD with the equilibrium mean diameter D̄eq

. Seifert and Beheng (2006a) simply parameterized the break-up process as a
relaxation of the DSD with the mean diameter more than D̄eq to the self-similar
equilibrium DSD.

∂Nr

∂t

∣∣∣
brk

= −
[
ϕbrk(∆D̄r) + 1

]∂Nr

∂t

∣∣∣
slc

(8.293)

where ϕbrk is a universal function of break-up, and ∆D̄r ≡ D̄r − D̄eq, D̄r

is the mean volume diameter of rain, with D̄eq = 1.1mm according to Seifert
(2008). The universal function was derived by a fitting to the results by a bin
cloud microphysics model based on ( Seifert et al. 2005 ), and formulated as
follows,

ϕbrk(∆D̄r) =

 2exp(κbrk∆D̄r)− 1, (D̄r > D̄eq)
κbrk∆D̄r + 1, (D̄eq ≥ D̄r > 0.35× 10−3m)
−1, (0.35× 10−3 > D̄r)

(8.294)

with κbrk = 2.3 × 103m−1, and kbrk = 1000m−1. For the mean volume
diameter less than 0.35× 10−3m, break-up is neglected.

Mixed-phase collection

In the previous sections, the collection processes are limited for warm cloud. In
this section, the collection processes among mixed phase clouds are described.
In contrast to warm cloud, there exist many kinds of particles in cold cloud as
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discussed in section 2.1. Since the variety of the shape and their coexistence
condition differs case by case, there are no systematized theory, observation,
and experiments for the mixed phase collection processes. Therefore, Seifert
and Beheng (2006a) proposed a general formulation of the collisional interac-
tions among hydrometeors starting from the simplification of the SCE. Due to
the variety of the types of hydrometeors, the patterns of the interaction are
categorized into following five cases.
1.A particle of hydrometeor a collects b and then the collecting particle a grow.
This pattern is corresponding to the collision between ice and cloud (ic), snow
and cloud (sc), graupel and cloud (gc), snow and ice (si), graupel and rain (gr),
and graupel and snow (gs).
2.A particle of hydrometeor a collects b and then the other particle c is pro-
duced. This pattern is corresponding to the collision between rain and ice (ri),
and rain and snow (rs).
3.A particle of hydrometeor a collects a and then the other particle b is pro-
duced. This pattern is corresponding to the collision between ice and ice (ii).
4.A particle of hydrometeor a collects a and then the collecting particle a grows.
This pattern is corresponding to the collision between snow and snow (ss).
In the following sections, we introduce the derivation of the mixed phase collec-
tion corresponding to the five cases.

The collision case 1: a+b → a

In contrast to the SCE for warm cloud, the production term and reduction
term are slightly different in the binary collision between two types of hydrom-
eteors. The reduction term of the hydrometeor b and the production term of
the hydrometeor a are described as follows,

∂fb(y)

∂t

∣∣∣
col,ab

= −
∫ ∞

0

fb(y)fa(x)Kab(x, y)dx (8.295)

∂fb(y)

∂t

∣∣∣
col.ab

=

∫ ∞

0

fa(x− y)fb(x)Kab(x− y, y)dx

−
∫ ∞

0

fa(x)fb(y)Kab(x, y)dy (8.296)

Here, the formulation of the collection kernel is often described by the swept
volume of large particle as follows,

Kab(x, y) ≡ Eab(x, y)
π

4

[
Da(x) +Db(y)

]2[
vt,a(x)− vt,b(y)

]
(8.297)

where Eab is the collection efficiency, Di and vt,i are diameter and terminal
velocity respectively. We can derive the growth rate of the kth moments by
integrating eq.8.295 and eq.8.296,
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∂Mk
b

∂t

∣∣∣
col,ab

=
π

4

∫ ∞

0

∫ ∞

0

fb(y)fa(x)
[
Da(x) +Db(y)

]2
×

∣∣vt,a(x)− vt,b(y)
∣∣Eab(x, y)y

kdxdy (8.298)

∂Mk
a

∂t

∣∣∣
col,ab

=
π

4

∫ ∞

0

∫ ∞

0

fa(x)fb(y)
[
Da(x) +Db(y)

]2
×

∣∣vt,a(x)− vt,b(y)
∣∣Eab(x, y)

[
(x+ y)k − xk

]
dxdy (8.299)

Here, the difference of the terminal velocities, and the collection efficiency in
the integrand make the analytical integration of eq.8.298 and eq.8.299 impossi-
ble. In the past, many researchers have made effort to express the integration
by approximation. Seifert and Beheng (2006a) achieved the integration by using
the approximation proposed by Wisner et al. (1972) with some improvements.
Hereafter, we only demonstrate the equations for the 0th moment N and the
1st moment L.

∂Lb

∂t

∣∣∣
col,ab

∼= −π

4
Ēab

¯∆v1t,ab

×
∫ ∞

0

∫ ∞

0

fa(x)fb(y)
[
Da(x) +Db(y)

]2
ydxdy (8.300)

∂La

∂t

∣∣∣
col,ab

∼=
π

4
Ēab

¯∆v1t,ab

∫ ∞

0

∫ ∞

0

fa(x)fb(y)
[
Da(x) +Db(y)

]2
ydxdy

= −∂Lb

∂t
(8.301)

∂Nb

∂t

∣∣∣
col,ab

∼= −π

4
Ēab

¯∆v0t,ab

∫ ∞

0

×
∫ ∞

0

fa(x)fb(y)
[
Da(x) +Db(y)

]2
dxdy (8.302)

∂Na

∂t

∣∣∣
col,ab

= 0 (8.303)

where Ēab is the mean collection efficiency, and ¯∆vkt,ab is a characteristic
velocity difference. Thus, the integrand are transformed so as to be integrated
analytically and the problems result in the evaluation of Ēab and ¯∆vkt,ab. Some

cloud microphysics schemes evaluate ¯∆vkt,ab as the approximation proposed by
Wisner (1972),

¯∆vkt,ab =
∣∣v̄Mk

a
(x̄a)− v̄Mk

b
(ȳb)

∣∣ (8.304)

The characteristic velocity difference is simply approximated by the differ-
ence between the mass weighted mean terminal velocity of the hydrometeors.
This is equivalent to the physical assumption that all the particles are falling
with the same terminal velocity equal to the mass weighted mean terminal ve-
locity. However, as pointed out by Seifert and Beheng (2006a), the formulation
underestimates the term for the similar mass weighted mean terminal veloci-
ties even though larger particles preferentially collect smaller particles due to
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their differences of the terminal velocities. Seifert and Beheng (2006a) applied
an alternate approximation in order to avoid the abovementioned problem as
follows,

¯∆vkt,ab =
[∫∞

0

∫∞
0

vt,a(x)− vt,b(y)
2
D2

aD
2
bfa(x)fb(y)y

kdxdy∫∞
0

∫∞
0

D2
aD

2
bfa(x)fb(y)y

kdxdy

]1/2
(8.305)

The integrand can be integrated straightforwardly assuming the diameter
and the terminal velocity follow power laws as given in section 2.1. Here, we
apply the equivalent projected area diameter in contrast to the maximum di-
mension applied by Seifert and Beheng (2006a),

D = DC(x) =
( 4
π
A
)1/2

= aCx
bC (8.306)

aC =
( 4
π
aax
)1/2

, bC =
bax
2

Since the diameter is used in the calculation of collisional cross section,
maximum dimension overestimates collisional cross section for needle or column
like crystals. Firstly, the denominator in eq.8.305 is transformed as follows,

∫ ∞

0

∫ ∞

0

D2
C,aD

2
C,bfa(x)fb(y)y

kdxdy

= a2Ca
a2Cb

M2bC,a
a M

2bC,b+k
b

= D2
C,a(x̄)D

2
C,b(ȳ)ȳ

k

×
Γ
( 2bC,a+νa+1

µa

)
Γ
(
νa+1
µa

) Γ
( 2bC,b+k+νa+1

µa

)
Γ
(
νa+1
µa

)
×

[Γ(νa+1
µa

)
Γ
(
νa+1
µa

)]2bC,a
[Γ(νb+1

µb

)
Γ
(
νb+1
µb

)]2bC,b
+k

(8.307)

Secondly, the numerator in eq.8.305 is transformed as follows,
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∫ ∞

0

∫ ∞

0

[
vt,a(x)− vt,b(y)

]2
D2

C,bD
2
C,bfa(x)fb(y)y

kdxdy

= a2Ca
a2Cb

[
a2v,aM

2bC,a+2bv,a
a

+ M
2bC,b+k
b − 2av,aav,bM

2bC,a+bv,a
a M

2bC,b+bv,b+k
b + a2v,bM

2bC,a
a M

2bC,b+2bv,b+k
b

]
= D2

C,a(x̄)D
2
C,b(ȳ)ȳ

k

+ v2t,a(x̄)
Γ
( 2bC,a+2bv,a+va+1

µa

)
Γ
(
va+1
µa

) Γ
( 2bC,b+k+va+1

µa

)
Γ
(
va+1
µa

) [Γ( va+1
µa

)
Γ
(
va+2
µa

)]2bC,a
+2bv,a

[Γ(vb+1
µb

)
Γ
(
vb+2
µb

)]2bC,a
+k

= 2vt,a(x̄)vt,b(ȳ)
Γ
( 2bC,a+bv,a+va+1

µa

)
Γ
(
va+1
µa

) Γ
( 2bC,b+bv,a+k+va+1

µa

)
Γ
(
va+1
µa

)
×

[Γ( va+1
µa

)
Γ
(
va+2
µa

)]2bC,a
+bv,a

[Γ( vb+1
µb

)
Γ
(
vb+2
µb

)]2bC,a
+bv,b+k

+ v2t,b(ȳ)
Γ
( 2bC,a+va+1

µa

)
Γ
(
va+1
µa

) Γ
( 2bC,b+2bv,a+k+va+1

µa

)
Γ
(
va+1
µa

) [Γ(va+1
µa

)
Γ
(
va+2
µa

)]2bC,a

×
[Γ( vb+1

µb

)
Γ
(
vb+2
µb

)]2bC,a
+2bv,b+k

(8.308)

Finally, the characteristic velocity difference are derived by substituting
eq.8.307 and eq.8.308 into 8.305,

¯∆vkt,ab =
[
θ0av

2
t,a(x̄)− θkabvt,a(x̄)vt,b(ȳ) + θkb v

2
t,b

]1/2
(8.309)

θka =
Γ
( 2bC,a+2bv,a+k+va+1

µa

)
Γ
( 2bC,a+k+va+1

µa

) [Γ( va+1
µa

)
Γ
(
vb+2
µb

) ]{2bv,a+k (8.310)

θkab = 2
Γ
( 2bC,a+bv,a+va+1

µa

)
Γ
( 2bC,a+va+1

µa

) Γ
( 2bC,b+bv,b+k+vb+1

µb

)
Γ
( 2bC,b+k+vb+1

µb

)
×

[Γ( va+1
µa

)
Γ
(
va+2
µa

)]bv,a
[Γ(vb+1

µb

)
Γ
(
vb+2
µb

)]bv,b

(8.311)

Here, it is noticed that the notation ab in θkab is not symmetric because θkab
is weighted by the mass of collected particle to the power of k. Integrations in
eq.8.300 and eq.8.302 are similarly calculated as follows,
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∫ ∞

0

∫ ∞

0

fa(x)fb(y)Da(x) +Db(y)
2
ykdx

= a2Ca
M2bC,a

a Mk
b + 2aCa

aCb
M bC,a

a M
bC,b+k
b + a2Cb

M0
aM

2bC,b+k
b

= δ0aD
2
C,a(x̄)NaM

k
b + δkabDC,a(x̄)DC,b(ȳ)NaNbȳ

k

+ δkbD
2
C,b(ȳ)NaNbȳk (8.312)

δka =
Γ
( 2bC,b+k+va+1

µa

)
Γ
(
µa+1
µa

) [Γ(va+1
µa

)
Γ
(
va+2
µa

)]2bC,a
+k

(8.313)

δkab = 2
Γ
( bC,a+va+1

µa

)
Γ
(
va+1
µa

) Γ
( bC,b+k+vb+1

µb

)
Γ
(
vb+1
µb

) [Γ( va+1
µa

)
Γ
(
va+2
µa

)]bC,a
[Γ(vb+1

µb

)
Γ
(
vb+2
µb

)]bC,b+k

(8.314)

Here, δkab is also asymmetry in ab as θkab. Finally, the growth rates of the
prognostic moments are represented as follows,

∂La

∂

∣∣∣
col,ab

=
π

4
ĒabNaLbδ

0
aD

2
C,a(x̄a) + δ1abDC,a(x̄a)DC,b(x̄b) + δ1bD

2
C,b(x̄b)

× [θ0av
2
t,a(x̄a)− θ1abvt,a(x̄a)vt,b(x̄b) + θ1bv

2
t,b(x̄b) + σa + σb]

1/2(8.315)

∂Lb

∂t

∣∣∣
col,ab

= −∂La

∂t

∣∣∣
col,ab

(8.316)

∂Nb

∂

∣∣∣
col,ab

=
π

4
ĒabNaNbδ

0
aD

2
C,a(x̄a) + δ0abDC,a(x̄a)DC,b(x̄b) + δ0bD

2
C,b(x̄b)

× [θ0av
2
t,a(x̄a)− θ0abvt,a(x̄a)vt,b(x̄b) + θ0bv

2
t,b(x̄b) + σa + σb]

1/2(8.317)

∂Nb

∂t

∣∣∣
col,ab

= 0 (8.318)

where σa and σb are constant variances due to the probabilities of the ter-
minal velocity of particles. Seifert and Beheng (2006a) proposed the concept to
mimic an introduction of the effect of turbulence to the collection kernel with
the use of the constant variances. The constant variances are only applied to
ice and snow with σi = σs = 0.2ms−1 while no variances are assumed for the
other particles.

The collection efficiencies of ice particles

The collection efficiencies of ice particles are poorly understood due to their
varieties and the lack of the systematic observations. In addition, the efficiencies
cannot be approximated by power laws. Therefore, Seifert and Beheng (2006a)
described them in a simple way. The collection efficiency Eab can be decomposed
into two part of efficiencies, the collision efficiency Ecol and the sticking efficiency
Estick. This means that two particles stochastically collide each other with
Ecol, and then they stick each other with Estick. It is considered that the mean
possibility of collection Ēab is parameterized by the multiplying Ēcol by Ēstick.

Ēab = Ēcol,ab × Ēstick,ab (8.319)
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The mean collision efficiencies of each gydrometeor are given as follows,

Ēcol,ab = Ēcol,a × Ēcolk,b (8.320)

Ēcol,c =


0, (D̄c < D̄c,0)
D̄c−D̄c,0

D̄c,1−D̄c,0
, (D̄c,0 ≤ D̄c ≤ D̄c,1)

1, (D̄c,1 < D̄c)

(8.321)

Ēcol,r = 1 (8.322)

Ēcol,js =

{
0, (D̄js < 150nm)
Ēcol,max,js, (D̄js > 150nm), (js = i, s, g)

(8.323)

with D̄c,0 = 15µm, D̄c,1 = 40µm, Ēcol,max,i = Ēcol,max,s = 0.8 , and
Ēcol,max,g = 1.0. Furthermore, the mean collision efficiency of one is assumed in
the collision between rain droplets and ice particles, and the collision between
ice particles. These values are so empirical that further investigations and as-
sessments are required.
The sticking efficiency is considered only in the case of the collision between
ice particles. Otherwise, the efficiency is assumed as one. It is known that the
stick efficiency depends on the enviromental condition around ice particles and
the shape of ice particle (Pruppacher and Klett, 1997). Ice crystals with many
branches are likely to stick each other. In addition, the ice particles under wet
conditions are also likely to coalescence because of the surface condition of ice
particles. Since these dependencies of the stick efficiency are poorly understood,
some simple formulations were proposed by past researchers. Lin et al. (1983)
proposed the following formulation,

Ēstick(T ) =

{
exp[0.09× Tc], (Tc ≤ 0oC)
1, (Tc > 0oC)

(8.324)

In contrast to their formulation, Cotton et al. (1986), proposed an alterna-
tive formulation based on observations (Hallgren and Hosler, 1960) as follows,

Ēstick(Tp) = min(100.035(Tp−273.15)−0.7, 0.2) (8.325)

where Tp is particle surface temperature. They also diagnosed the departure
of particle surface temperature from the enviroment due to phase change in
the calculation. In addition, their formulation has a upper limit to reduce the
efficiency as observations showed. In a similar way, Khain and Sednev (1996)
proposed a formulation based on other observations (Hosler et al., 1957; Rogers
et al., 1974). Their formulation also depends on vapor pressure as follows,

Ēstick = min
(
δE

pv
psi

, 1
)

(8.326)

δE = max(aδ + bδTc + cδT
2
c + dδT

3
c , 0) (8.327)

with aδ = 0.883, bδ = 0.093, cδ = 0.00348, and dδ = 4.5185 × 10−5. In this
study, the formulation proposed by Lin et al. (1983) is applied following Seifert
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and Beheng (2006a). These efficiencies are shown in Fig.8.10 with the various
obeservation data from Pruppacher and Klett (1997). The further investigations
and assessments are necessary to determine which one is better than others
although there are less information for making a decision.

The collision case 2: a+b → c

The case is the same as the case 1 except for the growing particles.

∂fb(y)

∂t

∣∣∣
col,abs

= −
∫ ∞

0

fb(y)fa(x)Kab(x, y)dx (8.328)

∂fa(x)

∂t

∣∣∣
col,abs

= −
∫ ∞

0

fa(x)fb(y)Kab(x, y)dy (8.329)

Similarly, the growth rates of the prognostic moments are derived as follows,

∂La

∂t

∣∣∣
col,ab

= −π

4
Ēab

¯∆v1t,ab

×
∫ ∞

0

∫ ∞

0

fa(x)fb(y)[Da(x) +Db(y)]
2xdxdy (8.330)

∂Lb

∂t

∣∣∣
col,ab

= −π

4
Ēab

¯∆v1t,ab

×
∫ ∞

0

∫ ∞

0

fa(x)fb(y)[Da(x) +Db(y)]
2ydxdy (8.331)

∂Na

∂t

∣∣
col,ab

=
∂Nb

∂t

∣∣∣
col,ab

= −π

4
Ēab

¯∆v0t,ab

×
∫ ∞

0

∫ ∞

0

fa(x)fb(y)[Da(x) +Db(y)]
2dxdy (8.332)

∂Nc

∂t

∣∣
col,ab

= −∂Na

∂t

∣∣∣
col,ab

(8.333)

Finally, the equations are transformed by using the approximations as fol-
lows,
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∂Lb

∂t

∣∣∣
col,ab

= −π

4
ĒabNaLb

× [δ0aD
2
C,a(x̄a) + δ1abDC,a(x̄a)DC,b(x̄b) + δ1bD

2
C,b(x̄b)] (8.334)

× [θ0av
2
t,a(x̄a)− θ1abvt,a(x̄a)vt,b(x̄b) + θ1bv

2
t,b(x̄b) + σa + σb]

1/2

∂La

∂t

∣∣∣
col,ab

= −π

4
ĒabNbLa

× [δ0bD
2
C,b(x̄b) + δ1abDC,a(x̄a)DC,b(x̄b) + δ1aD

2
C,a(x̄b)] (8.335)

× [θ0bv
2
t,b(x̄b)− θ1bavt,a(x̄a)vt,b(x̄b) + θ1av

2
t,a(x̄b) + σa + σb]

1/2

∂Nb

∂t

∣∣∣
col,ab

= −π

4
ĒabNaNb

× [δ0aD
2
C,a(x̄a) + δ0abDC,a(x̄a)DC,b(x̄b) + δ0bD

2
C,a(x̄b)] (8.336)

× [θ0av
2
t,a(x̄a)− θ0abvt,a(x̄a)vt,b(x̄b) + θ0bv

2
t,a(x̄b) + σa + σb]

1/2

∂Na

∂t

∣∣∣
col,ab

= −π

4
ĒabNaNb

× [δ0aD
2
C,a(x̄a) + δ0abDC,b(x̄a)DC,b(x̄b) + δ0bD

2
C,b(x̄b)] (8.337)

× [θ0av
2
t,a(x̄a)− θ0bavt,b(x̄a)vt,b(x̄b) + θ0bv

2
t,b(x̄b) + σa + σb]

1/2

The collision case3: a+a → b

In the case, binary collision between particles in the same hydrometeor is con-
sidered. All the pairs in the collision turn into the other hydormeteor as follows,

∂fa(x)

∂t

∣∣∣
col,aa

= −
∫ ∞

0

fa(x)fa(y)Kaa(x, y)dy (8.338)

The growth rate of the prognostic moments is as follows,

∂La

∂t

∣∣∣
col,aa

= −π

4
ĒaaNaLa

× δ0aD
2
C,a(x̄a) + δ1aaD

2
C,a(x̄a)

× θ0av
2
t,a(x̄a)− θ1aav

2
t,a(x̄a) + 2σa (8.339)

∂Na

∂t

∣∣∣
col,aa

= −π

4
ĒaaNaNa

× 2δ0aD
2
C,a(x̄a) + δ0aaD

2
C,a(x̄a)

× 2θ0av
2
t,a(x̄a)− θ0aav

2
t,a(x̄a) + 2σa (8.340)

∂Lb

∂t

∣∣∣
col,aa

= −∂La

∂t

∣∣∣
col,aa

(8.341)

∂Nb

∂t

∣∣∣
col,aa

= −1

2

∂Na

∂t

∣∣∣
col,aa

(8.342)

The collision case 4: a+a → a

In the case, self aggregational growth is considered. In the aggregation, the
number concentration of the hydrometeor a decreases under the conservation of
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the mass concentration. The basic equation is the same as the case 3 except for
the absence of the other hydrometeor.

∂Na

∂t
= −1

2

π

4
ĒaaNaNa

× 2δ0aD
2
C,a(x̄a) + δ0aaD

2
C,a(x̄a)

× 2θ0av
2
t,a(x̄a) + θ0aav

2
t,a(x̄a) + 2σa

1/2
(8.343)

The secondary processes

There are several secondary processes associated with the mixed phase collec-
tion. Here, we briefly describe them following Seifert and Beheng (2006a).

Enhanced melting

We assume that the particle temperature is the same as the enviromental tem-
perature. However, the melting process allows the existence of ice particles
under the warmer condition than the melting point. In the riming process un-
der the condition, coalescence of a liquid droplet uniformizes the temperature of
colliding two particles. Subsequently, the temperature difference between a ice
particle and a liquid droplet are compensated by the latent heat relase of the
ice particle. In our model framework, since the category of wet ice particle is
not considered, the melting part of a riming particle is accounted as the produc-
tion of a liquid droplet. The melting rate by the riming process is formulated
following Rutledge and Hobbs (1984),

∂Ljs

∂t

∣∣∣
eml

= −c1Tc

Lf0

∂Ljs

∂t

∣∣∣
col

(Tc > 0oC), (js = i, s, g) (8.344)

Here, the reduction rate of number conentration is treated similarly to the
melting process,

∂Njs

∂t

∣∣∣
eml

=
1

x̄js

∂Ljs

∂t

∣∣∣
col

(8.345)

Partial convesrion

According to Seifert and Beheng (2006a), a riming particle becomes a densely
rimed spherical particle as soon as the collected liquid droplet fills up the envelop
of the collecting ice particle. The produced densely rimed spherical particle is
categorized as graupel. Here, we consider that the volume difference between
a ice crystal or a spongy ice particle and its enveloping sphere is filled by the
collected liquid droplet. The critical liquid droplet mass x̄crit,pcon is estimated
by the geometry of ice as follows,

x̄crit,pcon,js = αfill,jsρw
(π
6
D̄3

js −
x̄js

ρε
, (js = i, s) (8.346)
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where αfill is the so-called filling coefficient, ρε = 900kgm−3 is density of
ice. The filling coefficient is the criterion to categorize a ice particle as graupel
by its dense. Tentatively, αfill, i = 0.68 and αfill, s = 0.01 are set by Seifert
and Beheng (2006a). This means that snow is categorized as almost unrimed
ice particles. The characteristic conversion time scale pcon is estimated by the
growth rate of mean particle mass by the riming process as follows,

τpcon,js =
x̄crit,pcon,js

1
Njs

∂Ljs

∂t

∣∣∣
rime

(8.347)

Finally, the conversion rates of riming particles into graupel are derived by
using the characteristic time scale.

∂Lg

∂t

∣∣∣
pcon

=
Ljs

τpcon,js
= min

( x̄js

x̄crit,pcon,js
, 1
)∂Ljs

∂t

∣∣∣
rime

(8.348)

x̄js

x̄crit,pcon,js
=

[
αfill,js

ρw
ρε

(π
6
D3

i ρi
1

x̄js
− 1
)]−1

(8.349)

The conversion rate of number concentration is as follows,

∂Ng

∂t

∣∣∣
pcon

=
1

x̄js

∂Lg

∂t

∣∣∣
pcon

(8.350)

The conversion coefficient of riming particle x̄/x̄crit,pconv is shown in Fig.8.11.
In this formulation, small ice particles are likely to convert into graupel in rim-
ing because small ice particles have simple geometry and are almost sphere. In
order to suppress the conversion of small ice particles, partial conversion are
limited to ice particles with the mean diameter of more than 500 µm.

Ice multiplication

It has been observed that the number concentration of ice particles can be
up to several orders of magnitude larger than ice nuclei in atmospheric cloud
(Pruppacher and Klett, 1997). Among the possible mechanisms to explain the
fact, the Hallet-Mossop mechanism has been received in many literatures and
widely applied in cloud microphysics schemes. The Hallet-Mossop mechanism
is based on the fact that ice splintering occurs when many liquid droplets are
collected by graupel. Cotton et al. (1986) applied the formulations based on
the observations by Hallet and Mossop (1974), and Mossop (1976). Hallet and
Mossop (1974) reported that approximately 350 ice splinters were produced for
every 10−3g of rime accreted by a graupel at -5 degC. The parameterization is
formulated with the temperature correction f1 in the units of mks as follows,

∂Ni

∂t

∣∣∣
spl1,js

= 350× 106 × f1(T )×
∂Ljs

∂t

∣∣∣
rime,js

, (js = i, s, g)(8.351)

f1(T ) =


0, (T >< 270.16K)
T−268.16

3 , (270.16K ≥ T ≥ 268.16K)
T−268.16

3 , (268.16K > T ≥ 265.16K)
0, (265.16K > T )

(8.352)
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The splintering mass concentration is assumed as follows

∂Li

∂t

∣∣∣
spl1

= x̄i
∂Ni

∂t

∣∣∣
spl1

(8.353)

On the other hand, Mossop (1976) reported that approximately one ice crys-
tal was produced per 250 drops larger than 12 µm radius accreted onto a graupel
at -5 degC. Here, since it is difficult to calculate the number concentration of
riming cloud droplets larger than 12 µm (Nrime,c), we assume simple relation-
ship following Cotton et al. (1986) as follows,

Nrime,c

Nrime,c
≈ Nc

Nc
= Q

(νc + 1

µc
, x12

)
(8.354)

where Q is the complement of the incomplete gamma function, and x12

is the droplet mass with the radius of 12µm. With the above relation, the
parameterization is formulated with the same temperature correction function
in the units of mks as follows,

∂Ni

∂t

∣∣∣
spl2,js

=
1

250
× f1 ×Q×

(Nc

Lc

∂Ljs

∂t

∣∣∣
rime,js

)
, (js = i, s, g) (8.355)

In contrast to Cotton et al. (1986), we evaluate the incomplete gamma
function with an accurate approximation by Press et al. (2007). The splintering
rates of mass concentration is assumed as follows,

∂Li

∂t

∣∣∣
spl2

= x̄i
∂Ni

∂t

∣∣∣
spl2

(8.356)

Here, it should be noticed that we may double count the ice multiplication
process due to the Hallet-Mossop mechanism by using the two formulations.
Those two formulations may be two independent processes or the interpretations
of the same process in different two development stages. Since the process is
poorly understood by the lack of observation, the assessment of the process by
a set of sensitivity studies is necessary in the future.

Appendix of Seiki and Nakajima (2014)

The k-th moment of generalized Gamma distribution

The kth moment of the DSD frequently appear in the equations of cloud mi-
crophysics. In this section, derivation of the kth moment of the generalized
Gamma distribution is described. The generalized Gamma distribution is de-
fined as f(x) = αxνexp(−λxµ). There are four parameters in this generalized
Gamma distribution but only two prognostic moments in a CRM; the number
concentration N and mass concentration L. Hence µ and ν are set constant pa-
rameters so that the other coefficients α and λ can be related to N and L as
follows.
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Figure 8.5: Left figure shows the modified Gamma distribution for various shape
parameters m. Center figure shows the scatter plot of shape parameter and mean
volume diameter for various initial conditions. Gray dots are from cloud model,
dotted line is parameterization of Milbrandt and Yau (2005) and dashed-dotted
line is that of Seifert (2008). Right figure shows the scatter plot of evaporation
parameter and shape parameter. These are from Seifert (2008).

Figure 8.6: Dependency of maximum number concentration on updraft velocity
in ascending air parcel. These are based on a Twomey equation with various
CCN conditions. Aerosol activation spectrum refers to eq.8.259.
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Figure 8.7: Timescale of condensation for cloud droplets at maximum num-
ber concentration in ascending air parcel. Experimental design is the same as
Fig.8.6.

Figure 8.8: The dependencies of the homogeneous freezing rate (dashed line)
and the heterogeneous freezing rate (solid line) on centigrade temperature. The
freezing rates are in common logarithmic scale.
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Figure 8.9: The universal functions of (a) auto-conversion and (b) accretion as
a function of the dimensionless internal time scale.

Figure 8.10: The dependency of stick efficiencies on centigrade temperature.
The stick efficiencies by (a) the various observations from Pruppacher and Klett
(1997) and (b) model parameterizations.

Figure 8.11: The coefficients of partial conversion. Solid line shows the coeffi-
cient of ice, and the line with symbol shows the coefficient of snow.
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M0 = N = α

∫ ∞

0

xνexp(λxµ)dx

=
α

λ(ν+1)/µµ

∫ ∞

0

y(ν+1)/µ−1exp(−y)dy, (y ≡ λxµ)

=
α

λ(ν+2)/µµ
Γ
(ν + 1

µ

)
(8.357)

M1 = L =
α

λ(ν+2)/µµ
Γ
(ν + 1

µ

)
Then α is expressed as,

α =
Nµλ(ν+1)/µ

Γ
(
ν+1
µ

) =
Lµλ(ν+2)/µ

Γ
(
ν+2
µ

)
and then we can derivev λ and α,

λ =
[Γ(ν+1

µ

)
Γ
(
ν+2
µ

)]−µ

x̄−µ and α =
νN

Γ
(
ν+1
µ

)λ(ν+1)/µ (8.358)

where x̄ = L/N define the mean particle mass. Here we can rewrite the
generalized Gamma distribution by using N and L in following form,

f(x) =
N

x̄

(x
x̄

)ν µ

Γ
(
nu+1

µ

)[Γ(ν+2
µ

)
Γ
(
ν+1
µ

)]ν+1

exp
[
−
[Γ((ν + 2)/µ)

Γ((ν + 1)/µ)

x

x̄

]µ]
(8.359)

The kth moment of DSD is now given by the expansion of eq.8.357 and by
using eq.8.358,

Mk =
Γ
(
k+ν+1

µ

)
Γ
(
ν+1
µ

) [Γ(ν+1
µ

)
Γ
(
ν+2
µ

)]kNx̄k, (k ∈ R) (8.360)

8.3.3 Spectral Bin Model(SBM)Suzuki et al. (2010)

The Spectral Bin Model (SBM) was developed by Suzuki et al. (2010)Suzuki
et al. (2010). The model forecasts Size Distribution Function(SDF) of 7 types
hydrometeors (liquid, plate-ice, columner-ice, dendrite-ice, snow, graupel, and
hail).
The SBM calculates mass density of the 7 types of hydrometeor and 1 type of
aerosol as their SDFs. The SDF of aerosol can be changed by advection and
acvitvaiton (i.e. nucleation from aerosol to cloud) process. The SDF of hydrom-
eteors can be changed by several growth processes (i.e. activation from aerosol
to cloud, condensation/evaporation, collision/coaguration, freezing/melting, ice
nucleation, riming, aggregation, advection, and gravitational falling).
The time evolution of SDF (number density) of aerosol (fa(m, t)) and SDF
(number density) of hydrometeor (fc(m, t)) are shown as equations:
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∂f
(µ)
c (m, t)

∂t
= Adv

[
f (µ)
c (m, t)

]
+Grav

[
f (µ)
c (m, t)

]
+
[∂f (µ)

c (m, t)

∂t

]
cloud microphysics

(8.361)

∂fa(ma, t)

∂t
= Adv

[
fa(ma, t)

]
+Grav

[
fa(ma, t)

]
+
[∂fa(ma, t)

∂t

]
cloud microphysics

.(8.362)

where µ shows type of hydrometeor (the 7 types), Adv[], Grav[]) shows

change of SDF by the advection and the gravitational falling.
[]

cloud microphycis

shows changes of SDF by the cloud microphysical processes.

The time evolution of f
(µ)
c (m, t) and fa(m, t) are shown as:

[∂f (µ)
c (m, t)

∂t

]
cloud microphysics

=
[∂f (µ)

c (m, t)

∂t

]
activation

+
[∂f (µ)

c (m, t)

∂t

]
cond/evap

+
[∂f (µ)

c (m, t)

∂t

]
coll/coag/rim/agg

+
[∂f (µ)

c (m, t)

∂t

]
frz

+
[∂f (µ)

c (m, t)

∂t

]
melt[∂fa(ma, t)

∂t

]
cloud microphysics

=
[∂fa(ma, t)

∂t

]
activation

where
[ ]

∗∗∗
show change of SDF by each cloud growth processes. The detail

of these processes will be shown later.
The change of SDFs by advection and gravitational falling (i.e. first and second
term of eq. 8.361, and 8.362 ) are calculated by dynamical core of SCALE-RM
shown in section 3.

Discretization of Size Distribution Function(SDF)

The SDF of aerosol and cloud is predict as mass density of each particle size

(ga(ma), g
(µ)
c (m)). However most of equations are given as equations of number

density of cloud/aerosol (f
(µ)
c (m, t), fa(ma, t)), the mass density of cloud/aerosol

are transferred to number density of cloud/aerosol (ga(ma, t) = maga(ma, t),

g
(µ)
c (m, t) = m(µ)f

(µ)
c (m, t)).

To cover wide size range (i.e. 2 µm ∼ 3 mm), logarithmically uniform grid
system (log(m) ≡ η, log(ma) ≡ ηa) is used. In this system, the relationship,
mi+1

mi
= const. is satisfied.

Activation from aerosol to cloud particles (Nucleation process)

The change of SDFs by activation from aerosol to cloud particles are calculated
based on Kohler theory (Kohler 1936). Through this process, aerosols whose
radii are larger than critical radius of aerosol (ra,crit) are activated to clouds.
The critical radius is given as

ra,crit =
( 4

27

A3

B

1

Sw

)1/3
, A =

2σ

RvρLT
, B = iv

Mv

Ms

ρs
ρL

. (8.363)
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where Sw, σ, Rv, ρL, T , iv, Mv, Ms, ρs show supersaturation of water,
surface tention of water, gas constant of vapor, temperature, van’t Hoff factor
(= 2), moleculer weight of water, moleculer weight of aerosol, and density of
aerosol, respectively.
At each time step, ra,crit are calculated by using temperature, and mass of
aerosols whose radii are larger than ra,crit remove from SDF of aerosol and they
are transferred to SDF of cloud as newly generated cloud particles.
The radii of newly generated clouds are corresponding to those of aerosols, but
if the radii of aeorol are smaller than the lower limit of cloud SDF, the radii of
newly generated clouds are set to smallest size of cloud SDF (∼ 2µm).
The change of aerosol’s SDF and hydrometeor’s SDF are shown as:

[∂fa
∂t

]
activation

= −
∫ ∞

ma,crit

fa(ma, t)dma (8.364)

[∂f (µ)
c

∂t

]
activation

= −
[∂fa
∂t

]
activarion

(8.365)

where ma,crit =
(
= 4π

3 r3aρa is mass of aerosol particles whose radii are the
same as critical radii, ra,crit. When there are not enough vapor to activate all
aerosol particles whose radii are larger than the critical radius, i.e.

∫ ∞

ma,crit

mafa(ma, t)dma > qvρ, (8.366)

only the aerosol particles whose radii are larger than ra0,crit, which are given
as:

∫ ∞

ma0,crit

mafa(ma, t)dma = qvρ, (8.367)

are transferred to cloud paricles as:

[∂fa
∂t

]
activation

= −
∫ ∞

ma0,crit

fa(ma, t)dma, (8.368)

[∂f (µ)
c

∂t

]
activation

= −
[∂fa
∂t

]
activarion

. (8.369)

where qv and ρ is mixing ratio of water vapor and density.

Condensation/Evaporation

Calculation of condensation and evaporation process are based on a equation.
The mass change by these two process are given by an equation (e.g. Rogers
and Yau, 1989Rogers and Yau (1989)):
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dm

dt
= C(µ)(m)G(µ)(T )S(µ) (8.370)

G(µ)(T ) =

{
Gw(T ) (µ : liquid)
Gi(T ) (µ : ice)

Gw(T ) =
4π

RvT
ew(T )Dv

+ Lw

KT

(
Lw

RvT
− 1
)

Gi(T ) =
4π

RvT
ei(T )Dv

+ Li

KT

(
Li

RvT
− 1
)

S(µ) =

{
Sw (µ : liquid)
Si (µ : ice)

where C(µ)(m) is capasitance, which depends on shape of each types of hy-
drometeor, Sw, Si are super saturation of water and ice, Lw, Li is sensible heat
of evaporation, sublimation, Dv is diffusion constant of vapor, K is conductivity
of air, and ew, ei is saturation vapor pressure and saturation ice pressure, re-
spectively. Condensation (evaporation) occur when S(µ) is positive (negative).

To calculate change of SDF by condensation/evaporation, mass flux (F
(µ)
cond/evap)

on each bin is given by using number density (f
(µ)
c ) and dm

dt as:

F
(µ)
cond/evap = f (µ)(m)

dm

dt
= f (µ)(m)C(µ)G(µ)(T )S(µ). (8.371)

Using this equation, time evolution of SDF (f (µ)) is given as

[∂f (µ)(m, t)

∂t

]
cond/evap

= − ∂

∂m
F

(µ)
cond/evap(m)

= − ∂

∂m

(
f (µ)(m)C(µ)

)
G(µ)(T )S(µ). (8.372)

By using the η(= log(m)), the eq.8.372 is transferred to advection equation
:

∂f (µ)(η)

∂t
= − ∂

∂η

(
f (µ)(η)U (µ)(η)

)
(8.373)

U (µ)(η) =
C(µ)(η)

exp(η)
G(η)(T )S(η).

To solve the eq. 8.373, a scheme developed by Bott (1989)Bott (1989) is
used. The number density of i-th bin after ∆t (fi(t+∆t)) is given as follow:
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fi(t+∆t) = fi(t)−
∆t

∆η

[
Fcond/evap,i+1/2 − Fcond/evap,i−1/2

]
.

Fcond/evap,i+1/2 =
∆η

∆t

[ i+l,i+1/2

il,j
fi(t)−

i−l,i+1/2

il,i+1
fi+1(t)

]
i+l,i+1/2 = max

(
0, I+l (ci+1/2)

)
i−l,i+1/2 = max

(
0, I−l (ci+1/2)

)
i+l,i = max

(
Il,i, i

+
l,i+1/2 + i−l,i+1/2)

)
I+l (ci+1/2) =

2∑
k=0

ai,k
(k + 1)2k+1

[
1− (1− 2c+j )

k+1
]

I−l (ci+1/2) =

2∑
k=0

ai+1,k

(k + 1)2k+1
(−1)k

[
1− (1− 2c−j )

k+1
]

ai,0 = − 1

24

(
fi+1(t)− 26fi(t) + fi−1(t)

)
ai,1 =

1

2

(
fi+1(t)− fi−1(t)

)
ai,2 =

1

2

(
fi+1(t)− 2fi(t) + fi−1(t)

)
c±i = ±

(
cni+1/2 ± |cni+1/2|

)
/2

cni+1/2 = Un
i+1/2

∆t

∆η
(8.374)

Since the super saturation (S(µ)) can change during time step (∆t), we apply
a method shown below to reflect the change of supersaturation during ∆t.
Time evolution of supersaturation can be given by equations:

d

dt

(
Sw

Si

)
=

(
ac/e bc/e
cc/e dc/e

)(
Sw

Si

)
= A

(
Sw

Si

)
(8.375)

ac/e = −(Sw + 1)
( 1

qv
+

Lw

RvT 2

Lw

Cp

)∫
f (w)(m)C(w)(m)dmGw(t)

bc/e = −(Sw + 1)
( 1

qv
+

Lw

RvT 2

Li

Cp

) ∑
µ∈ice

∫
f (µ)(m)C(µ)(m)dmGi(t)

cc/e = −(Si + 1)
( 1

qv
+

Li

RvT 2

Lw

Cp

)∫
f (w)(m)C(w)(m)dmGw(t)

dc/e = −(Si + 1)
( 1

qv
+

Li

RvT 2

Li

Cp

) ∑
µ∈ice

∫
f (µ)(m)C(mu)(m)dmGi(t)

where qv is mixing ration of vapor.
Using eigen value of A (Λ+, Λ− (Λ+ > Λ−)), and assuming ac/e, bc/e, cc/e, dc/e
is constant during ∆t, average value of super saturation (S̄w,i(t)) during ∆t is
given as:
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S̄w(t) =
1

∆t

∫ t+∆t

t

Sw(τ)dτ = b
eΛ+∆t − 1

Λ+∆t
S+(t) + b

eΛ−∆t − 1

Λ−∆t
S−(t)

S̄i(t) =
1

∆t

∫ t+∆t

t

Si(τ)dτ = (Λ+ − a)
eΛ+∆t − 1

Λ+∆t
S+(t) + (Λ− − a)

eΛ−∆t − 1

Λ−∆t
S−(t)

S+(t) =
(Λ− − a)Sw(t)− bSi(t)

b(Λ− − Λ+)

S+(t) =
(a− Λ+)Sw(t) + bSi(t)

b(Λ− − Λ+)

The averaged super saturation (S̄w,i(t)) is used to solve the eq. 8.375.

Collision/Coagulation/Riming/Aggregation

Collision/Coagulation process are calculated by solving Stochastic Collision
Equation (e.g. Pruppecher and Klett, 1997)Pruppacher and Klett (1997):

∂f(m)

∂t
=

∫ m/2

0

f(m′)f(m−m′)K(m′,m−m′)dm′

− f(m)

∫ ∞

0

f(m′′)K(m,m′′)dm′′ (8.376)

where K(m,m′) is collection kernel function. Three types of the kernel
function, i.e. Long type kernel (Long, 1974Long (1974)), Golovin type kernel
(Golovin, 1963Golovin (1963)) and Hydro-dynamic dynamic kernel as shown eq.
8.377 are implemented into the SCALE-RM.

K(m,m′) = π(r(m)− r(m′)) |V (m)− V (m′)|Ecol(m,m′)Ecoag(m,m′)(8.377)

where r(m) is radius of hydrometeros whose mass is m, and V (m) is terminal
velocity of hydrometeors. The terminal velocity of each species of hydrometeor
and each size are shown in Figure 8.12 Ecol, and Ecoag is collision effieiency and
coagulation efficiansy, respectively.

Although the stochastic collision equation can be apply for collision/coagulation
of one type of hydrometeros (i.e. liquid water), the SCALE-RM predicts 7
types of hydrometeors, and interactions of these types hydrometeors (i.e. rim-
ing/aggregation) must be calculated. To calculate the interaction of all 7 types
of hydrometeors, the extented stochastic collision equation:

[∂f (µ)(m)

∂t

]
coll/coag/rim/agg

=

∑
λ

∑
ν

∫ m/2

0

f (λ) ( m′)f (ν)(m−m′)Kλν(m
′,m−m′)dm′

−f (µ)(m)
∑
κ

∫ ∞

0

f (κ) ( m′′)Kκµ(m,m′′)dm′′ (8.378)
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Figure 8.12: Terminal velocity of Water (Plus), Plate-type ice (Cross),
Columnar-type ice (Asterisk), Dendrite-type ice(Open square), Snow(Closed
square), Graupel(Open circle), and Hail(Closed circle)

is applied (where µ, ν, λ, κ represent species of hydrometeor). The convina-
tions of µ, ν, λ are shown in table 8.6.

Table 8.6: Catalog of interaction between 7 species. W, I, S, G, H shows water,
ice, snow, graupel, and hail, respectively. G/H shows graupel(hail) generates
when T is lower(higher) than 270.15

W I S G H

W W G/H G/H G/H G/H
I I S S I I
S S S S S S
G G/H G/H G G G/H
H G/H G/H G/H G/H H

To solve the stochastic collision equation, a scheme developed by Bott (1998)Bott
(1998) was implemented into SCLAE-RM.
The Bott (1998)Bott (1998) scheme calculate evolution of mass density distri-
bution (g(η) = mf(η), η = log(m)). The stochastic collision equation can be
transferred to
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∂g(η)

∂t
=

∫ η1

η0

m2

(m−m′)2m′ g(η − η′)K(η − η′, η′)g(η′)dη′

−
∫ ∞

η0

g(η)
K(η, η′)

m′ g(η′)dη′. (8.379)

where η1 = log(m/2). Decreases of mass of i-th bin and j-th bin are given
by

∂g
(µ)
i

∂t
= −∆g

(µ)
i Kµν(i, j)

g
(ν)
j

mj
∆η (8.380)

and

∂g
(µ)
j

∂t
= −∆g

(ν)
j Kµν(i, j)

g
(µ)
i

mi
∆η (8.381)

respectively. The terms corresponds to the second term of right-hand side
of eq.8.379. The eq. 8.380 and eq. 8.381 can transfer to

∆g
(µ)
i = g

(µ)
i

[
1− exp

(
−Kµν(i, j)

g
(ν)
j

mj
∆η∆t

)]
(8.382)

∆g
(ν)
j = g

(ν)
j

[
1− exp

(
−Kµν(i, j)

g
(µ)
i

mi
∆η∆t

)]
. (8.383)

The sum of ∆g
(µ)
i and ∆g

(ν)
j corresponds to newley generated mass by col-

lision of hydrometeor whose mass is mi and mj . The newly generated mass

(g′ = ∆g
(µ)
i + ∆g

(ν)
j , which is coresponding to first term of right-hand side of

eq.8.379) added k-th bin (mk = mi +mj). Since mk is not always bin center,
newly generated mass is devided to k-th and k+1-th bin as follow.
The production of k-th and k+1-th bin is represened:

∆g
(λ)
k = gλk + g′ − ζ (8.384)

∆g
(λ)
k+1 = gλk+1 + ζ (8.385)

ζ =
g′

g
(λ)
k + g′

2∑
s=0

ak,s
(s+ 1)2k+1

[1− (1− 2ck)
k+1]

ck =
m′ −mk

mk+1 −mk

ak,0 = − 1

24
(g

(λ)
k+1 − 26g

(λ)
k + g

(λ)
k−1)

ak,1 = −1

2
(g

(λ)
k+1 − g

(λ)
k−1)

ak,2 = −1

2
(g

(λ)
k+1 − 2g

(λ)
k + g

(λ)
k−1)
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These procedure is applied for all bin of all types of hydrometeors.
In addition, to calculate this process fastly, a scheme of Sato et al. (2009)Sato
et al. (2009) are also implemented into SCALE-RM.

Freezing

The calculation of freezing process is based on a parameterization of Bigg
(1953)Bigg (1953). The parameterization is calculated number density of water

(f
(w)
c ), wchich can be freezed:

∂

∂t
f (w)(m) = −f (w)(m)

τfr
(8.386)

τfr =
exp
[
bfr(T0 − T )

]
afrm

where afr = 10−4s−1, and bfr = 0.66oC−1 are emperical parameters, and
T0 is 273.15 K.
The eq. 8.386 can transfer to

∂g(w)(m)

∂t
= −g(w)(m)

τfr(m)
(8.387)

τfr,i =
exp
(
bfr(T0 − T )

)
afrm

From this equation, The mass change of i-th bin during ∆t is given as

g
(w)
i (t+∆t) = g

(w)
i − Frzi (8.388){

g
(plate)
i (t+∆t) = g

(plate)
i + Frzi (rw < 200µm)

g
(hail)
i (t+∆t) = g

(hail)
i + Frzi (rw > 200µm)

(8.389)

Frzi = g
(w)
i (t)

[
1− exp

(
− ∆t

τfr,i

)]
As shown in eq. 8.389, the mass of liuid is transfer from to plate type ice

(rw < 200µm) or hail (rw > 200µm).

Melting

The calculation of melting process is too simple way, that is, all ice particles
(i.e. plate, columner, dendrite, snow, graupel and hail) melt immediately when
the temperature is larger than T0 = 273.15 K. This is too simply to represent
ice phase process, and we will modify this method near future.

8.4 Radiation

TBD
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8.5 Surface flux

Corresponding author : Seiya Nishizawa

8.5.1 Monin-Obukhov similarity

The first of the all, we assume that in the boundary layer 1. fluxes are constant,
and 2. variables are horizontally uniform.

Relations between flux and vertical gradient are

kz

u∗

∂u

∂z
= ϕm

( z
L

)
, (8.390)

kz

θ∗

∂θ

∂z
= ϕh

( z
L

)
, (8.391)

kz

q∗

∂q

∂z
= ϕq

( z
L

)
, (8.392)

where k is the Von Karman constant. L is the Monin-Obukhov scale height,
which is

L =
θu2

∗
kgθ∗

, (8.393)

where g is the gravity. The scaling velocity, u∗, temperature, θ∗, and water
vapor, q∗, are defined from the vertical eddy fluxes of momentum, sensible heat
and water vapor:

u′w′ = −u∗u∗, (8.394)

w′θ′ = −u∗θ∗, (8.395)

w′q′ = −u∗q∗. (8.396)

The integration between the roughness length z0 to the height z of the lowest
model level, eqs. (8.390) and (8.391) become

u(z) =
u∗

k
{ln(z/z0)− Φm(z/L) + Φm(z0/L)} , (8.397)

∆θ = R
θ∗
k

{ln(z/z0)− Φh(z/L) + Φh(z0/L)} , (8.398)

where ∆θ = θ − θ0, and

Φm(z) =

∫ z 1− ϕm(z′)

z′
dz′, (8.399)

Φh(z) =

∫ z R− ϕh(z
′)

Rz′
dz′. (8.400)

8.5.2 Louis (1979) Model

Louis (1979) introduced a parametric model of vertical eddy fluxes.
The L becomes

L =
θu2

g∆θ

ln(z/z0)− Φh(z/L) + Φh(z0/L)

{ln(z/z0)− Φm(z/L) + Φm(z/L)}2
. (8.401)
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The bulk Richardson number for the layer RiB is

RiB =
gz∆θ

θu2
, (8.402)

and its form implies relationship with the Monin-Obukhov scale height L. Then
the fluxes could be written as

u2
∗ = a2u2Fm

(
z

z0
, RiB

)
, (8.403)

u∗θ∗ =
a2

R
u∆θFh

(
z

z0
, RiB

)
, (8.404)

where R is ratio of the drag coefficients for momentum and heat in the neutral
limit, (the turbulent Prandtl number), and

a2 =
k2

{ln (z/z0)}2
(8.405)

is the drag coefficient in neutral conditions.
For the unstable condition (RiB < 0), Fis (i = m,h) could be

Fi = 1− bRiB

1 + ci
√
|RiB |

, (8.406)

under the consideration that Fi must behave as 1/u (i.e.
√
|RiB |) in the free

convection limit (u → 0), and becomes 1 in neutral conditions (RiB → 0).
In the stable conditions (Rib), on the other hand, Louis (1979) adopted the
following form for Fi:

Fi =
1

(1 + b′RiB)2
. (8.407)

The constants are estimated as R = 0.74 by Businger et al. (1971), and
b = 2b′ = 9.4 by Louis (1979). By the dimensional analysis,

ci = C∗
i a

2b

√
z

z0
, (8.408)

and C∗
m = 7.4, C∗

h = 5.3, which result best fit curves.

8.5.3 Uno et al. (1995) Model

Uno et al. (1995) extended the Louis Model, which considers difference of the
roughness length between for momentum, z0, and temperature, zt.

The potential temperature difference between z = z and z = zt, ∆θt, is

∆θt = R
θ∗
k

{ln(z0/zt)− Φh(z0/L) + Φh(zt/L)}+∆θ0,

= R
θ∗
k
ln(z0/zt) + ∆θ0,

= ∆θ0

{
R ln(z0/zt)

Ψh
+ 1

}
, (8.409)
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where ∆θ0 = θz − θz0(= ∆θ),

Ψh =

∫ z

z0

ϕh

z′
dz′, (8.410)

and ϕh is assumed to be R in the range zt < z < z0. Thus

∆θ0 = ∆θt

{
R ln(z0/zt)

Ψh
+ 1

}−1

, (8.411)

or equivalently,

RiB0 = RiBt

{
R ln(z0/zt)

Ψh
+ 1

}−1

. (8.412)

From the eqs. (8.403) and (8.404),

∆θ0 =
Rθ∗
k

ln

(
z

z0

) √
Fm

Fh
, (8.413)

while

∆θ0 =
θ∗
k
Ψh, (8.414)

from eqs. (8.391) and (8.410). Therefore

Ψh = R ln

(
z

z0

) √
Fm

Fh
. (8.415)

Because Ψh depends on RiB0, RiB0 cannot be calculated from RiBt with eq.
(8.412) directly, so numerical iteration is required to obtain RiB0

3. Starting
from RiBt as the first estimation of RiB0, the second estimate by the Newton-
Raphson iteration becomes

R̂iB0 = RiBt −
RiBtR ln(z0/zt)

ln(z0/zt) + Ψ̂h

, (8.416)

where Ψ̂h is the estimate of Ψh using RiBt instead of RiB0. Approximate values
for Fm, Fh, and Ψh are re-calculated based on the R̂iB0, and then ∆θ0, and the
surface fluxes u2

∗ and u∗θ∗ are calculated from eqs. (8.411), (8.403), and (8.404),
respectively.

R

8.5.4 Roughness length

Miller et al. (1992) provides the roughness length over the tropical ocean, based
on the numerical calculations by combining the smooth surface values with the
Charnock relation for the aerodynamic roughness length and the constant values
for heat and moisture in accordance with Smith (1988,1989) suggestions:

z0 = 0.11u/ν∗ + 0.018u2
∗/g, (8.417)

zt = 0.40u/ν∗ + 1.4× 10−5, (8.418)

zq = 0.62u/ν∗ + 1.3× 10−4, (8.419)

where ν∗ is the kinematic viscosity of air (∼ 1.5× 10−5), and z0, zt, and zq are
the roughness length for the momentum, heat, and vapor, respectively.

3In the stable case, it can be solved analytically with eq. (8.407), but the solution is too
complicated.
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8.5.5 Discretization

All the fluxes are calculated based on the velocity at the first full-level (k=1)
(z = ∆z/2). The absolute velocities U are

U2
i+ 1

2 ,j,1
=

{
2(ρu)i+ 1

2 ,j,1

ρi,j,1 + ρi+1,j,1

}2

+

{
(ρv)i,j− 1

2 ,1
+ (ρv)i,j+ 1

2 ,1
+ (ρv)i+1,j− 1

2 ,1
+ (ρv)i+1,j+ 1

2 ,1

2(ρi,j,1 + ρi+1,j,1)

}2

+

{
(ρw)i,j,1+ 1

2
+ (ρw)i+1,j,1+ 1

2

2(ρi,j,1 + ρi+1,j,1)

}2

, (8.420)

U2
i,j+ 1

2 ,1
=

{
(ρu)i− 1

2 ,j,1
+ (ρu)i+ 1

2 ,j,1
+ (ρu)i− 1

2 ,j+1,1 + (ρu)i+ 1
2 ,j+1,1

2(ρi,j,1 + ρi,j+1,1)

}2

+

{
2(ρv)i,j+ 1

2 ,1

ρi,j,1 + ρi,j+1,1

}2

+

{
(ρw)i,j,1+ 1

2
+ (ρw)i,j+1,1+ 1

2

2(ρi,j,1 + ρi,j+1,1)

}2

, (8.421)

U2
i,j,1 =

{
(ρu)i− 1

2 ,j,1
+ (ρu)i+ 1

2 ,j,1

2ρi,j,1

}2

+

{
(ρv)i,j− 1

2 ,1
+ (ρv)i,j+ 1

2 ,1

2ρi,j,1

}2

+

{
(ρw)i,j,1+ 1

2

2ρi,j,1

}2

,

(8.422)

here it is note that (ρw)i,j, 12 = 0. The potential temperatures θ are

θi,j,1 =
(ρθ)i,j,1
ρi,j,1

, (8.423)

θ̄i+ 1
2 ,j,1

=
θi,j,1 + θi+1,j,1

2
, (8.424)

θ̄i,j+ 1
2 ,1

=
θi,j,1 + θi,j+1,1

2
. (8.425)

The roughness lengthes, z0, zt, and zq are caluclated from the eqs. (8.417),
(8.418), and (8.419), in which the friction verociy u∗ is estimated as

u∗ =
√
Cm0U, (8.426)

where Cm0 is a constant bulk coefficient, and we use 1.0× 10−3 as its value.
From eq. (8.412) The RiBt, which is the first guess of the RiB0, is

RiBt =
gz1(θ1 − θsfc)

Θ̄U2
, (8.427)

with the assumption that θzt = θsfc. The estimation of the Ψ̂h is calculated
with RiBt from the eqs. (8.415), (8.406), and (8.407). The final estimation of
RiB0 is obtained from the eq. (8.416), and the final estimation of Ψh is obtaind
with the RiB0.

Now we can calculate the bulk coefficients, Cm, Ch, and Ce for the moments,
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heat, and vapor:

Cm =
k2

ln(z1/z0)
Fm(RiB0), (8.428)

Ch =
k2

R ln(z1/z0)
Fh(RiB0)

{
R ln(z0/zt)

Ψh
+ 1

}−1

, (8.429)

Ce =
k2

R ln(z1/z0)
Fh(RiB0)

{
R ln(z0/ze)

Ψh
+ 1

}−1

. (8.430)

The fluxes are

ρu′w′ = −CmUρu, (8.431)

ρv′w′ = −CmUρv, (8.432)

ρw′w′ = −CmUρw, (8.433)

ρθ′w′ = −ChU{ρθ − ρθsfc}, (8.434)

ρq′w′ = −CeUρ(q − qevap), (8.435)

where qevap is the saturation value at surface.

8.6 Aerosol

Corresponding author : Mizuo Kajino

8.7 Large scale sinking

Corresponding author : Seiya Nishizawa
In the DYCOMS01 experiment, the large scale sinking is added to express

large scale downward motion corresponding to the Haddley circulation. The
motion converges virtually and results mass escape to out of the system.

The density loss rate is constant L:

L = −∂ρwL

∂z
, (8.436)

where wl is vertical velocity corresponding to the large scale sinking. Then
vertical momentum with the sinking is

ρwL = −Lz. (8.437)

Continuous equation is now

∂ρ

∂z
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρ(w + wL)

∂z
= −L. (8.438)

Lagrangian conservation equation for scalar quantities are

ρ
∂ϕ

∂t
+ ρu

∂ϕ

∂x
+ ρv

∂ϕ

∂y
+ ρ(w + wL)

∂ϕ

∂z
= 0, (8.439)
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and becomes with eq. (8.438)

∂ρϕ

∂t
+

∂ρuϕ

∂x
+

∂ρvϕ

∂y
+

∂ρ(w + wL)ϕ

∂z
= −Lϕ. (8.440)

The equations for mixing ratio is

∂ρQ

∂t
+

∂ρQu

∂x
+

∂ρQv

∂y
+

∂ρQ(w + wL)

∂z
= −LQ. (8.441)

Note that this is identical to that of scalar quantities.
The wL at the top boundary is not zero while w is zero. The vertical flux

ρwLϕ at the top layer interface could be determined as that convergence of the
flux is canceled with Lϕ.
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Appendix A

The detal numerics

A.1 4th order central differnce

The 4th order central difference is given by

∂ϕ

∂x
=

−ϕi+2 + 8ϕi+1 − 8ϕi−1 + ϕi+2

12∆x
= 0 (A.1)

where

ϕi+2 = ϕi + 2∆x

(
∂ϕ

∂x

)
i

+ 2∆x2

(
∂2ϕ

∂x2

)
i

+
4∆x3

3

(
∂3ϕ

∂x3

)
i

+
2∆x4

3

(
∂3ϕ

∂x4

)
i

+O(∆x5)(A.2)

ϕi+1 = ϕi +∆x

(
∂ϕ

∂x

)
i

+
∆x2

2

(
∂2ϕ

∂x2

)
i

+
∆x3

6

(
∂3ϕ

∂x3

)
i

+
∆x4

24

(
∂3ϕ

∂x4

)
i

+O(∆x5)(A.3)

ϕi = ϕi (A.4)

ϕi−1 = ϕi −∆x

(
∂ϕ

∂x

)
i

+
∆x2

2

(
∂2ϕ

∂x2

)
i

−
∆x3

6

(
∂3ϕ

∂x3

)
i

+
∆x4

24

(
∂3ϕ

∂x4

)
i

+O(∆x5)(A.5)

ϕi+2 = ϕi − 2∆x

(
∂ϕ

∂x

)
i

+ 2∆x2

(
∂2ϕ

∂x2

)
i

−
4∆x3

3

(
∂3ϕ

∂x3

)
i

+
2∆x4

3

(
∂3ϕ

∂x4

)
i

+O(∆x5)(A.6)

Therefore,

−ϕi+2 + 8ϕi+1 − 8ϕi−1 + ϕi+2

12∆x
=

(
∂ϕ

∂x

)
i

+O(∆x4) (A.7)

(−ϕi+2 + 7ϕi+1 + 7ϕi − ϕi−1)− (−ϕi+1 + 7ϕi + 7ϕi−1 − ϕi−2)

12∆x
=

(
∂ϕ

∂x

)
i

+O(∆x4)(A.8)
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A.2 Flux Corrected Transport scheme
Equation (3.106) can be written as

(ρq)n+1
i,j,k = (ρq)ni,j,k −

1

∆x∆y∆z

[
+

[
Ci+ 1

2
,j,kF

high

i+ 1
2
,j,k

+
(
1− Ci+ 1

2
,j,k

)
F low
i+ 1

2
,j,k

]
−

[
Ci− 1

2
,j,kF

high

i− 1
2
,j,k

+
(
1− Ci− 1

2
,j,k

)
F low
i− 1

2
,j,k

]
+

[
Ci,j+ 1

2
,kF

high

i,j+ 1
2
,k

+
(
1− Ci,j+ 1

2
,k

)
F low
i,j+ 1

2
,k

]
−

[
Ci,j− 1

2
,kF

high

i,j− 1
2
,k

+
(
1− Ci,j− 1

2
,k

)
F low
i,j− 1

2
,k

]
+

[
Ci,j,k+ 1

2
Fhigh

i,j,k+ 1
2

+
(
1− Ci,j,k+ 1

2

)
F low
i,j,k+ 1

2

]
−

[
Ci,j,k− 1

2
Fhigh

i,j,k− 1
2

+
(
1− Ci,j,k− 1

2

)
F low
i,j,k− 1

2

]
]

(A.9)

where

Fhigh,low

i+ 1
2
,j,k

= ∆t∆y∆z(ρu)i+ 1
2
,j,kq

high,low

i+ 1
2
,j,k

(A.10)

Fhigh,low

i,j+ 1
2
,k

= ∆t∆z∆x(ρu)i,j+ 1
2
,kq

high,low

i,j+ 1
2
,k

(A.11)

Fhigh,low

i,j,k+ 1
2

= ∆t∆x∆y(ρu)i,j,k+ 1
2
qhigh,low
i,j,k+ 1

2

(A.12)

The anti-diffusive flux are defined as

Ai+ 1
2
,j,k = Fhigh

i+ 1
2
,j,k

− F low
i+ 1

2
,j,k

(A.13)

Ai,j+ 1
2
,k = Fhigh

i,j+ 1
2
,k

− F low
i,j+ 1

2
,k

(A.14)

Ai,j,k+ 1
2

= Fhigh

i,j,k+ 1
2

− F low
i,j,k+ 1

2

(A.15)

Equation (A.9) can be rewritten as

(ρq)n+1
i,j,k = (ρq)ni,j,k −

1

∆x∆y∆z

[
+

[
F low
i+ 1

2
,j,k

+ Ci+ 1
2
,j,kAi+ 1

2
,j,k

]
−

[
F low
i− 1

2
,j,k

+ Ci− 1
2
,j,kAi− 1

2
,j,k

]
+

[
F low
i,j+ 1

2
,k

+ Ci,j+ 1
2
,kAi,j+ 1

2
,k

]
−

[
F low
i,j− 1

2
,k

+ Ci,j− 1
2
,kAi,j− 1

2
,k

]
+

[
F low
i,j,k+ 1

2

+ Ci,j,k+ 1
2
Ai,j,k+ 1

2

]
−

[
F low
i,j,k− 1

2

+ Ci,j,k− 1
2
Ai,j,k− 1

2

]
]

(A.16)

In practice, we calculate Eq.(A.16) by the following steps:

1. The tentative values are calculated by using the low order flux:

(ρq)†i,j,k = (ρq)ni,j,k

−
1

∆x∆y∆z

[
+F low

i+ 1
2
,j,k

− F low
i− 1

2
,j,k

+ F low
i,j+ 1

2
,k

− F low
i,j− 1

2
,k

+ F low
i,j,k+ 1

2

− F low
i,j,k− 1

2

]
(A.17)
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2. Allowable maximum and minimum values are calculated:

(ρq)max
i,j,k = max[

max((ρq)†i,j,k , (ρq)ni,j,k),

max((ρq)†i−1,j,k , (ρq)ni−1,j,k),

max((ρq)†i+1,j,k , (ρq)ni+1,j,k),

max((ρq)†i,j−1,k , (ρq)ni,j−1,k),

max((ρq)†i,j+1,k , (ρq)ni,j+1,k),

max((ρq)†i,j,k−1 , (ρq)
n
i,j,k−1),

max((ρq)†i,j,k+1 , (ρq)
n
i,j,k+1)

] (A.18)

(ρq)min
i,j,k = min[

min((ρq)†i,j,k , (ρq)ni,j,k),

min((ρq)†i−1,j,k , (ρq)ni−1,j,k),

min((ρq)†i+1,j,k , (ρq)ni+1,j,k),

min((ρq)†i,j−1,k , (ρq)ni,j−1,k),

min((ρq)†i,j+1,k , (ρq)ni,j+1,k),

min((ρq)†i,j,k−1 , (ρq)
n
i,j,k−1),

min((ρq)†i,j,k+1 , (ρq)
n
i,j,k+1)

] (A.19)

3. Several values for the flux limiter are calculated:

P+
i,j,k = −min(0, Ai+ 1

2
,j,k) + max(0, Ai− 1

2
,j,k)

−min(0, Ai,j+ 1
2
,k) + max(0, Ai,j− 1

2
,k)

−min(0, Ai,j,k+ 1
2
) + max(0, Ai,j,k− 1

2
) (A.20)

P−
i,j,k = −max(0, Ai+ 1

2
,j,k) + min(0, Ai− 1

2
,j,k)

−max(0, Ai,j+ 1
2
,k) + min(0, Ai,j− 1

2
,k)

−max(0, Ai,j,k+ 1
2
) + min(0, Ai,j,k− 1

2
) (A.21)

(A.22)

Q+
i,j,k =

[
(ρq)max

i,j,k − (ρq)†i,j,k

]
∆x∆y∆z (A.23)

Q−
i,j,k =

[
(ρq)†i,j,k − (ρq)min

i,j,k

]
∆x∆y∆z (A.24)

R+
i,j,k =

{
min(1, Q+

i,j,k/P
+
i,j,k) if P+

i,j,k > 0

0 if P+
i,j,k = 0

(A.25)

R−
i,j,k =

{
min(1, Q−

i,j,k/P
−
i,j,k) if P−

i,j,k > 0

0 if P−
i,j,k = 0

(A.26)

118



4. The flux limters at the cell wall are calculated:

Ci+ 1
2
,j,k =

min(R+
i+1,j,k, R

−
i,j,k) if A−

i+ 1
2
,j,k

≥ 0

min(R+
i,j,k, R

−
i+1,j,k) if A−

i+ 1
2
,j,k

< 0
(A.27)

Ci,j+ 1
2
,k =

min(R+
i,j+1,k, R

−
i,j,k) if A−

i,j+ 1
2
,k

≥ 0

min(R+
i,j,k, R

−
i,j+1,k) if A−

i,j+ 1
2
,k

< 0
(A.28)

Ci,j,k+ 1
2

=

min(R+
i,j,k+1, R

−
i,j,k) if A−

i,j,k+ 1
2

≥ 0

min(R+
i,j,k, R

−
i,j,k+1) if A−

i,j,k+ 1
2

< 0
(A.29)
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Appendix B

Notation
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Table B.1: Notation of symbols
ρ total density kg/m3

qd mass concentration of dry air −
qv mass concentration of water vapor −
ql mass concentration of liquid water −
qs mass concentration of solid water −
t time s
u velocity of air flow m/s
wl relative velocity of liquid water to the gas m/s
ws relative velocity of solid water to the gas m/s
DIFF [x] Diffusion term by turbulene kg/m3 [x] /s
Sv source term of water vapor kg/m3/s
Sl source term of liquid water kg/m3/s
Ss source term of solid water kg/m3/s
p pressure N/m2

g gravitational acceraration 9.8 m/s2

fl drag force due to water loading by liquid water kg/m2/s2

fs drag force due to water loading by solid water kg/m2/s2

ez vertical unit vector ( upward ) −
Rd gas constant for dry air for uint mass J/kg
Rv gas constant for water vapor for uint mass J/kg
T temperature K
Qd diabatic heating due to physical processes for dry air J/m3/s
Qv diabatic heating due to physical processes for water vapor J/m3/s
Ql diabatic heating due to physical processes for liquid water J/m3/s
Qs diabatic heating due to physical processes for solid water J/m3/s
ed internal energy for dry air J/kg
ev internal energy for water vapor J/kg
el internal energy for liquid water J/kg
es internal energy for solid water J/kg
e total internal energy J/kg
cvd specific heat at constant volume for dry air J/kg/K
cvv specific heat at constant volume for water vapor J/kg/K
cpd specific heat at constant pressure for dry air J/kg/K
cpv specific heat at constant pressure for water vapor J/kg/K
cl specific heat for liquid water J/kg/K
cs specific heat for solid water J/kg/K
p00 standard pressure 1000.0 Pa
θd potential temperature for dry air K
θ total potential temperature K
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Appendix C

Variables in the source code

Table C.1: Variables in atmos/mod atmos dyn fent fct.f90.
DENS(k,i,j) ρi,j,k
MOMZ(k,i,j) (ρw)i,j,k+ 1

2

MOMX(k,i,j) (ρu)i+ 1
2 ,j,k

MOMY(k,i,j) (ρv)i,j+ 1
2 ,k

RHOT(k,i,j) (ρθ)i,j,k
QTRC(k,i,j,iq) qi,j,k
PRES(k,i,j) pi,j,k
VELZ(k,i,j) w̄i,j,k+ 1

2

VELX(k,i,j) ūi+ 1
2 ,j,k

VELY(k,i,j) v̄i,j+ 1
2 ,k

POTT(k,i,j) θi,j,k
QDRY(k,i,j) qd
Rtot(k,i,j) R∗

num diff(k,i,j) Fi+ 1
2

qflx hi(k,i,j) q̄high

qflx lo(k,i,j) q̄low

qjpls(k,i,j) Q+
i,j,k

qjmns(k,i,j) Q−
i,j,k

pjpls(k,i,j) P+
i,j,k

pjmns(k,i,j) P−
i,j,k

rjpls(k,i,j) R+
i,j,k

rjmns(k,i,j) R−
i,j,k
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Table C.2: Variables in atmos/mod atmos phy tb smg.f90.
tke(k,i,j) TKE
nu(k,i,j), nu *(k,i,j) νSGS

Ri(k,i,j) Ri
Pr(k,i,j) Pr
S33 *(k,i,j) S33

S11 *(k,i,j) S11

S22 *(k,i,j) S22

S31 *(k,i,j) S31

S12 *(k,i,j) S12

S23 *(k,i,j) S23

qflx sgs(k,i,j) ρ̄τij , ρ̄τ
∗
ij
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